
DETECTING AND UPDATING CHANGES IN LIDAR POINT CLOUDS FOR
AUTOMATIC 3D URBAN CARTOGRAPHY

A. K. Aijazia,b,∗, P. Checchina,b and L. Trassoudainea,b
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ABSTRACT:

This work presents a method that automatically detects, analyses and then updates changes in LiDAR point clouds for accurate 3D

urban cartography. In the proposed method, the 3D point cloud obtained in each passage is first classified into 2 main object classes:

Permanent and Temporary. The Temporary objects are then removed from the 3D point cloud to leave behind a perforated 3D point

cloud of the urban scene. These perforated 3D point clouds obtained from different passages (in the same place) at different days and

times are then matched together to complete the 3D urban landscape by incremental updating. Different natural or man-made changes

occurring in the urban landscape over this period of time are detected and analyzed using cognitive functions of similarity and the

resulting 3D cartography is progressively modified and updated accordingly. The results, evaluated on real data using different standard

evaluation metrics, not only demonstrate the efficacy of the proposed method but also shows that this method is easily applicable and

well scalable, making it suitable for handling large urban scenes.

1 INTRODUCTION

In this paper we present a new method for 3D urban cartography

that automatically detects different man-made or natural changes

occurring in urban environment and then effectively incorporates

them in the resulting 3D point cloud of the cartography by incre-

mental updating. Automatic detection of changes in urban en-

vironment for updating 3D urban models, cartography and maps

recently become a hot topic in the scientific community as it con-

tinues to offer several challenges (Champion and Jurgen, 2009).

Most of the proposed techniques detect changes in the urban en-

vironment from airborne data using DSMs (Digital Surface Mod-

els) i.e. (Vu et al., 2004). Vögtle and Steinle (Vögtle and Steinle,

2004) propose a methodology for detecting changes in urban areas

following disastrous events. Instead of solely computing the dif-

ference between the laser-based DSMs, a region growing seg-

mentation procedure is used to separate the objects and detect the

buildings; only then, an object-based comparison is applied. But

this method remains susceptible to misclassifications. Bouziani et

al. (Bouziani et al., 2010) presented a knowledge-based change

detection method for the detection of demolished and new buil-

dings from very high resolution satellite images. Different object

properties, including possible transitions and contextual relation-

ships between object classes, were taken into account. Map data

were used to determine processing parameters and to learn object

properties. Unlike these methods, in our work we handle the 3D

point cloud at 3D grid level for change detection, instead of ob-

ject level, making it more robust.

Most of the work using terrestrial laser scans focuses on deform-

ation analysis for designated objects. Change is detected by sub-

traction of a re-sampled set of the data (Schäfer et al., 2004), or

adjustment to surface models like planes and cylinders (Van Gos-

liga et al., 2006). In order to detect changes in large scenes,

Hsiao et al. (Hsiao et al., 2004) combine terrestrial laser scanning

and conventional surveying devices to acquire and register topo-

graphic data. The dataset is then transformed into a 2D grid and is

compared with information obtained by the digitization of these

existing topographic maps. In (Girardeau-Montaut et al., 2005),

changes are detected in the 3D Cartesian world, and the possib-

ilities of scan comparison in point-to-point, point-to-model, or

model-to-model manners are discussed. The authors then use

point-to-point comparison with some adaptations and make use

of an octree as a data structure for accessing the 3D point cloud.

Comparison is then carried out by using the Hausdorff distance as

a measure for changes. Hyyppä et al. (Hyyppä et al., 2009) also

use the method of point-to-point matching for detecting changes

in 3D urban scenes but in case of bad point registration, incor-

rect corresponding point pairs can cause false change detection.

Zeibak and Filin (Zeibak and Filin, 2007) extend this method by

further characterizing the changes caused by occlusions. Kang et

al. (Kang and Lu, 2011) not only detect changes in buildings in

the urban environment but also quantify the changed regions us-

ing a series of point cloud epochs over time and rebuilt building

models. Nevertheless, this work only focuses on disappearing

changes. In our work, we not only detect but also analyze both

appearing and disappearing changes in the 3D urban scene by

using 3D evidence grid and cognitive similarity functions. Ac-

cording to the best of our knowledge no prior work has ever been

presented that first effectively detects, then analyzes the changes

occurring in the 3D urban scene, in this manner, using terrestrial

data and eventually updates the 3D cartography accordingly.

