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Abstract

The Internet is composed of many independent au-
tonomous systems (ASes) that exchange reachability infor-
mation to destinations using the Border Gateway Proto-
col (BGP). Network operators in each AS configure BGP
routers to control the routes that the routers learn, select,
and announce to other routers. Faults in BGP configuration
can cause forwarding loops, packet loss, and unintended
paths between hosts, all of which constitute failures of the
Internet routing infrastructure.

This paper describes the design and implementation of
rcc, the router configuration checker, a tool that finds faults
in the BGP configurations of routers in an AS using static
analysis. rcc detects two broad classes of faults that affect
network reachability: route validity faults, where routers
may learn routes that do not correspond to usable paths,
and path visibility faults, where routers may fail to learn
routes for paths that exist in the network. rcc enables net-
work operators to test and debug configurations before de-
ploying them in an operational network, improving on the
status quo where most faults are detected only during oper-
ation. rcc has been downloaded by more than sixty network
operators to date, some of whom have shared their config-
urations with us. We analyze network-wide configurations
from 17 different ASes to detect both faults that induce fail-
ures and faults that are benign.

1 Introduction

This paper describes the design, implementation, and
evaluation of the router configuration checker, rcc, a tool
that uses static analysis to detect faults in Border Gateway
Protocol (BGP) router configurations. rcc detects faults by
checking conditions that are based on a high-level correct-
ness specification. By finding faults over a distributed set of
router configurations, rcc enables network operators to test
and debug configurations before deploying them in an oper-
ational network, improving on the status quo of “stimulus-

response” debugging where operators need to run configu-
rations in an operational network before finding faults.

Router configuration languages offer considerable flexi-
bility to network operators, who use them to provide reach-
ability, express routing policy (e.g., transit and peering rela-
tionships [25], inbound and outbound routes [3], etc.), con-
figure primary and backup links [14], and perform traffic
engineering across multiple links [11]. It is a tribute to the
designers and implementors of BGP that it can meet these
important practical requirements while ensuring that com-
peting Internet Service Providers (ISPs) can cooperate to
achieve global connectivity.

Configuring a network of BGP routers is like writing a
distributed program where complex feature interactions oc-
cur both within one router and across multiple routers. This
complex process is exacerbated by the number of lines of
code (we find that a 500-router network typically has more
than a million lines of configuration distributed across its
routers), by the absence of useful high-level primitives in
today’s router configuration languages, by the diversity in
vendor-specific configuration languages, and by the num-
ber of ways in which similar high-level functionality can be
expressed in a configuration language. As a result, router
configurations tend to have faults [3, 21].

Faults in router configurations can seriously affect end-
to-end Internet connectivity, leading to failures whose
symptoms are lost packets, forwarding loops, and un-
intended paths. Section 2.2 discusses the problems ob-
served in operational networks in detail. Failure-inducing
configuration faults include invalid routes (including hi-
jacked and leaked routes); contract violations [10]; unstable
routes [20]; routing loops [7, 9]; and persistently oscillating
routes [1, 16, 31]. Many of these configuration faults can be
detected by analyzing BGP configuration alone.

Detecting BGP configuration faults is crucial for pre-
venting end-to-end routing failures, but doing so poses sev-
eral challenges. First, defining a correctness specification
for BGP is difficult: its many modes of operation and myr-
iad tunable parameters permit a great deal of flexibility in
both the design of a network and in how that design is im-
plemented in the configuration itself. Second, BGP’s con-



figuration is distributed—analyzing how a network config-
uration behaves requires synthesizing distributed configu-
ration fragments. This paper tackles these challenges and
makes the following three contributions:

First, we define two high-level aspects of correctness—
path visibility and route validity—and map this specifica-
tion to conditions on the BGP configuration that must hold
for those aspects of correctness to hold. Path visibility says
that BGP will correctly propagate routes for existing, usable
IP-layer paths; essentially, it states that the control path is
propagating BGP routes correctly. Route validity says that,
if routers attempt to send data packets on these routes, then
packets will ultimately reach their intended destinations.

Second, we present the design and implementation of
rcc (“router configuration checker”), a tool that analyzes
BGP configuration of a single AS and detects possible vio-
lations of path visibility and route validity. Over sixty net-
work operators have downloaded rcc. rcc focuses on detect-
ing faults that have the potential to cause persistent routing
failures. rcc is not concerned with correctness during con-
vergence (since any distributed protocol will have transient
inconsistencies during convergence). rcc’s goal is to detect
problems that may exist during steady state, even when the
protocol converges; thus, it assumes that the protocol will
converge to some outcome, given stable inputs.

Third, we use rcc to explore the extent of real-world
BGP configurations faults; this paper presents the first di-
rect analysis of BGP configuration faults in real-world
ISPs. We have analyzed real-world, deployed configura-
tions from 17 different ASes and detected more than 1,000
BGP configuration faults that had previously gone unde-
tected by operators. These faults ranged from simple “sin-
gle router” faults (e.g., undefined variables) to complex,
network-wide faults involving interactions between multi-
ple routers. rcc discovered many faults that could poten-
tially cause failures. These include: (1) faults that could
have caused network partitions due to errors in how exter-
nal BGP information was being propagated to routers inside
an AS, (2) faults that cause invalid routes to propagate in-
side an AS, and (3) faults in policy expression that caused
routers to advertise, and hence potentially forward packets,
in a manner inconsistent with the AS’s desired policies. The
17 network-wide configurations we analyzed with rcc had
already been deployed (deployment being the current state
of the art testing technique) on live, operational networks;
rcc is actually intended to be used before configurations are
actually deployed. If rcc were used before BGP configu-
ration was deployed, we expect that rcc would be able to
detect some of the immediately active faults, in addition to
those we discovered in our evaluation.

Our analysis of real-world configurations suggests that
most configuration faults stem from three main causes.
First, the mechanisms for propagating routes within a net-
work are overly complex. The main techniques used to
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Figure 1. Overview of BGP configuration within an AS.

propagate routes scalably within a network (e.g., “route re-
flection with clusters”) are easily misconfigured. Second,
even simple policy specifications (e.g., controlling route
propagation) require configuration fragments on many (if
not all) routers in the network, and each fragment often
involves several layers of indirection (e.g., “route maps”,
“community lists”, etc.). Finally, operators lack a system-
atic process for configuring functions such as filtering.

The rest of this paper proceeds as follows. Section 2 pro-
vides further motivation and background on BGP. Section 3
describes the design of rcc. Sections 4 and 5 discuss rcc’s
path visibility and route validity tests. Section 6 describes
implementation details. Section 7 presents configuration er-
rors and anomalies that rcc discovered in 17 operational
networks. Section 8 addresses related work, and Section 9
concludes.

2 Background and Motivation

We briefly present an overview of today’s interdomain
routing infrastructure, focusing particularly on the aspects
that are affected by configuration. Then, we study the ex-
tent and nature of interdomain routing misconfiguration as
discussed on North American Network Operators Group
(NANOG) mailing list.

