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Abstract
Recently, adversarial attacks on image classifica-
tion networks by the AutoAttack (Croce & Hein,
2020b) framework have drawn a lot of attention.
While AutoAttack has shown a very high attack
success rate, most defense approaches are focus-
ing on network hardening and robustness enhance-
ments, like adversarial training. This way, the cur-
rently best-reported method can withstand∼ 66%
of adversarial examples on CIFAR10.
In this paper, we investigate the spatial and fre-
quency domain properties of AutoAttack and pro-
pose an alternative defense. Instead of hardening
a network, we detect adversarial attacks during
inference, rejecting manipulated inputs. Based
on a rather simple and fast analysis in the fre-
quency domain, we introduce two different detec-
tion algorithms. First, a black box detector which
only operates on the input images and achieves
a detection accuracy of 100% on the AutoAttack
CIFAR10 benchmark and 99.3% on ImageNet,
for ε = 8/255 in both cases. Second, a white-
box detector using an analysis of CNN feature-
maps, leading to a detection rate of also 100%
and 98.7% on the same benchmarks.

1. Introduction
The vulnerability of neural networks towards adversarial
attacks is one of the key obstacles which are currently lim-
iting the applicability of deep learning models for a wide
range of practical use cases. While the latest attack methods,
like AutoAttack (Croce & Hein, 2020a), are achieving very
high success rates perturbing input data on Convolutional
Neural Networks (CNN) based image classifiers, the avail-
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Table 1 Results of the proposed detectors on AutoAttack
(standard mode) for different choices of the hyper-parameter
ε (default in most publications is ε = 8/255) and test sets.
ASR=Attack Success Rate, ASRD=Attack Success Rate un-
der Detection. White-Box results on ImageNet are obtained
by a Logistic Regression classifier, Random Forests were
used in all other cases. Table 5 in the appendix is showing
the full results for both classifiers. F1 and the False Negative
Rate (FNR) are used to report the detection performance.
See section 3 for details of the experimental setup.

Black-Box White-Box
ε ASR F1 FNR ASRD F1 FNR ASRD

CIFAR10 on WideResNet28-10
8/255 100 98.2 00.0 00.0 99.0 00.0 00.0
4/255 100 93.8 00.3 00.3 96.4 05.0 05.0
2/255 93.1 85.0 05.3 04.9 85.8 05.0 04.6
1/255 49.6 70.8 22.7 11.3 62.5 37.3 18.5

0.5/255 12.3 54.8 46.7 05.8 61.6 52.0 06.4
ImageNet on WideResNet51-2

8/255 100 87.1 00.7 00.7 96.7 01.3 01.3
4/255 100 77.4 08.7 08.7 94.1 02.7 02.7
2/255 100 60.2 28.0 28.0 82.3 16.7 16.7
1/255 99.9 53.4 43.7 43.6 67.9 30.7 30.6

0.5/255 96.9 54.4 42.0 40.7 59.0 41.0 38.1

able defense methods appear to be “always one step behind”.
In general, adversarial defense strategies can be grouped
into roughly two different approaches: First, the hardening
of networks, which is mostly done via adversarial training,
and second, the detection of adversarial samples during in-
ference. In this work, we propose a simple feature-driven
approach to detect adversarial examples, where features are
extracted in the frequency domain, based on prior work by
(Harder et al., 2021), which shows almost perfect detection
results on state-of-the-art (SOTA) adversarial benchmarks.

1.1. Related Work

The AutoAttack Benchmark. In 2020, (Croce et al., 2020)
launched a benchmark website1 with the goal to provide a
standardized benchmark for adversarial robustness. Until
then, single related libraries such as FoolBox (Rauber et al.,

1robustbench.github.io
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Figure 1. Visualization of AutoAttack perturbations on a ResNet18 for CIFAR10. The top row: APGD-CE `∞ attack, bottom row:
Squares `∞ attack. Left column shows the spacial difference between a random test image from CIFAR10 and its perturbation. The
center column depicts the mean of spacial differences over 1000 perturbed images. Right column: accumulated magnitudes of the spectral
differences over the same 1000 images. While there are no obvious clues that can be obtained from the spacial domain, the frequency
representation of perturbations show significant and systematic changes which can be exploited to detect attacks.