The proposed method handles the 3D point cloud at two different

levels: 1) point level to characterize the urban environment and

accurately complete occluded regions; 2) grid level to analyze

and handle different changes occurring in the urban environment.

In this method, the 3D urban data obtained from mobile terrestrial

LiDARs in each passage is directly geo-referenced with the help

of an integrated GPS/IMU system. The use of these directly

geo-referenced points along with grid level analysis makes this

method independent of the type of Lidar sensors used in different

passages. These geo-referenced 3D point clouds are segmen-

ted and classified into basic object types and then further cha-

racterized into 2 main object classes: Permanent and Tempor-

ary. The Temporary objects are then removed from the 3D point

clouds, leaving behind a perforated 3D point cloud of the urban

scene. These perforated 3D point clouds obtained from different

passages (in the same place) on different days and at different

times are then matched together to complete the 3D Urban land-

scape. Different changes occurring in the urban landscape over

this period of time are studied using cognitive functions of simil-

arity and the resulting 3D cartography is progressively modified
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accordingly by incremental updating. An overview of the method

is presented in Alg. 1.

Algorithm 1 Automatic 3D Urban Cartography

Input: 3D urban point clouds for passage number np

1: Classify 3D urban point cloud obtained by LiDAR sensors

into two main object classes: {Permanent, Temporary}
2: Separate out Temporary objects leaving behind a perforated

3D point cloud P(np)
3: Match and compare perforated point cloud P(np) with

P(np − 1) to fill in the holes and complete the 3D carto-

graphy

4: Formulate 3D evidence grids for P(np) and P(np − 1) and

compute 3D cell scores CS for both

5: Calculate similarity scores Sym and ASyms and uncer-

tainty measures for the 3D cells

6: Update Similarity Map SMap

Automatic Reset function: {
7: Compare the Sym, ASyms and the uncertainty measures of

the 3D cells in the SMap after nreset number of passages

8: If low Sym and uncertainty measure then Reset those 3D

cell(s) in P(np) with those in the recently acquired point

cloud (perforated) }
9: Delete 3D evidence grids for P(np) and P(np − 1)

10: Store SMap

11: Store P(np)
12: P(np − 1)← P(np)
13: return P(np)

2 CLASSIFICATION AND EXTRACTION OF

OCCLUDING OBJECTS FOR 3D URBAN

CARTOGRAPHY

In urban environments, the quality of data acquired by different

mobile terrestrial data acquisition systems is widely hampered by

the presence of temporary stationary and dynamic objects (ped-

estrians, cars, etc) in the scene. As a result there is a problem of

occlusion of regions. Moving objects or certain temporary sta-

tioned objects (parked cars, traffic, pedestrian etc) present in the

area hide certain zones of the urban landscape (buildings, road

sides, etc.). So the first step for 3D urban cartography is to obtain

the permanent cartography. This is done by removing/extracting

the Temporary objects from the scene/point cloud leaving behind

only the permanent features.

In order to achieve this, we first classify the urban environment

into 2 main categories: Permanent objects and Temporary ob-

jects. Although several methods have been proposed for the clas-

sification of urban environments, we have used one of the more

recent methods (Aijazi et al., 2013) for this task. In this method

the 3D point cloud is first segmented into objects, using a voxel

based approach, which are then classified into basic object classes

using geometrical models and local descriptors. Once classified

into these basic classes, they are then grouped under one of the

2 mentioned categories using inference based on basic reason-

ing. The salient features of this method are data reduction, effi-

ciency and simplicity of approach. Some results of this method

are shown in Fig. 1.

Once the objects present in the urban scene are classified into

these two main classes, in each passage, the objects classified

as Temporary are separated from the scene for each passage to

obtain perforated point clouds. This perforation is due to occlu-

sions caused by the temporarily static and mobile objects in the

scene. These perforated 3D point clouds of the same place ob-

tained via a single passage on different days and at different times

are then combined together to complete the 3D cartography by in-

cremental updating as discussed in § 4. Furthermore, as the nature

of the unclassified objects is not known, they are considered tem-

porary by default and removed from the 3D point cloud/image. If

by any chance, any of these unclassified objects belonged to the

permanent cartography, they are then detected as changes in sub-

sequent passages and are upgraded/added as Permanent objects

in the 3D cartography during incremental updating.