2.1 Overview of BGP Configuration

The Internet comprises over 17,000 independently op-
erated ASes that exchange reachability information using
BGP [28]. BGP distributes routes to destination prefixes via
incremental updates. Each router selects one best route to
a destination, announces that route to neighboring routers,
and sends updates when the best route changes. Each BGP
update contains several attributes. These include the des-
tination prefix associated with the route; the AS path, the
sequence of ASes that advertised the route; the next-hop,
the IP address that the router should forward packets to in
order to use the route; the multi-exit discriminator (MED),
which a neighboring AS can use to specify that one route
should be more (or less) preferred than routes advertised at
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Property Description 1995-1997 1998-2001 2002-2004 Total
Filtering Filtering problems with private addresses 28 (40) 27 (50) 37 (73) 92 (163)

Leaked Routes AS mistakenly announcing routes (e.g., bad prefix, bad
AS path, etc.)

13 (14) 23 (24) 20 (22) 56 (60)

Hijacked Routes Observation of or complaint about stolen address space 5 (5) 14 (14) 3 (4) 22 (23)
Global Route Visibility Filtering new address allocations 40 (53) 38 (57) 68 (95) 146 (205)

Oscillations Persistent route oscillations 0 (0) 0 (2) 0 (3) 0 (5)
Routing Instability Route instability (i.e.”flapping”) 28 (32) 26 (34) 25 (32) 79 (98)

Attribute manipulation BGP attribute manipulation (e.g., for implementing
backup)

9 (9) 15 (25) 7 (15) 31 (49)

iBGP-related Apparently an iBGP problem 16 (17) 14 (22) 18 (30) 48 (69)
Routing Loops Traceroute with loop 7 (7) 11 (12) 5 (7) 23 (26)

Blackholes Traceroute with blackhole (or complaint) 8 (8) 25 (27) 83 (91) 116 (126)
Total 154 (185) 193 (267) 266 (372) 613 (824)

Table 1. Number of threads discussing BGP-related routing errors over the 10 years of the NANOG mailing list. Non-

parenthesized numbers count threads addressing actual problems; parenthesized numbers also count generic discussion

threads (e.g., questions, documents) on the topic.

other routers of that AS; and the community value, which is
a way of labeling a route.

BGP’s configuration affects what (and whether) routes
are originated and propagated, how routes are modified as
they propagate (which, in turn, affects route selection), and
how routes propagate between routers (i.e., the session-level
topology). To understand the importance of configuration
in determining BGP’s behavior, consider the AS shown in
Figure 1. A single AS can have anywhere from two or three
routers to many hundreds of routers. A single router’s con-
figuration can range from a few hundred lines to more than
10,000 lines.

Two of the more complicated configuration aspects de-
termined by BGP’s configuration are:

1. Session-level BGP topology. A router’s configuration
determines which other routers that router will exchange
BGP routes with. A typical router has two types of BGP
sessions: those to routers in its own AS (internal BGP, or
“iBGP”) and those to routers in other ASes (external BGP,
or “eBGP”). A small AS with only two or three routers may
have only 10 or 20 BGP sessions, but large backbone net-
works typically have more than 10,000 BGP sessions, more
than half of which are iBGP sessions.

The session-level BGP topology determines how BGP
routes propagate through the network. In small networks,
iBGP is configured as a “full mesh” (every router connects
to every other router). To improve scalability, larger net-
works typically use “route reflectors”. A route reflector se-
lects a single best route and announces that route to all of its
“clients”. Route reflectors can easily be misconfigured (we
discuss iBGP misconfiguration in more detail in Section 4).
Incorrect iBGP topology configuration can create persistent
forwarding loops and oscillations [17].

2. Policy. Routers have import policies, which manipu-

late incoming routes; and export policies, which manipulate
routes before the router advertises them to other routers. A
router’s policy can implement filtering: preventing a certain
route from being accepted on inbound or readvertised on
outbound. Policy can also manipulate route attributes. Com-
mon reasons for manipulating route attributes are: (1) in-
directly controlling which route BGP selects as its “best”
route, (2) controlling the “next hop” IP address for the ad-
vertised route, and (3) labeling a route with a “community”,
or a tag. In practice, a large backbone ISP may have more
than a thousand different policies configured across hun-
dreds of routers.

Policy configuration is complicated because global be-
havior depends on the configuration of individual routers. In
Figure 1, router B may “tag” a route received from World-
com with a certain community value, and router A’s ex-
port policy may specify that routes bearing that community
should not be exported to Sprint. Misconfiguration of either
A or B can cause Worldcom’s route to “leak” to Sprint.

2.2 Problems in Operational Networks

NANOG operates a mailing list where network oper-
ators report operational problems, discuss operational is-
sues, etc. [24]. To gain a better understanding of the types
of errors that operators see in practice, we conducted a
study of the list archives, which begin in mid-1994. Be-
cause the list has received about 75,000 emails over the
course of ten years, we first clustered the emails by thread
and pruned threads based on a list of about fifteen key-
words (e.g., “BGP”, “issue”, “loop”, “problem”, “outage”).
We then manually reviewed 1,600 email threads, 634 of
which were relevant to BGP configuration issues. We classi-
fied each of these threads into one or more of the categories
shown in Table 1.
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Figure 2. Overview of rcc.

This informal study shows some clear trends. First, many
interdomain routing problems are caused by configuration
faults. Second, the state of affairs has not improved over the
last ten years: the same types of errors and problems con-
tinually appear. Third, BGP configuration problems contin-
ually perplex even experienced network operators. A fault
detection tool will clearly benefit network operators.

3 rcc Design

rcc analyzes both single-router and network-wide prop-
erties of BGP configuration and outputs a list of configura-
tion faults. Figure 2 illustrates rcc’s high-level architecture.

rcc’s checks that the BGP configuration satisfies a set
of correctness conditions, which are based on a correctness
specification that we outline in Section 3.1. Section 3.2 ex-
plains how we map the correctness specification into con-
ditions that rcc can check against the BGP configuration.
Rather than operating directly on vendor-specific config-
uration, rcc converts the BGP configuration to a vendor-
independent intermediate representation. It then checks this
intermediate format for faults based on a set of correct-
ness conditions. Section 3.3 details how rcc generates this
intermediate representation, and Section 3.4 explains how
rcc applies the correctness conditions to the intermediate
representation to produce faults.

rcc does not operate on the correctness specification it-
self. Rather, we have used a high-level specification as a
guide for designing the actual correctness conditions that
rcc applies to the configuration. We envision that rcc has
three classes of users: those that wish to run rcc with no
modifications, those that wish to add new conditions that
apply to the existing specification, and those that wish to
augment the high-level specification. rcc’s modular design
allows users to specify other correctness conditions with-
out changing the system internals. Some users may wish to
extend the high-level specification to include other aspects
of correctness (e.g., safety [17]) and map those high-level
specifications to conditions on the configuration.

