
Detecting Anomalies in Cellular Networks

Using an Ensemble Method

Gabriela F. Ciocarlie, Ulf Lindqvist

SRI International

Menlo Park, California, USA

{gabriela.ciocarlie,ulf.lindqvist}@sri.com

Szabolcs Nováczki
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Abstract—The Self-Organizing Networks (SON) concept in-
cludes the functional area known as self-healing, which aims
to automate the detection and diagnosis of, and recovery from,
network degradations and outages. This paper focuses on the
problem of cell anomaly detection, addressing partial and com-
plete degradations in cell-service performance, and it proposes an
adaptive ensemble method framework for modeling cell behavior.
The framework uses Key Performance Indicators (KPIs) to deter-
mine cell-performance status and is able to cope with legitimate
system changes (i.e., concept drift). The results, generated using
real cellular network data, suggest that the proposed ensemble
method automatically and significantly improves the detection
quality over univariate and multivariate methods, while using
intrinsic system knowledge to enhance performance.

Index Terms—Self-Organizing Networks (SON), cell anomaly
detection, Self-Healing, performance management, Key Perfor-
mance Indicators

I. INTRODUCTION

The need for adaptive, self-organizing heterogeneous net-

works is particularly apparent given the explosion of mobile

data traffic (Chapter 10 in [1]) that stems from increased use of

smartphones, tablets, and netbooks for day-to-day tasks. The

expectations for mobile networks have grown along with their

popularity, and include ease of use, high-speed data transmis-

sion, and responsiveness. Heterogeneous Networks (HetNet)

combining different Radio Access Technologies (RATs) (3G,

LTE, WiFi) and different cell layers (macro, micro, pico)

within those RATs can offer these capabilities, providing

virtually unlimited capacity and ubiquitous coverage. How-

ever, a high degree of distribution introduces a high level

of complexity requiring additional mechanisms, such as Self-

Organizing Networks [1], to manage that complexity.

A. Self-Healing for SON

This paper focuses on self-healing capabilities, which re-

duce operator effort and outage time, thereby providing faster

maintenance. Specifically, the problem that we address is auto-

matic cell anomaly detection. Typically, research has focused

only on Cell-Outage Detection (COD) [2] and Cell-Outage

Compensation (COC) [3] concepts, but, more recently, detec-

tion of general anomalies has also been addressed [4]. This

paper addresses both the outage case and the case where the

cell can provide a certain level of service, but its performance

has degraded to a point below an expected tolerable level and

directly impacts users’ experience.

B. Contributions

The key challenge for addressing the more general problem

of cell degradation is creating a robust method for modeling

normal cell behavior. This approach uses Key Performance

Indicators (KPIs), which are highly dynamic measurements of

cell performance, to determine the state of a cell. KPIs require

modeling techniques that can cope with concept drift, defined

as the phenomenon where the normal behavior of the system

legitimately changes over time (e.g., by the increasing amount

of user-induced traffic demand).

This paper proposes a novel method for modeling cell

behavior to help address these problems. Our implementation

and experiments focus on the problem of creating adaptive

models, leveraging the intrinsic characteristics of the environ-

ment where the models are created. The work described here

provides several contributions by:

• proposing a new ensemble-method approach for cell

anomaly detection that computes a numerical measure

referred to as the KPI degradation level [5], to indicate

the severity of the degradation,

• using intrinsic knowledge of the system to enhance the

ensemble-method learning in order to cope with concept

drift and provide automation,

• building a system to implement the algorithms, applying

the system to a real KPI dataset, and analyzing the

performance of the proposed framework.

II. CELL ANOMALY DETECTION

The first goal of the proposed framework is determining

the relevant features needed for detecting anomalies in cell

behavior based on the KPI measurements. Because KPIs are

measurements that are collected as ordered sequences of values

of a variable at equally spaced time intervals, they constitute

a time series and can be analyzed with known methods for

time-series analysis. An anomaly in a time series can be either

a single observation or a subsequence of a time series with

respect to a normal time series. Testing is defined as the

comparison of a set of KPI data to a model of the normal state

established by an earlier observed set of KPI data referred to as

training data. Ground truth is defined as the labels associated

with the data points that indicate whether or not the data

represents a real problem.



Our hypothesis is that no single traditional time-series

anomaly detection method (classifier) could provide the de-

sired detection performance. This is due to the wide range in

the types of KPIs that need to be monitored, and the wide

range of network incidents that need to be detected.

The proposed ensemble method combines different clas-

sifiers and classifies new data points by taking a weighted

vote of their prediction. It effectively creates a new compound

detection method that, with optimized weight parameter values

learned by modeling the monitored data, can perform signifi-

cantly better than any single method.