Figure 1: Classification of the objects present in the urban scene

into 3 main classes.

3 AUTOMATIC CHANGE DETECTION

The perforated 3D point cloud obtained in subsequent passages of

any particular place (on different days and/or at different times)

are combined together to fill in the occluded regions and com-

plete the 3D urban cartography. The perforated point cloud is

first mapped onto a 3D evidence grid and the corresponding 3D

cell scores are calculated. A similarity map is generated in sub-

sequent passages. Based on this similarity map and the associated

uncertainty, different changes occurring in the urban environment

are analyzed and appropriate actions are taken to cater for these

changes. The details are provided below.

3.1 3D Evidence Grid Formulation

As the 3D point cloud is directly geo-referenced (Urban Data
Challenge, 2011), the use of an occupancy grid for comparison
in subsequent passages as compared to the elaborate graph the-
ory is more logical and practical. The perforated 3D point cloud
obtained in each passage is mapped onto a 3D evidence grid as
shown in Fig. 2. Each 3D cell or voxel of this grid occupies a

volume L3 and is assigned a cell score CS based on certain at-
tributes of the constituting 3D points using (1). These attributes
include ratio of occupied volume VOcc, surface normal along X ,
Y and Z axes NX,Y,Z , mean laser reflectance intensity and mean

RGB color values i.e. RI , Rc (c ∈ {R̄, Ḡ, B̄}) respectively and
the number of the current passage np. The normalized values of
these attributes are used to compute the cell score:

C
j
S

=
wOccV

j
Occ

+ wNN
j
X,Y,Z

+ wRIR
j
I

+ wRcR
j
c + wnpnp

wOcc + wN + wRI + wRc + wnp

(1)

where j is the number of cell, wOcc = 1, wN = 0.5 are Occu-

pation weight and Normal weight while wRI = 0.25 and wRc =
0.125 are intensity and color weight respectively. wnp = 0.0625
is the passage number weight. The values of these weights are

chosen to bias the score more towards occupancy (magnitude and

orientation) and less towards representation (intensity and color)

as the former is more invariant in the urban environment and also

keeps our approach closer to the classical occupancy grid method

(Souza and Gonçalves, 2012). These 3D evidence grids are con-

structed in each passage for both the previous (P (np − 1)) and

latest perforated 3D point cloud acquired and are used to formu-

late and update the similarity map along with the associated un-

certainty. They are then deleted at the end of the process in each

passage (Alg. 1). This makes this approach most suitable for ana-

lyzing large mapping areas.
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3.2 Similarity Map Construction

In order to obtain a similarity map in each passage, the 3D evid-
ence grid in successive passages is compared. Instead of finding
the overall graph/grid similarity, we are more interested in meas-
uring the similarity of each cell as this indicates exactly which
part of the 3D cartography has changed. Currently, many dis-
tances have been developed to compare two objects (in this case

cell) according to the type of attributes, such as χ2 or Mahalan-
obis. However, when working with real values, the most widely
used (and simplest) metric is Minkowski measure dp:

dp(x, y) =
[

k
∑

i=1

Wi

∣

∣xi − yi

∣

∣

p
] 1

p
with p > 0 (2)

In this measure, xi and yi are the values of the ith attribute de-
scribing the individuals x and y. Wi is the numerical weight cor-
related with this attribute. k is the total number of attributes. In
order to transform Minkowski distance (2) into a similarity meas-
ure sp a value Di is introduced, that corresponds to the difference

between the upper and the lower bounds of the range of the ith

attribute:

sp(x, y) =
[

k
∑

i=1

Wi

Di −
∣

∣xi − yi

∣

∣

p

Di

] 1

p
with p > 0 (3)

This similarity function may provide a measure indicating the
amount of changes occurring in a 3D grid cell in subsequent pas-
sages but it remains silent on the type of change taking place.
Now this information could be useful when deciding how to handle
these changes in the 3D cartography. Thus, in order to get more
insight into the type of changes we incorporate the notion of dis-
tance between individuals or objects studied in Cognitive Sci-
ences. For this purpose, we use the method proposed by Tversky
(Tversky, 1977) to evaluate the degree of similarity Sx,y between
two individuals x and y respectively, described by a set of attrib-
utes A and B, by combining the four terms A∪B, A∩B, A−B
and B −A into the formula:

Sx,y =
f(A ∩ B)

f(A ∪ B) + αf(A − B) + βf(B − A)
(4)

As we want to compare a pair of individuals (in this case, cells

in successive passages) described by a set of numerical attributes,

we combine the definitions proposed by Tversky and Minkowski.