Figure 3 shows the relationships between classes of con-
figuration faults and the class of faults that rcc detects. La-

Latent Faults

Potentially Active Faults

End−to−End
Failures

rcc
Faults found by

Figure 3. Relationships between faults and failures.

tent faults are faults that are not actively causing any prob-
lems but nonetheless violate the correctness conditions. A
subset of latent faults arepotentially active faults, for which
there is at least one input sequence that is certain to trigger
the fault. For example, an import policy that references an
undefined filter on a BGP session to a neighboring AS is a
potentially active fault, which will be triggered when that
neighboring AS advertises a route that ought to have been
filtered. When deployed, a potentially active fault will be-
comeactive if the corresponding input sequence occurs. An
active fault constitutes a routing failure for that AS.

Some active faults may ultimately appear asend-to-end
failures. For example, if an AS advertises an invalid route
(e.g., a route for a prefix that it does not own) to a neigh-
boring AS whose import policy references an undefined fil-
ter, then some end hosts may not be able to reach destina-
tions within that prefix. Note that a potentially active fault
may not always result in an end-to-end failure if no path be-
tween the sources and destinations traverses the routers in
the faulty AS.

rcc detects a subset of latent (and hence, potentially ac-
tive) faults. In addition,rcc may also report some false
positives: faults that violate the conditions but arebenign
(i.e., the violations would never cause a failure). Ideally,
rcc would detect fewer benign faults if it could test the
BGP configuration against an abstract specification. Unfor-
tunately, producing such a specification requires additional
work from operators, and operators may well write incor-
rect specifications. One ofrcc’s advantages is that it pro-
vides useful information about configuration faults without
requiring any additional work on the part of operators.

3.1 Defining a Correctness Specification

Inspired by the routing logic [9],rcc checks two aspects
of correctness:path visibility androute validity.1 In the con-

1Previous work [9] presents three properties in addition to these two:
information flow control (this property checks if routes “leak” in violation
of policy), determinism (whether a router’s preference for routes depends
on the presence or absence of other routes), and safety (whether the proto-
col converges) [18]. Our work treats information flow control as a subset
of validity. rcc does not check for faults related to determinism and safety
because the former is not possible to check with static analysis alone, and
the latter requires configurations from multiple ASes. We do not consider
multi-AS checks in this paper.
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text of BGP, apath is a sequence of IP hops (i.e., routers) be-
tween two endpoints (e.g., routers, end hosts, etc.). Aroute
is a BGP message that advertises reachability to some des-
tination via an associated path.

Path visibility: If there is a path to a destination that
does not violate the policies of the routers along the path,
and there is some valid route to the destination at a router,
then the router is said to have avisible path. Paths may be-
come invisible if the propagation of routes to destinations
among routers in an AS is buggy.rcc detects configuration
problems that may lead to paths becoming invisible (and
hence, to some end hosts losing reachability to others even
though usable paths between those end hosts are present).

Route validity: A route to a destination isvalid if, and
only if, the path advertised by that route:

1. Reaches the destination,
2. Corresponds to the path that packets take when using

that route (i.e., sending packets towards the next hop
for that route), and

3. Conforms to the policies of routers on the path.
A route that is not valid may prevent packets that use that
route from reaching the intended destination or cause pack-
ets to take a different path than the advertised route.rcc de-
tects configuration faults that may lead to invalid routes.

rcc finds faults in BGP configuration only. To make
general statements about path visibility and route validity,
rcc assumes that the internal routing protocol (i.e., interior
gateway protocol, or “IGP”; OSPF is an example of an IGP)
used to establish routes between any two routers within a
AS is operating correctly. BGP requires the IGP to operate
correctly because iBGP sessions may traverse multiple IGP
hops and because the “next hop” for iBGP-learned routes is
typically several IGP hops away.

The correctness specification that we have presented ad-
dressesstatic properties of BGP,not dynamic behavior (i.e.,
its response to changing inputs, convergence time, etc.).
BGP, like any distributed protocol, may experience periods
of transient incorrectness in response to changing inputs.
rcc detects faults that causepersistent failures. Previous
work has studied sufficient conditions on the relationships
between iBGP and IGP configuration that must be satisfied
to guarantee that iBGP converges [17]; these conditions re-
quire parsing the IGP configuration, whichrcc does not yet
check. The correctness specifications and conditions in this
paper assume that, given stable inputs, the routing protocol
eventually converges to some steady state behavior.

Currently,rcc only detects faults in the BGP configura-
tion of asingle AS (usually, a network operator only has ac-
cess to the BGP configuration from his own network). Be-
cause an AS’s BGP configuration explicitly controls both
session-level topology and policy, many types of miscon-
figuration, including partitions, route leaks, etc., are evident
from the BGP configuration of a single AS.

PROBLEM POSSIBLEACTIVE FAULT

Path Visibility
iBGP Signaling Problems
Signaling partition: Router may learn a suboptimal route

- of route reflectors or none at all.
- within a RR “cluster”
- in a “full mesh”

Routers with duplicate: Routers may incorrectly drop routes as duplicates.
- loopback address
- cluster ID

iBGP configured on one end Routers won’t exchange routes.
iBGP not to loopback iBGP session fails when one interface fails.

Route Validity
Policy Problems
transit between peers Network carries traffic “for free”.
inconsistent export to peer Violation of contract.
inconsistent import Possible unintentional “cold potato” routing.
Advertisement Problems
prepending with bogus AS AS path is no longer valid.
originating unroutable dest. Creates a blackhole.
incorrect next-hop Other routers may be unable to reach the routes

for a next-hop that is not in the IGP.
Miscellaneous

Undefined References
eBGP session:

- w/no filters
- w/undef. filter
- w/undef. policy

filter:
- w/missing prefix

policy:
- w/undef. AS path
- w/undef. community
- w/undef. filter

• leaked internal routes
• re-advertising bogus routes
• accepting bogus routes from neighbors
• unintentional transit between peers

Decision Process Problems
nondeterministic MED
age-based tiebreaking

Route selection depends on message order.

Table 2. BGP configuration problems that rcc detects,

and their potentially active faults.

3.2 Mapping the Specification to Conditions

Because BGP configuration is flexible, defining precise
conditions on BGP configuration that are equivalent to the
high-level specification is extremely challenging.rcc’s con-
ditions are an attempt to map the path visibility and route
validity specifications to conditions on BGP configuration
that can be checked automatically. These conditions are nei-
ther complete (i.e., they may not find all problematic config-
urations) nor sound (i.e., they may report problems that are
simply deviations from best common practice). However,
static analysis techniques for program analysis are typically
neither complete nor sound either [22].

Table 2 summarizes the correctness conditions that
rcc checks. Path visibility conditions typically address po-
tential problems with how iBGP routes propagate through
the AS, or “iBGP signaling” (Section 4).rcc’s route valid-
ity conditions test potential problems with policy configura-
tion or how routes are advertised (Section 5). The “miscel-
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laneous” conditions can affect both path visibility and route
validity.