A. Univariate Time-Series Analysis

Individual KPIs collected for each cell are univariate time

series that can be analyzed with the following methods:

• Using a sliding window, an Empirical Cumulative Dis-

tribution Function (ECDF) [6] is computed for each

window. In the training phase, sliding windows that are

similar based on the Kolmogorov-Smirnov (KS) test are

captured in clusters represented by a centroid. In the

testing phase, each sliding window is tested against the

centroids of the clusters and KPI degradation level is

defined as the minimum distance from the centroids.

• A Support Vector Machine (SVM) [7] method is used to

build KPI models. The training windows are used to build

one-class SVMs [8] with a radial basis function (RBF)

kernel. In the testing phase, the anomaly score of a test

window is 0 or 1, depending on whether it is classified as

normal (score of 0) or anomalous (score of 1). The KPI

degradation level is computed as the normalized value of

abnormal sequences in a number of consecutive tests.

• Using a predictive approach, KPI behavior is captured

by autoregressive, integrated moving average (ARIMA)

models. Seasonal components are removed using STL,

a Seasonal-Trend decomposition procedure based on

Loess [9]. STL is robust to outliers, meaning that noise

will not affect the seasonal and the trend components, but

only the residual component. Two different implementa-

tions of the ARIMA modeling are used: static “o,” in

which only one model is created; and dynamic “m,” in

which multiple models are created over time.

B. Multivariate Time-Series Analysis

The set of all KPIs collected for each cell is considered a

multivariate time series that can be analyzed with the following

methods:

• Using a sliding window, multivariate one-class SVM

models are built across all time series. In the testing

phase, their output is just a label with the value normal

or abnormal. This approach provides a high-level view

of the KPIs’ behavior as a whole without providing a

severity indication for each KPI. This multivariate method

is relevant for the ensemble-method framework, in which

the multivariate prediction is considered when generating

individual KPI degradation levels.

• Using a predictive approach, Vector Auto-regressive

(VAR) models are applied for the multivariate case. VAR

is a statistical model that generalizes the univariate AR

model [10]. The VAR approach generates a model for

each KPI of a cell while capturing the linear interdepen-

dencies among all KPIs (i.e., each KPI is expressed in

relationship to all the other KPIs). The VAR models en-

able seasonal adjustment. Two different implementations

of the VAR modeling are used: static “o,” in which only

one model is created; and dynamic “m,” in which multiple

models are created over time.

The computation of KPI degradation levels for both mul-

tivariate SVM and VAR models is analogous to the case of

univariate ARIMA and SVM models.

C. Ensemble Method for Cell Anomaly Detection

The proposed ensemble-method framework applies individ-

ual univariate and multivariate methods to the training KPI

data and relies on context information (available for cellu-

lar networks) extracted from human-generated Configuration

Management (CM) or confirmed Fault Management (FM)

input data to make informed decisions. Confirmed FM data is

defined as the machine-generated alarms that were confirmed

by human operators.
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Fig. 1. Overall approach of the proposed ensemble method applied to a
single cell in a cellular network. Data is depicted in blue rectangles and
methods in pink rectangles with rounded corners. The remaining elements
indicate different context information. The dashed lines indicated that an event
is triggered in the presence of new evidence/data

Figure 1 presents the details of the proposed ensemble

method, which implements a modified version of the weighted

majority algorithm (WMA) [11]. The modified WMA returns

a KPI degradation level in the range [0,1] and uses context

information for updating the weights and creating new models.

• Initially, for a given time period, the KPI measurements

of a given cell are selected as the training dataset (D1)

for the pool of models of the ensemble method.



• A diverse set of univariate and multivariate algorithms

(M1) is applied to the training dataset (D1).

• The result of (M1) is a set of models used as the pool

of models for the ensemble method (D2). Each model in

the pool of models has a weight, ωi, associated with it.

For the initial pool of models, all models have the same

weight value assigned (ωi = 1).

• Given the pool of models (D2), the stream of KPIs is

used in a continuous fashion as the testing dataset (D5).

Any CM change (C1) triggers the testing dataset to also

become the training KPI dataset, after which the method

for generating a new set of models (M1) is executed.

If the pool of models reaches the maximum number of

models, the CM change also triggers an exponential decay

aging mechanism (M4), which removes models from the

pool based on both their age and performance (according

to ωi ∗ α
agei , where 0 < α < 1 and agei is the number

of hours since the model was created).

• The testing dataset (D5) is tested against the models in the

pool of models using the testing techniques corresponding

to the univariate and multivariate methods (M2).

• The result of (M2) is a set of KPI-degradation-level

predictions provided by each individual model in the pool

of models (D3).

