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Abstract

Reliable detection and tracking of eyes is an important
requirement for attentive user interfaces. In this paper, we
present a methodology for detecting eyes robustly in in-
door environments in real-time. We exploit the physiologi-
cal properties and appearance of eyes as well as head/eye
motion dynamics. Infrared lighting is used to capture the
physiological properties of eyes, Kalman trackers are used
to model eye/head dynamics, and a probabilistic based
appearance model is used to represent eye appearance.
By combining three separate modalities, with specific en-
hancements within each modality, our approach allows
eyes to be treated as robust features that can be used for
other higher-level processing.

1. Introduction

In this paper, we present methods for tracking and de-
tecting eyes in indoor environments. Robust and reliable
eye detection is an important first step towards the develop-
ment of user interfaces capable of gaze tracking and detect-
ing eye contact. To support concurrent higher-level pro-
cessing, algorithms for eye detection should be cheap both
in cost and computational complexity. For this reason, we
have developed an algorithm that runs in real-time on a
consumer-end processor using an inexpensive (under $50)
black and white camera with infrared lighting. Our algo-
rithm does not require any camera calibration and works
for all people. We also do not require users to do any pre-
registration prior to having their eyes detected.

Our main goal is to detect eyes reliably and in real-
time. In our method, we use the physical properties of
pupils along with their dynamics and appearance to extract
regions with eyes. The detector gives us a probabilistic
measure of eye detection for each region. The probability
for each region is automatically weighted with components
coming from the appearance and dynamics along with tem-
poral information.

We use Kalman trackers to deal with the dynamics of
head/eye movements. A probabilistic appearance based

model of the eyes is used to compute statistics of the tex-
ture for different regions to aid in our classification. All
three processes, measuring eye physiology, dynamics, and
appearance, are merged to achieve robust detection and
tracking.

Once we know which regions are likely to be eyes, we
undertake higher-level processing on these regions. We
observe pairs of regions and probabilistically determine
which regions are most likely to be faces when paired to-
gether.

Prior Work There is much prior work [2] on finding
faces and facial features in complex scenes. Some ap-
proaches, like Kothari, et al. [4], find eyes in images with-
out finding faces. They observed that image gradient in-
tersection points were good candidate locations for eyes.
Most false positives were removed by ensuring similar
numbers of gradient intersections for pairs, by using a pri-
ori inter-eye distances, and using temporal cues. The phys-
ical properties of the eyes are not taken into account nor are
dynamics modeled as we propose in our method. In addi-
tion, the technique functions on the pixel level, so there is
no model.

Other approaches like those of [10, 8] find faces first and
then process the facial regions to find facial features. Faces
are usually chosen to be located first because they occupy
more of the image than their features. Our method differs
from these approaches in that we use eyes to reliably locate
faces.

Scassellati [10] finds faces in cluttered scenes in real-
time. Once the faces are located, their system foveates on
them and then zooms in on the left eye. However, their
system uses ratio templates to find faces and, as such, is
not rotationally invariant. Also, specialized DSP chips are
required to achieve real-time performance. Our algorithm
does not require any specialized chips to perform tracking
in real-time.

Oliver, et al. [8] utilize blobs and Kalman tracking to
find and track faces as well as facial features in real-time.
They initially use blobs and color information to create a
mixture model to find the faces and then assign trackers to
track each face. The system runs in real-time and achieves



������ �� Our infrared lighting camera [7]

good results, but due to the fact that color and anthropo-
metric statistics (to find facial features) drive their system,
faces might not always be detected if they are of a size and
shape that the system was not trained on. This situation
could arise if a face is occluded by an object, or if someone
is not completely within the field of view of the camera.

Our work has a lot in common with the work of Ras-
mussen, et al. [9]. In both works, trackers are given mul-
tiple sources of information to update their estimates. The
main difference is that our algorithm runs in real-time as
our model is simpler, without any degradation in perfor-
mance. Also, like in their work, we utilize a probabilistic
framework for our tracker’s components. This allows us to
combine the information from the modalities and is what
makes our algorithm robust. These modalities can be in-
terchanged with stronger components for possibly better
performance as discussed in section 5.