Ideally, operators would runrcc to detect configuration
faults before they are deployed. Some ofrcc’s conditions
detect faults that would most likely become active imme-
diately upon deployment. For example, an operator would
quickly notice that a router is advertising routes with an in-
correct next-hop attribute, since any other router that tries
to use those routes will be unable to route packets for those
destinations. In this case,rcc can help the operator diag-
nose configuration faults and prevent them from introducing
failures on the live network. Many of the conditions in Ta-
ble 2 detect faults that could remain undetected even after
the configuration has been deployed, until some sequence
of messages triggers them. For example, an operator will
likely not notice that a BGP session to a neighboring AS
applies an undefined filter until that neighbor “leaks” an in-
valid route. In these cases,rcc can help operators find faults
that could result in a serious failure.

3.3 Generating the Intermediate Representation

rcc converts BGP configuration to an intermediate rep-
resentation that it uses to check correctness conditions. As
new configuration languages evolve, only the parser needs
to be modified.rcc implements the intermediate represen-
tation as a set of relational database tables. Representing
related information about routing configuration in tables
makes it easier to ask questions about network-wide con-
figuration, since all of the information related to the net-
work’s BGP configuration can be summarized in a handful
of tables. A relational structure is natural because many ses-
sions share common attributes (e.g., all sessions to the same
neighboring AS often have the same policies), and many
policies have common clauses (e.g., all eBGP sessions may
have a filter that is defined in exactly the same way). Table 3
summarizes these tables.

Example of an intermediate representation. Figure 4
showsrcc’s intermediate representation for a fragment of
Cisco IOS. This Cisco configuration specifies a BGP ses-
sion to a neighboring router with IP address10.1.2.3 in
AS 3. This statement is represented by a row in theses-
sions table. The second line of configuration specifies that
the import policy (i.e., “route map”) for this session is de-
fined as “IMPORT CUST” elsewhere in the file; the inter-
mediate representation represents the import policy spec-
ification as a pointer into a separate table that contains
the import policies themselves. A single policy, such as
IMPORT CUST is represented as multiple rows in thepoli-
cies table. Each row represents a single clause of the policy.
In this example,IMPORT CUST has two clauses: the first
rejects all routes whose AS path matches the regular expres-
sion number “99” (specified as “̂ 65000” elsewhere in the
configuration), and the second clause accepts all routes that
match AS path number “88” and community number “10”

Table Description
global options router, various global options (e.g., router ID)
sessions router, neighbor IP address, eBGP/iBGP,

pointers to policy, options (e.g.RR client)
prefixes router, prefix originated by this router
import/export filters canonical representation of filter: IP range,

mask range, permit or deny
import/export policies canonicalized representation of policies
loopback address(es) router, loopback IP address(es)
interfaces router, interface IP address(es)
static routes static routes for prefixes

Derived or External Information
undefined references summary of policies and filters that a BGP

configuration referenced but did not define
bogon prefixes prefixes that should always be filtered on

eBGP sessions [6]

Table 3. Intermediate configuration representation

schema.

and sets the “local preference” attribute on the route to a
value of80. Each of these clauses is represented as a row in
the policy table; specifications for regular expressions for
AS paths and communities are also stored in separate ta-
bles, as shown in Figure 4.

rcc converts a policy into the intermediate representa-
tion shown in Figure 4 through a process that we callpolicy
canonicalization. rcc’s intermediate representation stores
nothing about the names of the policies themselves (e.g.,
“IMPORT CUST”, AS regular expression number “88”,
etc.). Rather, the intermediate format only stores a descrip-
tion of what the route policy does (e.g., “set the local prefer-
ence value to80 if the AS path matches regular expression
ˆ3”). Two policies may be written using entirely different
names, regular expression numbers, etc., but if the policies
operate exactly the same way,rcc will recognize that they
are in fact the same policy.

3.4 Checking the Conditions

rcc uses the intermediate representation to detect BGP
configuration faults in four ways:

1. Issuing simple queries against the relational tables.

2. Analyzing the BGP session-level topology.

3. Formingbeliefs about the high-level policy that the
BGP configuration is implementing.

4. Computing “closures” over policies:i.e., determining
which routes would (and would not) propagate be-
tween an AS’s neighbors.

In all of these cases,rcc issues queries against the database,
but the latter three require more complex logic. The rest of
this section explains howrcc issues simple queries against
the intermediate representation. Section 4 describes how
rcc uses the BGP session-level topology to detect path visi-
bility faults in iBGP. Section 5 explains howrcc uses beliefs
and closures to detect route validity faults.
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gw1        10.1.2.3         3

router neighbor AS import

...

0:1000

1        0

2        1

clause permit

...

...

AS regexp  comm. localpref

80

^65000

^3

neighbor 10.1.2.3 route−map IMPORT_CUST in

  match as−path 99
route−map IMPORT_CUST deny 10

route−map IMPORT_CUST permit 20
  match as−path 88

  set localpref 80
ip as−path access−list 99 permit ^65000

neighbor 10.1.2.3 remote−as 3

ip as−path access−list 88 permit ^3
ip community−list 10 permit 0:1000

Configuration on router "gw1":

  match community 10

Policies

Sessions

Communities
AS Paths

Intermediate Representation:

Figure 4. BGP configuration in intermediate format.

Checking conditions with simple queries. rcc checks
many correctness conditions by executing simple queries
against the intermediate representation. Checking condi-
tions against the intermediate representation is simpler than
analyzing distributed configuration files. Consider the test
in Table 2 called “ iBGP configured on one end” ; this con-
dition requires that, if a router’s configuration specifies an
iBGP session to some IP address, then (1) that IP address
should be the loopback address of some other router in the
AS, and (2) that other router should be configured with an
iBGP session back to the first router’s loopback address.
rcc tests this condition as a single, simple “select” state-
ment that “ joins” the loopbacks and sessions tables.

As another example, to check that no routing policy in
the AS prepends any AS number other than its own, rcc ex-
ecutes a “select” query on a join of the sessions and policies
tables, which returns the ASes that each policy prepends (if
any) and the routers where each policy is used. rcc then
checks the global table to ensure that that for each router,
the AS number configured on the router matches the ASes
that any policy on that router prepends.

4 Path Visibility Faults

Recall that path visibility specifies that every router that
has a path to a destination learns at least one valid route
to that destination. It is an important property because it en-
sures that, if the network remains connected at lower layers,
the routing protocol does not create any network partitions.
Table 2 shows many conditions that rcc checks that affect
path visibility; in this section, we focus on iBGP configu-

ration faults that can violate path visibility and explain how
rcc detects these faults.

Ensuring path visibility in a “ full mesh” iBGP topology
is reasonably straightforward; rcc checks that every router
in the AS has an iBGP-session with every other router. If
this condition is satisfied, every router in the AS will learn
all eBGP-learned routes.

Because a “ full mesh” iBGP topology scales poorly, op-
erators often employ route reflection [2]. A subset of the
routers are configured as route reflectors, with the config-
uration specifying a set of other routers as route reflector
clients. Each route reflector readvertises its best route ac-
cording to the following rules: (1) if the best route was
learned from an iBGP peer, the route is readvertised to all
route reflector clients; (2) if it was learned from a client or
via an eBGP session, the route is readvertised on all iBGP
sessions. A router does not readvertise iBGP-learned routes
over regular iBGP sessions, because such routes should
have already been learned from a direct session with the
router that first learned of the external route or from the
appropriate route reflector(s). If a route reflector client has
multiple route reflectors, those reflectors must share all of
their clients and belong to a single “cluster” .