2018), Cleverhans (Papernot et al., 2016) and AdverTorch
(Ding et al., 2019) were already available but did not include
all SOTA methods in one evaluation.
The currently dominating adversarial attack method is Au-
toAttack (Croce & Hein, 2020a) which is an ensemble of
4 attacks: two variations of the PGD (Madry et al., 2018)
attack with cross-entropy loss (APGD-CE) and difference of
logits ratio loss (APGD-t), the targeted version of the FAB
attack (Croce & Hein, 2020c), and the black-box Squares at-
tack (Andriushchenko et al., 2020). The AutoAttack bench-
mark provides several modes. The “standard” mode exe-
cutes the 4 attack methods consecutively. Only if one attack
fails, the failed samples are handed over to the next attack
method. The “individual” mode provides results for each
attack on all input samples.

Adversarial Training. Adversarial Training (AT) can be
backtracked to (Goodfellow et al., 2015), in which mod-
els were hardened by generating adversarial examples and
adding them into training data. An adversarial example is a
subtly modified image causing a machine learning model to
misclassify it. The achieved robustness by AT depends on
the strength of the adversarial examples used. E.g., training
on Goodfellow’s FGSM, which is fast and non-iterative,
only provides robustness against non-iterative attacks, but
e.g. not against PGD (Madry et al., 2018) attacks. Conse-

quently, (Tramèr et al., 2020) propose training on multi-step
PGD adversaries, achieving SOTA robustness levels against
`∞ attacks on MNIST and CIFAR10 datasets. Unfortu-
nately, the high computational complexity of adversarial
training makes it impractical for large-scale problems such
as ImageNet.

Adversarial Detection. Many recent works have focused
on adversarial detection, trying to distinguish adversarial
from natural images. The authors in (Hendrycks & Gim-
pel, 2017) showed that adversarial examples have higher
weights for larger principal components of the images’ de-
composition and use this finding to train a detector. Both
(Li & Li, 2017) and (Bhagoji et al., 2017) leverage Principal
Component Analysis (PCA) as well. Based on the responses
of the neural networks’ final layer (Feinman et al., 2017)
define two metrics, the kernel density estimation and the
Bayesian neural network uncertainty to identify adversarial
perturbations. (Liu et al., 2019) proposed a method to detect
adversarial examples by leveraging steganalysis and estimat-
ing the probability of modifications caused by adversarial
attacks. (Grosse et al., 2017) used the statistical test of maxi-
mum mean discrepancy to detect adversarial samples. Using
the correlation between images, based on influence func-
tions and the k-nearest neighbors in the embedding space
of the Deep Neural Network (DNN), (Cohen et al., 2020)
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Table 2 RobustBench: The top-5 entries of CIFAR10 leaderboard for `∞ in June 2021.

Rank Method
Standard
Accuracy

Robust
Accuracy

Extra
data Architecture Date

1 Fixing Data Augmentation to Improve Adversarial Robustness 92.23% 66.56% 3 WideResNet-70-16 Mar 2021
2 Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 91.10% 65.87% 3 WideResNet-70-16 Oct 2020
3 Fixing Data Augmentation to Improve Adversarial Robustness 88.50% 64.58% 7 WideResNet-106-16 Mar 2021
4 Fixing Data Augmentation to Improve Adversarial Robustness 88.54% 64.20% 7 WideResNet-70-16 Mar 2021
5 Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples 89.48% 62.76% 3 WideResNet-28-10 Oct 2020

proposed an adversarial detector. Besides the statistical anal-
ysis of the input images, adding a second neural network
to decide whether an image is an adversarial example is
another possibility. (Metzen et al., 2017) proposed a model
that is trained on outputs of multiple intermediate layers.
Two strong and popular detectors are the Local Intrinsic Di-
mensionality (LID) (Ma et al., 2018) and the Mahalanobis
Distance (M-D) (Lee et al., 2018) detectors. Ma et al. used
the LID as a characteristic of adversarial subspaces and
identified attacks using this measure. Lee et al. computed
the empirical mean and covariance for each training sample
and then calculated the M-D distance between a test sample
and its nearest class-conditional Gaussians.

Fourier Analysis of Adversarial Attacks. (Tsuzuku &
Sato, 2019) showed that CNN are sensitive in the direction
of Fourier basis functions, and proposed a Fourier-based at-
tack method. Investigating trade-offs between Gaussian data
augmentation and adversarial training (Yin et al., 2019) take
a Fourier perspective and observe that adversarial examples
are not only a high-frequency phenomenon. In (Ma et al.,
2020) it is assumed that internal responses of DNN follow
the generalized Gaussian distribution, both for benign and
adversarial examples, but with different parameters. They
extract the feature maps at each layer in the classification
network and calculate the Benford-Fourier coefficients for
all of these representations. This approach is similar to
our white-box detector, but as our experiments show, it is
more than sufficient to use our simplified features built on a
standard 2D Discrete Fourier Transformation (DFT).