2. Pupil Thresholding

Our system utilizes a black and white camera with in-
frared lighting [7] as a first step in pupil detection. The
camera has two concentric rings of IR LEDs (Figure 1),
one along the camera’s axis, and one off-axis, to exploit
the red eye effect. As the two rings are switched on and
off, they generate two interlaced images (Figure 2) for a
single frame. The image where the inner ring is on, which
we refer to as the bright image, has white pupils. The im-
age where the outer ring is on, the dark image, has dark
pupils. The difference image that results by subtracting
these two similar images contains interlacing artifacts and
is quite noisy because regions of high specularity will have
large differences. We use the difference image despite its
noisiness as a preprocessing step since it contains valuable
information.

There are several things we can do to get rid of the
non-eye pixels in the difference image, such as threshold-
ing the image. However, there is no guarantee that a par-
ticular threshold will be good for different environments.
An adaptive thresholding algorithm could be used, but is
very computationally expensive, especially when done on
a consumer-end CPU as it must be done on every frame.

We use an adaptive thresholding algorithm that is com-
putationally fast. This algorithm is intended to get rid of
a conservative amount of specular reflection noise and in-
terlacing artifacts. We would rather have excess candidates

at this stage than miss a pupil region. The algorithm com-
putes the histogram for the current frame, back-integrates
it, and keeps a certain amount of the brightest pixels (about
1/1000 of the total number of pixels in the frame). The
rest of the pixels are then set to black. This algorithm is
extremely fast, which is desired as this is the lowest level
step in our overall approach and the later steps are more
computationally expensive.

Adaptively thresholded pixels are grouped into candi-
date regions. Candidate regions are those groups of pixels
that are likely to be pupils. 16x16 (pixel) windows are cen-
tered on the brightest pixel in each candidate region. Pixels
that are not at least three connected are not added to can-
didate regions and are set to black. We also ensure that the
regions do not overlap as it is impossible for two pupils to
overlap.

3. Candidate Region Tracking

Higher level information can now be gathered on these
candidate regions. Tracking the candidate regions yields
temporal information which is also used to handle tempo-
rary occlusions, such as blinks. Kalman filters are used be-
cause they update with a small number of highly optimiz-
able matrix operations yet perform well for our model of
the dynamics. Kalman trackers [13] are assigned dynami-
cally as new regions to track are detected, and removed as
these leave the field of view.

The trackers have four dimensional state vectors: �-
position, �-position, velocity in the � direction, and ve-
locity in the � direction. Acceleration information was not
incorporated as it did not improve tracking performance.
The dynamics are modeled as a one pixel variance between
frames for the � and � components of the state vector, and
a two pixel variance for each of the velocity components
of the vector. This model works because we assume that
people do not perform sudden and jerky movements.

Constant velocity is assumed for regions that do not
have new measurements before removing their trackers, in
case there was a temporary occlusion. We also ensure that
trackers never track the same regions.

We use the Kalman filter’s covariance matrix to give a
measure of similarity between a particular region’s motion
compared to a pupil’s motion. The covariance matrix up-
date equation for the Kalman filter is given by:

�� � �� ������
�

�� (1)

where K is the Kalman gain matrix, H is the connection

between the state vector and measurement vector, �
�

� is
the prior estimate of ��, and �� is the covariance matrix
at time �. To measure the probabilistic accuracy of each
tracker we compute:

� ������� � 	����� ���
 (2)

This equation yields a measure of how well the current
state estimate and the previous state estimate correlate to
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������ 	� Left: the bright image, Center: the dark image, Right: Difference Image (contrast enhanced)

the covariance of the model. If this result is near 0, it
means that the tracker is not tracking well because the state
changed significantly compared to the covariance between
the two frames. If this result is near 1, it means that the
tracker is tracking well. As a result, we can compute:

� � �� � �������
 (3)

� gives us a sense as to whether the region is moving as
a pupil that is attached to a head should move. If it is near
0, it implies that the region is stationary because its state
vector is varying very slowly. If it is near 1, it implies that
the region is moving like an eye because its state vector is
varying rapidly.