In these measures, we use Tversky’s model to compare the two

sets of attributes describing the individuals; the function f of this

model is the Minkowski’s formula as rewritten in (3). The para-

meter p of this formula equals 1 since in Tversky’s model the

function f corresponds to a linear combination of the features.

Now, depending upon the way the parameters α and β are in-

stantiated, different kinds of cognitive models of similarity can

be expressed. By instantiating α = β = 0 we obtain the sym-

metric similarity measure Sym while by instantiating α = 0 and

β = −1 we obtain the asymmetric similarity measure ASym.

Now we use these values to fill up similarity map SMap as shown

in Fig. 2. The values of ASym allow to evaluate the degree of

inclusion between the first cell (reference) into the second cell

(target). Hence, with the attributes (along with their correspond-

ing weights) assigned to these cells (discussed in § 3.1), the value

of ASym can be used to assume the type of changes occurring

in the 3D grid cell as summarized in Tab. 1 where x and y are

the same 3D grid cell in different passages. These values of Sym

and ASyms not only help in ascertaining the type of changes oc-

curring but also the most suitable action required to handle that

particular 3D grid cell. Condition 1 is automatically handled in

the incremental updating phase where as for condition 2 and 3,

Automatic Reset function is called into action.

This similarity map SMap is updated in each passage and only

the different cells (with Sym < Similaritythreshold) along with

their associated uncertainty values are kept in the map whereas

the remaining cells considered as identical cells (with high level

of similarity) are deleted from the map. Hence, this not only re-

duces the size of the map progressively in subsequent passages,

but also avoids possible storage memory issues for large point

clouds in case of large mapping areas (see § 5, Fig. 8, for more

details).

Figure 2: Formulation of 3D evidence grids and similarity map.

(a) & (b) show the 3D point clouds (P(np) and P(np − 1))

mapped onto an evidence grid of cell size L3 respectively. In

(c), the similarity map obtained from the two evidence grids.

# Condition Possible assumption

1 ASymx,y < ASymy,x Addition of structure
(could be new construction or earlier

misclassified objects)
2 ASymx,y > ASymy,x Removal of structure

(could be demolition)
3 ASymx,y = ASymy,x Modification of structure

(depending on the value of Sym)

Table 1: Type of changes

3.3 Associated Uncertainty

Let the cell scores of a particular cell j in n number of passages:

C
j
S1

, C
j
S2

, . . ., C
j
Sn

, be an iid sequence of random variables,

then the nth sample variance sj
n

2
is given as:

sj
n

2
=

∑n
k=1

(

C
j
Sk

− C̄
j
Sn

)2

n − 1

then, adding and subtracting C̄
j
Sn−1

sj
n

2
=

1

n − 1

[

n
∑

k=1

(

C
j
Sk

− C̄
j
Sn−1

+ C̄
j
Sn−1

− C̄
j
Sn

)2]

Expanding and solving this to get

sj
n

2
=

1

n − 1

[

(n − 2)sj2

n−1
+ (n − 1)(C̄j

Sn−1
− C̄

j
Sn

)2

+ 2

n−1
∑

k=1

[

(Cj
Sk

− C̄
j
Sn−1

)(C̄j
Sn−1

− C̄
j
Sn

)
]

+
(

C
j
Sn

− C̄
j
Sn

)2
]

Using the standard mean (
∑n−1

k=1
C

j
Sk

= (n− 1)C̄j
Sn−1

), the

sum-term simplifies to 0:

sj
n

2
=

[

(n − 2)sj2

n−1
+ (n − 1)(C̄Sj,n−1

− C̄
j
Sn

)2 + (Cj
Sn

− C̄
j
Sn

)2
]

n − 1

Further simplification yields

sj
n

2
=

[

( (n − 2)