Ground truth information updates (human-expert knowl-

edge (C2), confirmed FM data (C3), and CM change in-

formation (C1)) trigger the update weights method (M5),

which penalizes the models in the pool of predictors

based on their prediction with regards to the ground truth

(ωi ← β∗ωi, where β ∈ [0, 1]). The human-expert knowl-

edge assumes a manual process; while the confirmed FM

data usage and the CM change detection are automated

processes. The result of (M5) is an updated pool of

models (D2) with adjusted weights, which continue to

be used in the testing mode.

• All the predictions in (D3) along with the weights associ-

ated with the corresponding models are used in a modified

weighed majority approach (M3) to generate the KPI

degradation level, where τ ∈ [0, 1] is the threshold that

determines whether data is deemed normal or abnormal.

q0 =
∑

KPI<τ

ωi, q1 =
∑

KPI≥τ

ωi

• The result of (M3) is the KPI degradation level (D4)

associated with each KPI measurement of each cell.

KPI level =







































∑

KPI≥τ

ωi∗KPI leveli

∑

KPI≥τ

ωi

, if q1 > q0

∑

KPI<τ

ωi∗KPI leveli

∑

KPI<τ

ωi

, if q1 ≤ q0

(1)

III. EVALUATION OF ENSEMBLE METHOD

This section quantifies the increase in detection accuracy

when the ensemble method is applied to the proposed uni-
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Fig. 2. The output KPI degradation levels generated by the ensemble method
for a given cell and call control KPI are marked with blue circles, while red
represents the manually generated labels. The remaining series represent the
KPI degradation levels generated by the univariate and multivariate methods
(τ = 0.5 and β = 0.8)

variate and multivariate methods. The experimental corpus

consisted of a KPI dataset containing data from 70 cells of

a live mobile network. For each cell, 12 KPIs were collected

every hour for four months, from 11/15/2011 to 03/19/2012.

The KPIs have different characteristics; some of them, such as

downlink or uplink data volume or throughput, are measure-

ments of user traffic utilization; while others, such as drop-call

rate and successful call-setup rate, are measurements of call

control parameters.

The experimental dataset had no associated ground truth.

To address this limitation, labels were manually generated to

indicate whether the data represented a real problem or not,

based on engineering knowledge applied to KPI-data visual

inspection.

The pool of models was trained on the first 912 hours

of data, and the ensemble method was trained on the next

500 hours). The remainder of the dataset was used to make

the ensemble prediction based on the learned weights. The

parameters were set to τ = 0.5 and β = 0.8.

Figure 2 presents the KPI degradation levels generated by

the ensemble methods (modified WMA depicted as mWMA)

as well as the univariate and multivariate methods.

The two metrics used for the performance evaluation were:

• False Positive Rate (FPR) defined as the percentage of

normal data deemed as abnormal by the detector

• Detection Rate (DR) defined as the percentage of abnor-

mal data deemed as abnormal by the detector.

Figure 3 presents the Receiver Operating Characteristic

(ROC) [12] curve for all the methods (the detection and false
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Fig. 3. ROC curves for all individual methods and the ensemble method

positive rates were computed as an average across all the

70 cells analyzed) and it illustrates well that the ensemble

method (mWMA) exhibits the best performance, confirming

our hypothesis.

IV. RELATED WORK

The proposed framework aims to detect partial and complete

degradations in cell-service performance. Previous research

addressed the cell-outage detection [2] and cell-outage com-

pensation [3] concepts. For the problem of cell-outage detec-

tion, Mueller et al. [2] proposed a detection mechanism that

uses Neighbor Cell List (NCL) reports. Compared to our work,

Muller’s approach was limited to only catatonic-cell detection,

while not every isolated node reflected an outage situation.

Another approach for estimating failures in cellular net-

works was proposed by Coluccia et al. [13] to analyze events

at different levels: transmission of IP packets, transport and

application layer communication establishment, user level

session activation, and control-plane procedures.

D’Alconzo et al. [14] proposed an anomaly detection algo-

rithm for 3G cellular networks that detects events that might

put the stability and performance of the network at risk.

More recently, detection of general anomalies has also been

addressed [4], [5], [6]. However, to the best of our knowledge,

our approach is the first to employ an adaptive ensemble

method that copes with concept drift.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel ensemble method for modeling

cell behavior that builds adaptive models and uses the intrinsic

characteristics of the environment where the models are cre-

ated to improve its performance. The design was implemented

and applied to a dataset consisting of KPI data collected from a

real operational cell network. The experimental results indicate

that our system provides significant detection performance

improvements over stand-alone univariate and multivariate

methods.

We are currently planning experimental evaluation of our

cell anomaly detection method in a network operator setting.

Additional work is needed to integrate our detection com-

ponent with a diagnosis engine that combines the detector

output with other information sources to assist operators in

determining the cause of a detected anomaly. These results also

serve as the foundation for research in other areas of network

operation, specifically to evaluate the impact of configuration

changes on critical measures of network performance.
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