The strength of the tracker does not affect the above
equation because the state estimates in the previous and
current frames are what are being compared. Even if we
were using a perfect tracker, this equation would still hold
because the state must either change from frame to frame
or remain stationary. In both cases, the formulation for �
is correct.

4. Appearance based models for candidate

regions

Texture information must be taken into account because
a region can resemble a pupil in the difference image and
can move like a pupil, but could in reality be a moving re-
flective surface. For example, in Figure 3 we see a set of
regions in one frame that are being tracked. Those regions
are being tracked because they passed our adaptive thresh-
olding pre-processing and comply with our motion model.
However, the majority of the regions that are being tracked
are specular reflections from the glass of water, which we
are not interested in.

We perform appearance based matching using principal
component analysis (PCA). We create two vector spaces
as done in [12]: one for eyes, with 85 training images of
pupils from the dark image, and one for non-eyes, with 103
training images of patches that are not eyes from the dark
image. We take each candidate region, form a vector from
its texture, and project it into both of the spaces. The vec-
tor is then classified as belonging to the space it is closest
to. This class information is then added to the information
being kept for the region.

The problem with PCA is that the distances to the
spaces are not in any particular scale. This makes it hard
to combine the resultant texture analysis with the tracking
information we are already maintaining for each region.
Combining these helps in deciding whether a particular re-
gion is an eye or not. Also, if we just use the distances,
we have no measure of confidence that something belongs
to the eye or non-eye vector space. To alleviate both of
these problems, we use probabilistic principal component
analysis (PPCA) [11, 6].

4.1 Probabilistic PCA

Probabilistic principal component analysis (PPCA)
frames the distances in a PCA vector space probabilisti-
cally. PPCA treats all of the training data as points in
a probability density with Gaussian distribution. We use
PPCA because we want a means to get a probability for a
particular region; that is, we want to know the probability
that the texture for a particular candidate region belongs to
the eye vector space or to the non-eye vector space. If �
is the region we are interested in classifying, we want to
calculate � ��� for both the eye vector space and for the
non-eye vector space. The maximum of these probabilities
yields the density that the region is most likely a part of.
Bishop, et al.provide the full derivation [11] for � ��� by
using the fact that PCA is a special case of factor analysis.
Here we present a condensed version of their derivation.

Factor analysis is similar to PCA in that 	 dimensional
data is reduced to
 dimensional data with
 � 	 . When
dimensionality is reduced with factor analysis, we get:

� ���� �� �
 (4)

This means for an	 dimensional �, we can reduce it to a

dimensional vector �, which represents the latent variables.
� are the factor loadings, � is the mean of the training
set, and � is the error, modeled as 	�����, where � is
diagonal. The model for � is also assumed to be normal
	����� where � � � ��� � . In factor analysis, if �
and C are calculated, then the probability of � belonging to
a particular density is given by � ��� � 	�����.

If the factor loadings were indeed the principal compo-
nents, one would be able to see the similarities to PCA.
However, the loadings are not guaranteed to be the prin-
cipal components, so we must calculate them. It is pos-
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������ 
� Tracking all candidates

sible to calculate them because in PCA the data is as-
sumed to have a systematic component, an error term for
each variable, and common variance � �. If � � ��� and
� � �� � � ��� , where S is the covariance of the train-
ing data, then PCA can be treated as factor analysis. There-

fore,� � �
�
�	� �����, where� are the eigenvectors

of the training data, 	 is a diagonal matrix with the eigen-
values, and R is an arbitrary rotation matrix (since �� �

eliminates the �). Because we are concerned with maxi-
mum likelihood, �� ends up being the average of the lost
variance or the average of the eigenvalues of the unused
eigenvectors:

�� �
�

	 �


��

�����

��
 (5)

All of these equations allow us to calculate� ��� given PCA
information for a set of training data. For a given candidate
region, the probability that it is an eye or not an eye can
now be determined. Since these probability densities are in
high dimensional space, the probabilities end up being very
small, so they are normalized to be in the interval between
0 and 1.0.