A route reflector may itself be a client of another route
reflector. Any router may also have other iBGP sessions
with other routers. Reflector-client relationships among
routers in an AS define a graph G, where each router is
a node and each session is either a directed or undirected
edge: a client-reflector session is a directed edge from client
to reflector, and other iBGP sessions are undirected edges.
An edge exists if and only if (1) the configuration of each
router endpoint specifies the loopback address of the other
endpoint2 and (2) both routers agree on session options
(e.g., MD5 authentication parameters). G should also not
have partitions at lower layers. We say that G is acyclic if
G has no sequence of directed and undirected edges that
form a cycle. For various reasons, including to ensure the
existence of a stable path assignment, G should be acyclic.

Even a connected directed acyclic graph of iBGP ses-
sions can violate path visibility. For example, in Figure 5,
routers Y and Z do not learn route r1 to destination d
(learned via eBGP by router W ), because X will not read-
vertise routes learned from its iBGP session with W to other
iBGP sessions. This is a visibility violation that we call an
iBGP signaling partition; a path exists, but neither Y nor Z
has a route for it. Note that simply adding a regular iBGP
session between routers W and Y would solve the problem.

This potentially active fault can prevent routers from
learning any route to a destination, even though a path ex-

2If a router establishes an iBGP session with a router’s loopback ad-
dress, then the iBGP session will remain active as long as that router is
reachable via any IGP path between the two routers. If a router establishes
an iBGP session with an interface address of another router, however, the
iBGP session will go down if that interface fails, even if an IGP path exists
between those routers.
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Figure 5. In this iBGP configuration, route r2 will be dis-

tributed to all the routers in the AS, but r1 will not. Y and

Z will not learn of r1, leading to a network partition that

won’t be resolved unless another route to the destination

appears from elsewhere in the AS.

ists. In Figure 5, if a route to d is only learned at W , then
routers Y and Z will not learn any route to the destination d.
Even if Y or Z learned a route to d via eBGP, the route that
these routers learn might be worse than the route learned at
W . In this case, Y and Z would ultimately select a subopti-
mal route to the destination, an event that an operator would
likely fail to notice, but which rcc can easily detect.

rcc checks the static iBGP configurations of the routers
in an AS to determine whether such a situation can occur.
More specifically, it determines if there is any combination
of eBGP-learned routes such that at least one router in the
AS will not learn at least one route to the destination. The
following result is the basis for a simple and efficient check.

Theorem 4.1 Suppose that G is acyclic and connected at
the IGP layer. Then, G does not have a signaling partition
if, and only if, the BGP routers that are not route reflector
clients form a full mesh.

PROOF. Call the set of routers that are not reflector clients
the “ top-layer” of the iBGP graph G. If the top-layer is not
a full mesh, then there are two routers X and Y with no
iBGP session between them, such that no route learned us-
ing eBGP at X will ever be disseminated to Y , since no
router readvertises an iBGP-learned route.

Conversely, if the top layer is a full mesh, observe that
if a route reflector has a route to the destination, then all
its clients have a route as well. Thus, if every router in the
top-layer has a route, all routers in the AS will have a route.
If any router in the top-layer learns a route through eBGP,
then all the top-layer routers will hear of the route (because
the top-layer is a full-mesh). Alternatively, if no router at
the top-layer hears an eBGP-learned route, but some other
router in the AS does, then that route propagates up a chain
of route reflectors (each client sends it to its reflector, and
the reflector sends it on all its iBGP sessions) to the top-
layer, from there to all the other top-layer routers, and from
there to the other routers in the AS. �

rcc checks this condition by constructing the iBGP sig-
naling graph G from the sessions table (Table 3). It as-
sumes that the IGP graph is connected, then determines
whether G is connected and acyclic and whether the routers
at the top layer of G form a full mesh.

5 Route Validity Faults

BGP should satisfy route validity. Because BGP is a
policy-based protocol, the configuration, not the protocol
specification, affects which routes each router accepts, se-
lects, and re-advertises. In this section, we focus on rcc’s
approach to detecting potential policy-related problems.

The biggest challenge for checking policy is that rcc op-
erates without a specification of the intended policy. Re-
quiring operators to provide a high-level policy specifica-
tion would require designing a specification language and
convincing operators to use it, and it provides no guarantees
that the results would be more accurate, since errors may be
introduced into the specification itself. Rather, rcc assumes
that the network abides by some best common practices
and constructs beliefs about a network operator’s intended
policy. rcc then searches for deviations from best common
practices and beliefs about policy. We now highlight several
aspects of policy that rcc checks:

1. A route that an AS learns from one of its “peers”
should not be readvertised to another peer. Checking
this condition requires determining how a route propagates
across a network. Figure 6 illustrates how rcc performs this
check, which proceeds as follows. Suppose that rcc is ana-
lyzing the configuration from AS X and needs to determine
that no routes from Worldcom are exported to Sprint. First,
rcc determines all routes that X exports to Sprint, typically
a set of routes that satisfy certain constraints on their at-
tributes. For example, router A may export to Sprint only
routes that are “ tagged” with the label “1000” . (ASes often
designate such labels to signify how a route was learned;
e.g., from a customer.) rcc then checks the import policies
for all sessions to Worldcom, ensuring that no import policy
will set route attributes on any incoming route that would
place it in the set of routes that would be exported to Sprint.

2. An AS should advertise paths with equally good
attributes to each peer at every peering point. An AS
should not advertise routes with inconsistent attributes,
since doing so may prevent its peer from implementing “hot
potato” routing,3 which typically violates peering agree-
ments. Recent work has observed that this type of inconsis-
tent route advertisement sometimes occurs in practice [10].
This violation can result from two configuration faults:

First, an AS may apply different export policies at dif-

3If ASes 1 and 2 are peers, then the export policies of the routers in AS
1 should export routes to AS 2 that have equal AS path length and MED
values. If not, router X could be forced to send traffic to AS 1 via router
Y (“cold potato” routing)
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Figure 7. High-level overview of rcc implementation.

ferent routers to the same peer. Checking for consistent ex-
port involves comparing export policies on each router that
has an eBGP session with a particular peer. Static analy-
sis is useful because it can efficiently compare policies on
many different routers. In practice, this comparison is not
straightforward because differences in policy definitions are
difficult to detect by visual inspection. rcc makes compar-
ing export policies trivial by canonicalizing all of the export
policies for an AS, as described in Section 3.3.