(n − 1)

)

s
j2

n−1
+

(Cj
Sn

− C̄
j
Sn−1

)2

n

]

The uncertainty associated with each cell in the map uj is hence
estimated and updated in each passage (n > 1) using the follow-
ing relations:

uj
n =

[

( (n − 2)

(n − 1)

)

(uj
n−1

)2 +
(Cj

Sn
− C̄

j
Sn−1

)2

n

] 1

2 (5)
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where C̄
j
Sn

is the moving or running average given as:

C̄
j
Sn

=
(C

j
Sn

+ (n − 1)C̄j
Sn−1

n

)

(6)

There is no need to initialize (5) and (6) as for n = 2 the first

term in (5) equals 0 and in (6) C̄
j
S1

= C
j
S1

. This uncertainty

measure, updated using (5) and (6), for each cell, in each pas-

sage, sheds light on the reliability of the state of the mapped cells

as high uncertainty value means that the contents of the 3D cell

are changing quite frequently: that could suggest high traffic cir-

culation and other movements in the urban area. On the other

hand, low uncertainty means that the contents of the 3D cell are

fairly stable. This uncertainty measure can also be added as a cri-

terion for selecting the appropriate action required to handle the

changing 3D cells. The uncertainty distribution of neighborhood-

1 can be seen in Fig. 3.

Figure 3: Uncertainty distribution map of a busy neighborhood-1

presented in the form of color coded heat map (with yellow being

the lowest and red the highest level of uncertainty). The map

clearly shows that the bottom part of the environment (close to

the ground) is highly uncertain whereas the top part is generally

stable.

4 INCREMENTAL UPDATING

The 3D cartography is updated in successive passages. The per-

forated 3D point clouds obtained for each passage of any partic-

ular place are not only combined to complete the occluded re-

gions of the 3D urban cartography but all changes detected in the

3D cartography are analyzed and then progressively incorporated

in the resulting cartography. This ensures that the resulting 3D

cartography is not only accurate but is also well updated. The

different steps involved in this method are discussed below.

4.1 3D Point Cloud Matching

Each subsequent 3D point cloud is registered with the former

point cloud by using the ICP (Iterative Closest Point) method

(Besl and McKay, 1992). This method is most suitable for this

task as the 3D point clouds are already geo-referenced and hence

lie in close proximity. It is observed that the major part of the 3D

urban point clouds is composed of building points which are also

found to be most consistent. Thus instead of applying the ICP

method to complete 3D point clouds, only the building points

are taken into account. First the profile/envelope of the buil-

dings is extracted and then the ICP method is applied, matching

these boundaries to obtain the transformation matrix. The out-

lines/envelopes of the buildings are extracted using a sweep scan

method. As the bottom part of the building outline close to the

ground is often occluded and hence inconsistent due to the pres-

ence of different objects in the scene (Fig. 3), only the bound-

ary of the top half of the building outline is subjected to ICP as

presented in (Aijazi et al., 2013).

To avoid redundant points, a union of 3D points belonging to the

two registered images is performed. Each 3D point of the first

point cloud is matched with that of the second if pOa − pOb ≤
3
√

etol is satisfied. Here pOa and pOb (3 × 1 vectors) are point

positions in two point clouds along X , Y and Z axes. etol (3× 1
vector) is equal to the inverse of the maximum number of 3D

points per cubic meter that is desired in the 3D cartographic point

cloud/image. The matched 3D points are considered as one point.

This ensures that only the missing points are added completing

the perforated 3D point cloud/image. Now this also ensures that

even if there is some new construction or addition of certain 3D

points in the scene in subsequent passages, they are automatically

added hence catering for the first type of change (Tab. 1).

4.2 Automatic Reset

The main purpose of this function is to detect and analyze dif-
ferent changes occurring in the urban environment, over a num-
ber of passages, before incorporating them in the resulting 3D
cartography. The function analyzes the similarity map SMap and
compares the Sym, ASyms and the uncertainty measures u of
the 3D cells after every nreset number of passages. Those 3D

cells Cj
n which satisfy conditions 2 and 3 (see Table 1) along

with a low value of uncertainty measure u (7) are reset with those
in the recently acquired image/point cloud (perforated) i.e. their
contents are replaced by the contents of the same 3D cells in
the recently acquired point cloud/image. This ensures that any
changes that occur in the urban environment are automatically
incorporated in the resulting 3D cartography in a very smooth
manner without affecting the remaining part of the 3D cartogra-
phy.