5. Classifying Candidate Regions

PPCA gives us probabilities of candidate regions being
eyes or non-eyes. This is not enough as the probabilities
are temporally unstable and depend on the regions being
centered closely around the pupils. Since the region posi-
tions are being driven by the results from the Kalman track-
ers, they are not necessarily exactly over eyes at a given
time. Moreover, if classification is done just for one frame,
no temporal information is used. This is undesirable be-
cause the tracker may have drifted off slightly and would
be misclassified as a result. Clearly, we would also like
to incorporate the movement information that we are cal-
culating for each frame coming from the Kalman tracker’s
covariance matrix.

For a particular candidate region �, we combine all
of the modalities in the following equation which is a

������ �� Classified results

weighted probability of all of the statistics we have at time
�:

����� � �������� � ���	
������ � �� � �������� (6)

where �, �, and � vary on the confidence of the results
from the PPCA components and the Kalman tracker re-
spectively, � (described in section 3) is a measure of
whether the region is moving like an eye, and � ������ is
the previous weighted probability of the particular region
and has an exponential dropoff. All regions have all of
these statistics initialized to 0 in the first frame. The moti-
vation of this equation is that if the trackers are somewhat
off-center and the probabilities that a region is an eye or
non-eye are close, � will be increased and � and � de-
creased by the system. Conversely, if the movement infor-
mation is not very helpful, the system relies more on the
PPCA component. Temporal information is also included
so that single instances of misclassification from the PPCA
components do not bias the final classification. Once � ����
is calculated, if it is � 0.5, we classify the region as an eye
for this frame; if it is � �

 we do not. Probabilities were
computed for our different modalities so that they could
be combined easily and automatically at this stage without
heuristics.

Figure 4 shows a frame from live video of a user doing
some movements in front of the camera. Notice that only
eyes are detected; even the specular reflections from the
glass do not fool the system. While the appearance of the
glass is indeed similar to a pupil due to specular reflections,
it is not classified as such because the dynamics for the
region do not match the motion model and the appearance
is not consistent over time with that of an eye.

6. Results of Eye Tracking

Our method yields a robust pupil detector which detects
pupils very easily, minimizing false positives. False posi-
tives occur very rarely, but as a result of incorporating tem-
poral information into our classifier, they always decay out
quickly (within five frames or less). False positives occur
in the system when something reflects light back like an
eye, moves slowly like an eye, and actually looks like an

4



eye. For false positives to occur, all three of these condi-
tions must occur and hold over a large number of frames,
which is rare.

Our implementation runs very fast. On a single proces-
sor Pentium II 200mhz, the system runs at about 25 frames
per second at an interlaced resolution of 640x480 (320x240
each for the bright image and the dark image). On a dual
processor Pentium II 200mhz, the system runs at about 29
frames per second at the same resolution. This is a result
of having our system largely parallelized to take advantage
of multiple processors and to fully exploit the processing
pipeline.

Several experiments were performed to test the reliabil-
ity of the pupil regions that are detected and tracked. For
detailed evaluation, we recorded two sequences of 30 sec.
of video at 30fps. The first sequence had slow head move-
ments with small out of plane rotations. The second had
fast head movements with large out of plane rotations. For
each frame in each sequence, the left and right eye posi-
tions were manually determined for comparison. Both se-
quences consisted of one user sitting in front of the camera.
The results of these experiments can be seen in tables 1 to
4.

In table 1, the RMS error is only slightly better with our
method. The reason for this is that for small head move-
ments and out of plane rotations, the trackers can track
fairly well. However, in the faster sequence, shown in table
2, the RMS error is significantly smaller with our method
when compared to Kalman tracking with adaptive thresh-
olding. Our method is 0.5 worse than just Kalman tracking
in the case of the right eye’s x value, but this is most likely
due to unsteady hands when locating the eyes for ground
truth.

Also of note are tables 3 and 4, which show that when
using Kalman tracking with adaptive thresholding there are
about double the amount of detected regions compared to
the expected number of eyes (2) in the image. Our method

RMS error Kalman tracking Weighted prob.

(900 frames) (Our method)

Left eye x 3.06888 2.13689

Left eye y 1.51138 1.49021

Right eye x 2.52898 2.02244

Right eye y 1.46873 1.42833

�
��� �� Seq. 1: Slow and small head movements

RMS error Kalman tracking Weighted prob.