Second, an iBGP signaling partition can create inconsis-
tent export policies because routes with equally good at-
tributes may not propagate to all peering routes. For ex-
ample, consider Figure 5 again. If routers W and Z both
learn routes to some destination d, then route W may learn
a “better” route to d, but routers Y and Z will continue to se-
lect the less attractive route. If routers X and Y re-advertise
their routes to d to a peer, then the routes advertised by X
and Y will not be equally good. Thus, rcc checks whether
routers that advertise routes to the same peer are in the
same iBGP signaling partition (as described in Section 4,
rcc checks for all iBGP signaling partitions, but ones that
cause inconsistent advertisement are particularly serious).

3. Import policies where sessions to a neighbor AS are
the same except at one or two routers are most likely
mistakes. This test relies on the belief that, if an AS ex-
changes routes with a neighboring AS on many sessions and
most of those sessions have identical import policies, then
the sessions with slightly different import policies may be
misconfigurations. Of course, this test could result in many
false positives because there are legitimate reasons for hav-
ing slightly different import policies on sessions to the same
neighboring AS (e.g., outbound traffic engineering), but it is
a useful sanity check nonetheless. rcc also detects inconsis-
tent export policies.

6 Implementation

rcc is implemented in about 6,500 lines of Perl and
has been downloaded by about sixty network operators.
The parser is roughly 60% of the code. Much of the
parser’s logic is dedicated to policy canonicalization. Fig-
ure 7 shows an overview of rcc, which takes as input the
set of configuration files collected from routers in a single
AS using a tool such as “ rancid” [27]. rcc’s functionality
is decomposed into three distinct modules: (1) a preproces-
sor, which converts configuration into a more parsable ver-
sion; (2) a parser, which generates the intermediate repre-
sentation; and (3) a verifier, which executes the correctness
checks.

The preprocessor adds scoping identifiers to configura-
tion languages that do not have explicit scoping (e.g., Cisco
IOS) and expands macros (e.g., Cisco’s “peer group” , “pol-
icy list” and “ template” options). After the preprocessor
performs some simple checks to determine whether the con-
figuration file is a Cisco-like configuration or a Juniper con-
figuration, it launches the appropriate parser. Many configu-
rations (e.g., Avici, Procket, Zebra, Quarry) resemble Cisco
configuration; the preprocessor translates these configura-
tions so that they more closely resemble Cisco syntax.

The parser generates the intermediate representation
from the preprocessed configuration files. rcc parses both
Cisco and Juniper configuration. The parser processes each
configuration file independently. It makes a single pass over
each configuration file, looking for keywords that help de-
termine where in the configuration it is operating (e.g.,
“ route-map ” in a Cisco configuration indicates that the
parser is entering a policy declaration). The parser builds
a table of canonicalized policies by dereferencing all fil-
ters and other references in the policy; if the reference is
defined after it is referenced in the same file, the parser per-
forms lazy evaluation. The parser flags any references that
the it cannot resolve after reaching the end of the file as “un-
defined reference” errors. The parser proceeds file-by-file
(taking care to consider that definitions are scoped by each
file), keeping track of canonicalized policies and whether
they have already appeared in other configurations.

We implemented each correctness condition in Table 2
by executing SQL queries against the intermediate format
and analyzing the results of these queries in Perl. Many
tests simply require querying the value of a single column
from the global options table. Other tests, such as checking
properties of the iBGP signaling graph, require reconstruct-
ing the iBGP signaling graph using the sessions table. The
tests for iBGP signaling are about 700 lines of Perl, but most
other tests are fewer than 30 lines of Perl each.
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7 Evaluating Operational Networks with rcc

Our goal is to help operators move away from today’s
mode of stimulus-response reasoning by allowing them to
check the correctness of their configurations before deploy-
ing them on a live network. rcc has helped network opera-
tors find faults in their deployed configurations, which we
present in this section. Because we used rcc to test con-
figurations that were already deployed in live networks, we
did not expect rcc to find many of the types of transient
misconfigurations that Mahajan et al. found [21] (i.e., those
that quickly become apparent to operators when the config-
uration is deployed). If rcc were applied to BGP configu-
rations before deployment, we expect that it could prevent
more 75% of the “origin misconfiguration” incidents and
more than 90% of the “export misconfiguration” incidents
described in that study.4

7.1 Analyzing Real-World Configurations

We used rcc to evaluate the configurations from 17 real-
world networks, including BGP configurations from every
router in 12 ASes. We made rcc available to operators, hop-
ing that they would run it on their configurations and report
their results.

Working with network operators. Network operators
are reluctant to share configuration files. Router configura-
tions have proprietary information embedded in the poli-
cies. Also, many ISPs do not like researchers reporting on
mistakes in their networks. (Previous efforts have enjoyed
only limited success in gaining access to real-world con-
figurations [30].) We learned that providing operators with
a useful tool or service increases the likelihood of cooper-
ation. When presented with rcc, many operators opted to
provide us with configuration files, while others ran rcc on
their configurations and sent us the output.

rcc detected over 1,000 configuration faults. The size of
these networks ranged from two routers to more than 500
routers. Many operators insist that the details of their con-
figurations be private, so we cannot report separate statistics
for each network that we tested. Every network we tested
had BGP configuration faults. Operators were usually un-
aware of the faults in their networks, which confirms our
hypothesis that many configuration faults are not apparent.

7.2 Fault Classification and Summary

Table 4 summarizes the faults that rcc detected. rcc dis-
covered potentially serious configuration faults as well as
benign ones. The fact that rcc discovers benign faults un-
derscores the difficulty in specifying correct behavior for
BGP. Faults have various dimensions and levels of seri-
ousness. For example, one iBGP partition indicates that

4rcc detects the following classes of misconfiguration described by
Mahajan et al.: reliance on upstream filtering, old configuration, commu-
nity, forgotten filter, prefix-based config, bad ACL or route map, and typo.

PROBLEM LATENT BENIGN

Path Visibility
iBGP Signaling Problems
Signaling partition:

- of route reflectors 4 1
- within a RR “cluster” 2 0
- in a “ full mesh” 2 0

Routers with duplicate:
- loopback address 13 120
- cluster ID

iBGP configured on one end 420 0
or not to loopback

Route Validity
Policy Problems
transit between peers 3 3
inconsistent export to peer 231 2
inconsistent import 105 12
Advertisement Problems
prepending with bogus AS 0 1
originating unroutable dest. 22 2
incorrect next-hop 0 2

Miscellaneous
Undefined References
eBGP session:

- w/no filters 21 —
- w/undef. filter 27 —
- w/undef. policy 2 —

filter:
- w/missing prefix 196 —

policy:
- w/undef. AS path 31 —
- w/undef. community 12 —
- w/undef. filter 18 —

Decision Process Problems
nondeterministic MED 43 0
age-based tiebreaking 259 0

Table 4. BGP configuration faults in 17 ASes.

rcc found one case where a network was partitioned, but
one instance of unintentional transit means that rcc found
two sessions that, together, caused the AS to carry traffic
in violation of high-level policy. The absolute number of
faults is not as important as noting that many of the faults
occurred at least once.

Figure 8 shows that many faults appeared in many dif-
ferent ASes. We did not observe any significant correla-
tion between network complexity and prevalence of faults,
but configurations from more ASes are needed to draw any
strong conclusions. The rest of this section describes the ex-
tent of the configuration faults that we found with rcc.