2. Methods: DFT based Detection
Our proposed detection method is based on the frequency-
domain features originally introduced in (Harder et al.,
2021), which we revise in the next subsections. In con-
trast to (Harder et al., 2021), we explicitly propose two
types of detectors. First, a White-Box detector which has
access to the feature maps of the target network, allowing
it to observe the network response to input images, and
second, a more general Black-Box detector which has no
knowledge about the target network. We found that the
Fourier power spectrum provides sufficient information to
detect perturbations in both cases. Hence, we neglect the
phase-based features which are also suggested in (Harder
et al., 2021).

Fourier Analysis. The Fourier transformation decomposes
a function into its constituent frequencies. A signal sampled
at equidistant points is thereby known as discrete Fourier
transform. The discrete Fourier transform of a signal with
length N can be computed efficiently with the Fast Fourier
Transformation (FFT) in O(N logN) (Cooley & Tukey,
1965). For a discrete 2D signal, like color image channels
or single CNN feature maps – X ∈ [0, 1]N×N – the 2D
discrete Fourier transform is given as

F(X)(l, k) =

N∑
n,m=0

e−2πi
lm+kn

N X(m,n), (1)

for l, k = 0, . . . N − 1, with complex valued Fourier coeffi-
cients F(X)(l, k). In the following, we will only utilize the
magnitudes of Fourier coefficients

|F(X)(l, k)| =
√

Re(F(X)(l, k))2 + Im(F(X)(l, k))2

(2)
and show that this information is sufficient to detect adver-
sarial attacks with high accuracy.

2.1. Black-Box Detection: Fourier Features of Input
Images

Figure 1 gives a brief visualization of the analysis of the
changes in successfully perturbed images from AutoAttack:
While different attacks show distinct but randomly located
change patterns in the spatial domain (which makes them
hard to detect), adversarial samples show strong, well local-
ized signals in the frequency domain.
Hence, we extract and concatenate the 2D power spectrum
of each color channel (see eq. (2) and the right column of
fig. 1) as feature representations of input images and use sim-
ple classifiers like Random Forests and Logistic Regression
to learn to detect perturbed input images.

2.2. White-Box Detection: Fourier Features of
Feature-Maps

In the white-box case, we apply the same method as in the
black-box approach, but extend the inputs to the feature
map responses of the target network to test samples. Since
this extension will drastically increase the feature space
for larger target networks, we select only a subset of the
available feature maps. Note that the optimal selection of
feature maps depends on the topology of the target network.
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See table 4 for details on our selection for CIFAR10.

2.3. Measuring Adversarial Detection

The AutoAttack benchmark (Croce & Hein, 2020a), like
most of the literature regarding adversarial robustness, uses
a ”Robust Accuracy” measure to compare different methods
(see table 2 for details). However, our approach does not
fit this evaluation scheme, since we are aiming to reject
adversarial test samples instead of hardening the networks.
Therefore, we report two different indicators: The Adversar-
ial Succes Rate (ASR) in eq. (3) is calculated as

ASR =
# perturbed samples

# all samples
(3)

the fraction of successfully perturbed test images and pro-
vides a baseline of AutoAttack’s ability to fool unprotected
target networks.

We measure the performance of our defense by the Adversar-
ial Success Rate under Detection (ASRD) in eq. (4). Here,
we compute the ratio of successful attacks under defense

ASRD =
# undetected perturbations

# all samples
= FNR · ASR, (4)

where FNR is the false negative rate of the applied detection
algorithm. ASR is only a scaling factor for the FNR. The
lower the ASRD rate, the more pertubated examples are
defeated.

3. Experiments
CIFAR10. We trained a WideResNet28-10 (Zagoruyko &
Komodakis, 2017) on the CIFAR10 training set to a test-
accuracy of 94% and applied AutoAttack on the test set.
Then we extracted the spectral features and used a random
subset of 1500 samples of this data for each attack method to
train and evaluate our base classifiers (train:test split 80:20).
Table 1 shows results using AutoAttack in “standard” mode
for various ε on `∞-perturbations. Table 3 shows the re-
sults for the “individual” mode for ε = 8/255 and `∞-
perturbations as well as a comparison to other detection
methods. Here we used 1000 samples from each dataset,
CIFAR10 and ImageNet, for our evaluation.