Reset(Cj
n)

if
−→ ∀m

(

ASym(Cj
m−1

, Cj
m) ≥ ASym(Cj

m, C
j
m−1

)
)

∧

(

uj
n < uthreshold

)

(7)

where m = {(n − nreset) · · ·n}, with n > nreset. The pro-

posed reset method was verified by synthetically modifying and

demolishing/changing different parts of the urban environment

including parts of buildings, roads, poles and trees in the datasets

as shown in Fig. 6.

Now (7) ensures that a detected change is only incorporated in

the resulting cartography only if we are certain about it. If the

change is well established, the uncertainty value of changing cells

will progressively decrease and when it falls below the uthreshold,

these changes are incorporated in the 3D cartography via the Re-

set function (as shown in Fig. 4(a)). Whereas on the contrary, de-

tected change with increasing or high uncertainty indicates rapid

continuing changes occurring which could be either due to ongo-

ing construction/reconstruction or rapid traffic movement in the

scene (as shown in Fig. 4(b)). In such situations, the detected

changes are not incorporated at once, but in fact we wait for the u

to progressively decrease below uthreshold as the number of pas-

sages np increases. This ensures the reliability and accuracy of

our method.

4.3 Automatic Checks and Balances

In case of certain 3D points or objects are wrongly added or

removed in the 3D cartography due to either misclassification

those initially unclassified objects that were removed after be-

ing wrongly considered as Temporary, are then detected in sub-

sequent passages as changes and after analysis are progressively

added or removed from the 3D cartography by the Automatic

Reset function: for example, in case of neighborhood-1 some

building walls and for neighborhood-2 some permanently present

trash cans were added to the cartography respectively.Hence, this

ensures that the resulting 3D cartography contains only the exact,

actual and permanent features.
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(a) (b)

Figure 4: shows the uncertainty u variation against number of

passages np of a group of three adjacent cells in which change

was detected. (a) represents the case of established changes while

(b) represents the case of rapid or continuing changes.

5 RESULTS, EVALUATION AND DISCUSSION

In order to validate our method, the dynamic data set of the 3D

Urban Data Challenge (Urban Data Challenge, 2011) was used.

This data set contains 4 sets of the same dynamic scenes of down-

town Lexington, Kentucky, USA obtained on different days and

at different times. The data was acquired by the Vis Center’s

(University of Kentucky) LiDAR Truck containing two Optech

LiDAR sensor heads (high scan frequency up to 200 Hz), a GPS,

inertial measurement unit and a spherical digital camera. The re-

sults of our method applied to three different neighborhoods from

this data set are discussed in this paper. In Fig. 7, the detailed

results for neighborhood-1 (modified) are presented. The figure

clearly shows how the 3D cartography is progressively completed

while the different changes occurring in the urban scene are up-

dated, after successful detection and analysis, by incremental up-

dating.

In order to fully evaluate the proposed method, we first construc-

ted a ROC (Receiver Operating Characteristic) curve. The value

of Similaritythreshold (used as a discriminatory threshold) was

varied from 0 to 1 and corresponding True Positive Rates (TPR)

and False Positive Rates (FPR) were calculated for neighborhood-

1 (modified). The variation of this ROC curve with respect to

uthreshold (varied from 0 to 0.5) is presented by a 3D ROC curve

(surface in this case) in Fig. 5. From the figure it could be ob-

served that best/optimal results (A on the figure) can be obtained

from Similaritythreshold = 66% and uthreshold = 0.15. This

analysis was conducted at 3D cell level. Figure 6 shows some of

these detected changes in the urban scene.