7.3 Path Visibility Faults

The path visibility faults that rcc detected involve iBGP
signaling and fall into three categories: problems with “ full
mesh” and route reflector configuration, problems config-
uring route reflector clusters, and incomplete iBGP session
configuration. All of the conditions in this section required
access to the BGP configuration for every router in the AS.

iBGP signaling partitions. iBGP signaling partitions
appeared in one of two ways: (1) the top-layer of iBGP
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Figure 8. Number of ASes in which each type of fault

occurred at least once.

routers was not a full mesh; or (2) a route reflector cluster
had two or more route reflectors, but at least one client in
the cluster did not have an iBGP session with every route re-
flector in the cluster. Together, these accounted for 9 iBGP
signaling partitions in 5 distinct ASes, one of which was
benign. While most partitions involved route reflection, we
were surprised to find that even small networks had iBGP
signaling partitions. In one network of only three routers,
the operator had failed to configure a full mesh; he told
us that he had “ inadvertently removed an iBGP session” .
rcc also found two cases where routers in a cluster with
multiple route reflectors did not have iBGP sessions to all
route reflectors in those cluster.

rcc discovered one benign iBGP signaling partition. The
network had a group of routers that did not exchange routes
with the rest of the iBGP-speaking routers, but the routers
that were partitioned introduced all of the routes that they
learned from neighboring ASes into the IGP, rather than
readvertising them via iBGP. The operator of this network
told us that these routers were for voice-over-IP traffic; pre-
sumably, these routers injected all routes for this application
into the IGP to achieve fast convergence after a failure or
routing change. In cases such as these, BGP configuration
cannot be checked in isolation from other routing protocols.

Route reflector cluster problems. In an iBGP config-
uration with route reflection, multiple route reflectors may
serve the same set of clients. This group of route reflectors
and its clients is called a “cluster” ; each cluster should have
a unique ID, and all routers in the cluster should be assigned
the same cluster ID. If a router’s BGP configuration does
not specify a cluster ID, then typically a router’s loopback
address is used as the cluster ID. If two routers have the
same loopback address, then one router may discard a route
learned from the other, thinking that the route is one that it
had announced itself. rcc found 13 instances of routers in

distinct clusters with duplicate loopback addresses and no
assigned cluster ID.

Different physical routers in the same AS may legit-
imately have identical loopback addresses. For example,
routers in distinct IP-layer virtual private may route the
same IPv4 address space over distinct VPNs.

Incomplete iBGP sessions. rcc discovered 420 incom-
plete iBGP sessions (i.e., a configuration statement on one
router indicated the presence of an iBGP session to another
router, but the other router did not have an iBGP session in
the reverse direction). These faults are almost certainly be-
nign. The most likely explanation for the large number of
these is that network operators may disable sessions by re-
moving the configuration from one end of the session with-
out ever “cleaning up” the other end of the session.

7.4 Route Validity Faults

In this section, we discuss route validity faults. We first
discuss policy-related faults; we classify faults as latent un-
less a network operator explicitly told us that the fault was
benign. We then discuss some interesting faults related to
route advertisement, all of which were benign.

7.4.1 Policy Problems

Decomposing policies across configurations on different
routers can cause faults, even for simple policies such as
controlling route export between peers. rcc discovered the
following problems:

Transit between peers. rcc discovered three instances
where routes learned from one peer or provider could be
readvertised to another; typically, these faults occurred be-
cause an export policy for a session was intended to filter
routes that had a certain community value, but the export
policy instead referenced an undefined community.

Obsolete contractual arrangements can remain in con-
figuration long after those arrangements expire. rcc discov-
ered one AS that appeared to readvertise certain prefixes
from one peer to another. Upon further investigation, we
learned that the AS was actually a previous owner of one
of the peers. When we notified the operator that his AS was
providing transit between these two peers, he told us, “His-
torically, we had a relationship between them. I don’ t know
the status of that relationship is these days. Perhaps it is still
active—at least in the configs!”

Inconsistent export to peer. We found 231 cases where
an AS advertised routes that were not “equally good” at ev-
ery peering point. It is hard to say whether these inconsis-
tencies are benign without knowing the operator’s intent,
but nearly twenty of these inconsistencies were certainly ac-
cidental. For example, one inconsistency existed because of
an undefined AS path regular expression referenced in the
export policy; these types of inconsistencies have also been
observed in previous measurement studies [10].
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Inconsistent import policies. A recent measurement
study observed that ASes often implement policies that re-
sult in late exit (or “cold potato” ) routing, where a router
does not select the BGP route that provides the closest exit
point from its own network [29]. rcc found 117 instances
where an AS’s import policies explicitly implemented cold
potato routing, which supports this previous observation. In
one network, rcc detected a different import policy for ev-
ery session to each neighboring AS. In this case, the import
policy was labeling routes according to the router at which
the route was learned.

Inconsistent import and export policies were not al-
ways immediately apparent to us even after rcc detected
them: the two sessions applied policies with the same name,
and both policies were defined with verbatim configuration
fragments. The difference resulted from the fact that the dif-
ference in policies was three levels of indirection deep. For
example, one inconsistency occurred because of a differ-
ence in the definition for an AS path regular expression that
the export policy referenced (which, in turn, was referenced
by the session parameters).

7.4.2 Advertisement Problems

We describe configuration faults involving route attributes.
rcc found only benign faults in this case.

Unorthodox AS path prepending practices. An AS
will often prepend its own AS number to the AS path on
certain outbound advertisements to affect inbound traffic.
However, we found one AS that prepended a neighbor’s AS
on inbound advertisements in an apparent attempt to influ-
ence outbound traffic.5

iBGP sessions with “next-hop self”. We found two
cases of iBGP sessions that violated common rules for set-
ting the next-hop attribute, both of which were benign. First,
rcc detected route reflectors that appeared to be setting the
“next hop” attribute. Although this practice is not likely to
create active faults, it seemed unusual, since the AS’s exit
routers typically set the next hop attribute, and route reflec-
tors typically do not modify route attributes. Upon further
investigation, we learned that some router vendors do not
allow a route reflector to reset the next-hop attribute. Even
though the configuration specified that the session would
reset the next-hop attribute, the configuration statement had
no effect because the software was designed to ignore it.
The operator who wrote the configuration specified that the
next-hop attribute be reset on these sessions to make the
configuration appear more uniform. Second, routers some-
times reset the next-hop on iBGP sessions to themselves on

5One network operator also mentioned that ASes sometimes prepend
the AS number of a network that they want to prevent from seeing a certain
route (i.e., by making that AS discard the route due to loop detection),
effectively “poisoning” the route. We did not witness this poisoning in any
of the configurations we analyzed.

sessions to a route monitoring server to allow the operator
to distinguish which router sent each route to the monitor.

7.5 Miscellaneous Tests

We used rcc to perform tests that checked for undefined
references to policies and filters, as well as several other
minor router configuration options. Some of these faults,
while simple to check, could have serious consequences
(e.g., leaked routes), if rcc had not caught them and they
had been activated.