ImageNet. For the benchmarks on ImageNet we used
the pre-trained WideResNet51-2 (Zagoruyko & Komodakis,
2017) from the PyTorch library. As test set, we apply the
official validation set from ImageNet. The accuracy of
this pre-trained model is about 78%. As for CIFAR10,
AutoAttack also shows strong adversarial performance on
ImageNet. Table 1 shows very high ASR even for low ε
values. Note that ε < 0.5 would not represent realistic
attack scenarios since saving the perturbed images would
round the adversarial changes to the next of 256 available

Table 3 F1-score comparison of detection methods. The
attacks from AutoAttack individual mode are applied using
the CIFAR10 test set on a WideResNet28-10 with ε =
8/255. Logistic regression has been used as base classifier.

Attack
Dataset Detector apgd-ce apgd-t fab-t square
CIFAR10 on WideResNet28-10

Black-Box 94 91 60 64
White-Box 96 93 55 75

LID 53 47 49 48
M-D 49 49 46 48

ImageNet on WideResNet51-2
Black-Box 82 77 60 78
White-Box 97 96 52 92

LID 61 60 45 59
M-D 60 62 66 57

Table 4 Comparison of individual features from different
layers via F1-score. Individual AutoAttack. Base classifier
is logistic regression. ε = 8/255.

CIFAR10 on WideResNet28-10
Attack

Layers Dim. apgd-ce apgd-t fab-t square
conv2 0 WB 32768 93 88 58 75
conv2 1 WB 327680 94 89 55 77
conv2 2 WB 327680 93 93 56 75
conv2 3 WB 327680 93 92 57 85
conv3 0 WB 327680 96 89 56 78
conv3 1 WB 163840 77 64 45 67
conv3 2 WB 163840 72 61 47 64
conv3 3 WB 163840 75 65 50 69
conv4 0 WB 163840 78 65 45 70
conv4 1 WB 81920 69 54 47 58
conv4 2 WB 81920 70 56 48 55
conv4 3 WB 81920 68 56 46 61

relu 81920 68 56 50 60

bins in commonly used 8-bit per channel image encodings.
Table 3 shows the results for individual attacks.

4. Discussion and Conclusion
In this paper, we are able to show a first proof of concept
that simple frequency features can be used to detect cur-
rent SOTA attacks with a very high accuracy on the stan-
dard CIFAR10 benchmark and on a the more complex Im-
ageNet dataset. Especially the black-box approach could
provide a practical counter-measure for the defense of real-
world applications. However, there are still many open
questions: I) How well will the detectors generalize to other
datasets, network architectures, and new attacks? II) Why is
AutoAttack so successful for very small ε in ImageNet? III)
Can the detection be combined with Adversarial Training
methods like the ones shown in table 2? In light of these
open questions, we expect our approach can build a solid
basis for future research.
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Appendix

Table 5 Extension of table 1, showing full results for Logistic Regression (LR) and Random Forest (RF). RF outperforms
LR in almost all cases except the White-Box approach on ImageNet. Due to the large feature-space, RF appear to be
overfitting in this case.

Black-Box White-Box

ε ASR F1 FNR ASRD F1 FNR ASRD
LR RF LR RF LR RF LR RF LR RF LR RF

CIFAR10 on WideResNet28-10
8/255 100 98.0 98.2 00.0 00.0 00.0 00.0 97.2 99.0 02.7 00.0 02.7 00.0
4/255 100 94.8 93.8 15.0 00.3 15.0 00.3 83.7 96.4 18.0 05.0 18.0 05.0
2/255 93.1 86.3 85.0 28.7 05.3 26.7 04.9 62.9 85.8 35.0 05.0 32.6 04.6
1/255 49.6 74.0 70.8 41.3 22.7 20.5 11.3 54.8 62.5 46.0 37.3 22.8 18.5

0.5/255 12.3 54.4 54.8 48.3 46.7 06.0 05.8 51.7 61.6 50.0 52.0 06.0 06.4
ImageNet on WideResNet51-2

8/255 100 81.9 87.1 16.3 00.7 16.3 00.7 96.7 90.4 01.3 03.0 01.3 03.0
4/255 100 65.0 77.4 36.0 08.7 36.0 08.7 94.1 82.3 02.7 07.7 02.7 07.7
2/255 100 55.9 60.2 44.3 28.0 44.3 28.0 82.3 73.5 16.7 20.7 16.7 20.7
1/255 99.9 50.8 53.4 50.7 43.7 50.6 43.6 67.9 59.1 30.7 40.7 30.6 40.6

0.5/255 96.9 54.7 54.4 40.7 42.0 39.4 40.7 59.0 50.5 41.0 50.0 38.1 48.5