Using these values of Similaritythreshold and uthreshold along

with L = 2 m, etol = (0.000125 0.000125 0.000125)T (in m3)

and nreset = 3 (maximum number of passages possible in our

case is 4), we then, evaluated the performance of our method,

for all three neighborhoods, using different standard evaluation

metrics as described in (Vihinen, 2012) (see Table 2). Although,

all these metrics are commonly used to evaluate such algorithms,

MCC (Matthews Correlation Coefficient) is regarded as most

balanced measure as it is insensitive to different class sizes (like

in our application the number of changed cells (changes) is gene-

rally quite less as compared to unchanged cells in the urban en-

vironment). The MCC, like the other measures, is calculated

based on the count of the true positives (i.e. correct detection of

changed 3D cells), false positives, true negatives, and false negat-

ives. A coefficient of +1 represents a perfect prediction, 0 no bet-

ter than random prediction and −1 indicates total disagreement.

The detailed results including overall accuracy ACC and MCC

greater than 85% and +0.6 respectively, clearly demonstrate the

efficacy of the proposed method.

Figure 5: 3D ROC curve for neighborhood-1 (modified). Point A

on the surface represents optimal/best results.

	   Building	  	  	  	  	  	  	  	  	  	  	  Road	  	  	  	  	  	  	  	  	  	  Pole	  	  	  	  	  	  	  	  	  	  Tree	  	  	  	  	  	  	  	  	  	  Detected	  Changes	  

	  

Figure 6: The different changes detected in one of the urban

scene are presented in red. These changes were due to demol-

ished building wall, larger poles cut in half and trimming/cutting

of bushes/trees in the scene.

The variation in the size of the similarity map, for the three neigh-

borhoods, was also studied. Figure 8 shows the progressive re-

duction of the size of the similarity map in subsequent passages.

This is due to the fact that in subsequent passages, as occluded

regions are completed, the number of low similarities caused by

the missing occluded features decreases and also the different

changes occurring in the cartography are catered by the Auto-

matic Reset function. In case of neighborhood-1 (modified), Fig. 8,

the large size of SMap is due to large parts of the building, poles,

trees, etc. being demolished in the neighborhood-1 (see Fig. 6)

whereas a sharp decrease in size occur at np = 4 due to Auto-

matic Reset function (nreset = 3). We see that some non-repea-

ting or those cells with high associated uncertainty remain even

after the Automatic Reset. This number of cells in the SMap

should ideally reduce to zero as number of np increases. This

shows that the proposed method is most suitable for handling

large point clouds in case of large mapping areas.

Neigh.-1 Neigh.-1 Neigh.-2
(modified)

ACC Accuracy 0.864 0.891 0.903
PPV Positive Predictive Value 0.842 0.850 0.900
NPV Negative Predictive Value 0.864 0.902 0.901
FDR False Discovery Rate 0.158 0.150 0.100
F1 F1 measure 0.695 0.650 0.782

MCC Matthews Correl. Coeff. +0.624 +0.692 +0.729

Table 2: Change Detection Evaluation
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(a) 3D point cloud P(np): after 1st passage

(b) 3D point cloud P(np): after 2nd passage

(c) 3D point cloud P(np): after 3rd passage

(d) 3D point cloud P(np): after 4th passage

(e) 3D point cloud P(np): after Automatic Reset

Figure 7: (a) shows the initial point cloud related to urban car-

tography full of perforations. In (b), (c) & (d) completion of

occluded and missing features in the urban cartography, by incre-

mental updating, as changes of type-1 detected. In (e), Automatic

Reset function came into action after changes of type 2 & 3 were

detected to update the modifications in the 3D cartography. On

(e) are also marked the changes successfully detected and updated

after 4 passages. These include: 1- Building wall/ roof added due

to initial misclassification; 2- Part of Building demolished; 4, 5 &

6- Trimmed or cut trees/bushes; 3, 7 & 8- Longer poles cut into

half.

6 CONCLUSION

In this work, we present a method for automatic change detection

and incremental updating for 3D urban cartography. Different

man-made or natural changes occurring in the urban landscape

are automatically detected and analyzed using cognitive functions

of similarity and the resulting 3D cartography is progressively

modified accordingly. The proposed method ensures that the re-

sulting 3D image/point cloud of the cartography is well updated

and it contains only the exact and actual permanent features.

The results evaluated using different standard metrics demon-

strate the technical prowess of the method which can be easily

integrated in different commercial or non-commercial applica-

tions pertaining to urban landscape modeling and cartography

that need to frequently update their database.

Figure 8: The progressive reduction of the size of similarity map

SMap is presented.
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