(900 frames) (Our method)

Left eye x 17.56796 13.53245

Left eye y 10.27857 6.10000

Right eye x 17.31363 17.89213

Right eye y 12.78411 5.75922

�
��� 	� Seq. 2: Fast and large head movements

Detected eyes Kalman tracking Weighted prob.

(900 frames) (Our method)

None detected in 0 frames 0 frames

Average detected 3.95540 2.10813

�
��� 
� Seq. 1: Slow and small head movements

Detected eyes Kalman tracking Weighted prob.

(900 frames) (Our method)

None detected in 0 frames 81 frames

Average detected 4.89608 1.80335

�
��� �� Seq. 2: Fast and large head movements

on average detected close to the correct number of eyes. It
did not detect eyes in the fast test case for a small portion of
the frames (81/900) due to its inability to exploit temporal
information since the head movements are very jerky and
extremely out of plane.

In looking at all of the tables together, we see that our
method tracks with a higher accuracy than Kalman track-
ing with adaptive thresholding and also yields more mean-
ingful regions. Our method consistently finds the right
number of pupils in the scene, and as such, is a better foun-
dation for higher level processing.

7. Pairing Candidate Regions

Pairing regions with high probabilities of being pupils
into faces is valuable since face finding is the first step in
any other higher level processing. Since our pupil list is
reliable, we can pair pupils very reliably as well.

We use a facial appearance model to classify faces.
PPCA is used by creating a vector space of a set of the
upper quarter of 165 faces at a low resolution (20x11).
Each face training sample consists of the bounding rect-
angle around the left and right eyes with a small amount
of space above and below the eyes as shown in Figure 5.
For every pair of pupils in our list of candidates at each
frame we figure out all possible pairings such that a priori
information on interocular distances is satisfied. We then
find the affine warp to normalize the face candidate’s tex-
ture region so that the left and right pupil positions line up
with the left and right pupil positions of our training data.

Once this is done, we can project the candidate face’s
texture into the vector space to calculate a probability that
the pairing constitutes a face. We find the maximum a pos-
teriori (MAP) set of pairings for our set of pupil candidate
regions for each frame. The pairings that result are very
reliable even for users with their faces close together or
at different head orientations. Mispairings do not occur if
only one eye is visible; single eyes and non-eyes are left
unpaired. Figure 6 shows an example of the results of our
pairing algorithm. As a result of this pairing step, if users
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������ �� Facial pairing training data

are facing the camera, we can very reliably find an arbi-
trary number of faces in the scene. Otherwise, we try to
pair unpaired regions again in the next frame.

8. Discussion & Applications

There are a large number of interesting applications that
can use the methods we have outlined here. We can count
the number of people in a scene, identify facial expres-
sions, perform facial recognition, or estimate head pose
for multiple people, among many other possible applica-
tions. We are particularly interested in the last application
as we expect to combine our robust face finding method
with texture based head tracking to do real-time multiple
person pose detection.

Once eyes are paired off, we can do processing to tell if
someone is falling asleep by looking at how the rate of their
blinking changes as has been shown possible in [1, 3, 5].
Blinks could be detected and statistics computed to do this
by measuring the delays between blinks or whether blinks
have stopped and the eyes are in fact closed.

We have shown that for our system utilizing multiple
modalities yielded increased robustness. We are interested
in exploring whether multiple simple modalities are always
better that single ”strong” components. Another interest-
ing avenue of future investigation is how the performance
of our system would be affected by using better appearance
based models, such as utilizing support vector machines in-
stead of PPCA.

9. Summary

In this paper we presented a real-time pupil detector and
tracker. The system is multi-modal, which adds to its ro-
bustness. Since there are plenty of leftover cycles, we can
do interesting higher level processing with them. With eyes
as robust features, we can find faces, which in turn gives us
even more information to use in tracking and classifying
pupil regions.

The system has been tested on a number of users each
with different eye shapes and skin tones. It was able to
consistently locate eyes and faces for single and multiple
subjects and was able to reliably track these as well.

Being able to find and track eyes reliably in complex
scenes has allowed us to do higher level processing, such
as maintaining eye contact and finding faces reliably. We
foresee many other applications employing this method.
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