Undefined references in policy definitions. Several
large networks had router configurations that referenced un-
defined variables and BGP sessions that referenced unde-
fined filters. These faults can sometimes result in uninten-
tional transit or inconsistent export to peers or even poten-
tial invalid route advertisements. In one network, rcc found
four routers with undefined filters that would have allowed
a large ISP to accept and readvertise any route to the rest
of the Internet; this potentially active fault could have been
catastrophic if a customer had (unintentionally or intention-
ally) announced invalid routes, since ASes typically do not
filter routes coming from large ISPs. This misconfiguration
occurred despite the fact that the router configurations were
being written with scripts; an operator had apparently made
a mistake specifying inputs to the scripts. Operators can de-
tect such faults using rcc.

Non-existent or inadequate filtering. Filtering can go
wrong in several ways: (1) no filters are used whatsoever,
(2) a filter is specified but not defined, or (3) filters are de-
fined but are missing prefixes or otherwise out-of-date (i.e.,
they are not current with respect to the list of private and
unallocated IP address space [6]).

Every network that rcc analyzed had faults in filter con-
figuration. Some of these faults would have caused an AS to
readvertise any route learned from a neighboring AS. In one
case, policy misconfiguration caused an AS to transit traffic
between two of its peers. Table 4 and Figure 8 show that
these faults were extremely common: rcc found 21 eBGP
sessions in 5 distinct ASes with no filters whatsoever and
27 eBGP sessions in 2 ASes that referenced undefined fil-
ters. Every AS had partially incorrect filter configuration,
and most of the smaller ASes we analyzed either had mini-
mal or no filtering. Only a handful of the ASes we analyzed
appeared to maintain rigorous, up-to-date filters for private
and allocated IP address space.

The problem with filtering seems to stem from the lack
of a process for installing and updating filters. One oper-
ator told us that he would be willing to apply more rigor-
ous filters if he knew a good way of doing so. Another ISP
runs sanity checks on its filters and was surprised to find
that many sessions were referring to undefined filters. Even
a well-defined process can go horribly wrong: one ISP in-
tended to use a feed of unallocated prefixes to automatically
install its filters, but instead ended up readvertising them.
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Because there is a set of prefixes that every AS should al-
ways filter, some prefixes should be filtered by default.

Nondeterministic route selection. rcc discovered more
than two hundred routers that were configured such that the
arrival order of routes affected the outcome of the route se-
lection process (i.e., these routers had either one or both
of the two configuration settings that cause nondetermin-
ism). Although there are occasionally reasonably good rea-
sons for introducing ordering dependencies (e.g., preferring
the “most stable” route; that is, the one that was advertised
first), operators did not offer good reasons for why these
options were disabled. In response to our pointing out this
fault, one operator told us,“That’s a good point, but my net-
work isn’ t big enough that I’ve had to worry about that yet.”
Non-deterministic features should be disabled by default.

7.6 Higher-level Lessons

Our evaluation of real-world BGP configurations from
operational networks suggests four higher-level lessons
about the nature of today’s configuration process. First,
operational networks—even large, well-known, and well-
managed ones—have faults. Even the most competent of
operators find it difficult to manage BGP configuration.
Moreover, iBGP is misconfigured often; in fact, in the ab-
sence of a guideline such as Theorem 4.1, it is hard for a
network operator to know what properties the iBGP signal-
ing graph should have. Second, although operators use tools
that automate some aspects of configuration, these tools are
not a panacea. In fact, we found that the incorrect use of
these tools can cause configuration faults to occur. Third,
maintaining network-wide policy consistency appears to be
hard; invariably, in most ASes there are routers whose con-
figuration appears to contradict the AS’s desired policy. Fi-
nally, we found that route filters are poorly maintained.
Routes that should never be seen on the global Internet (e.g.,
routes for private addresses) are rarely filtered, and the fil-
ters that are used are often misconfigured and outdated.

8 Related Work

We discuss work in three areas: router configuration,
BGP convergence, and verification in other settings.

Router configuration. Mahajan et al. studied short-
lived BGP misconfiguration by analyzing transient,
globally-visible BGP announcements from an edge net-
work [21]. They defined a “misconfiguration” as a transient
BGP announcement that was followed by a withdrawal
within a small amount of time (suggesting that the opera-
tor observed and fixed the problem). They found that many
misconfigurations are caused by faulty route origination and
incorrect filtering. rcc can help operators find these faults; it
can also detect faults that are difficult to quickly locate and
correct. rcc also helps operators detect the types of miscon-
figurations found by Mahajan et al. before deployment.

Some commercial tools analyze network configuration
and highlight rudimentary errors [26]. Previous work has
proposed tools that analyze intradomain routing configura-
tion [12] and automate enterprise network configuration [5].
These tools detect router and session-level syntax errors
only (e.g., undefined filters), a subset of the faults that
rcc detects. rcc is the first tool to check network-wide prop-
erties using a vendor-independent configuration representa-
tion and the first tool that applies a high-level specification
of routing protocol correctness.

Many network operators use configuration management
tools such as “ rancid” [27], which periodically archive
router configuration and provide revision tracking. When
a network problem coincides with the configuration change
that caused it, these tools can help operators revert to an
older configuration. Unfortunately, a configuration change
may induce a latent or potentially active fault, and these
tools do not detect whether the configuration has these types
of faults in the first place.

Analysis of BGP “safety” and stability. Previous work
has analyzed problems where eBGP and iBGP may not con-
verge to a stable path assignment, introducing the notion
of a stable path assignment and stating sufficient condi-
tions to guarantee that BGP will arrive at such an assign-
ment [16, 18, 31]. This property is called safety. Gao and
Rexford state sufficient conditions for safety in eBGP and
observe that typical policy configurations satisfy these con-
ditions [13]; Griffin et al. note that analogous sufficient con-
ditions apply to iBGP with route reflection [17]. Safety is
an important aspect of correctness, but it is by no means the
only aspect. Our work examines aspects of BGP configura-
tion that may be incorrect, even if the protocol converges to
a stable path assignment.

Verification in other settings. Model checking has been
successful in verifying the correctness of programs [15]
and other network protocols [4, 19, 23]. Previous work
explains the difficulties of applying a model checking ap-
proach to BGP [8]. In short, model checking is not appropri-
ate for verifying BGP configuration because model check-
ing depends heavily on exhausting the state-space within
an appropriately-defined environment [22]. A fundamental
problem with model checking BGP is that the behavior of
an AS’s BGP configuration depends on routes that arrive
from other ASes, some of which, such as backup paths, can-
not be known in advance.

9 Discussion and Conclusion

In recent years, much work has been done to understand
BGP’s behavior, and much has been written about the wide
range of problems it has. Some argue that BGP has outlived
its purpose and should be replaced; others argue that faults
arise because today’s configuration languages are not well-
designed. We believe that our evaluation of faults in today’s
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BGP configuration has provided a better understanding of
the types of errors that appear in today’s BGP configuration
and the problems in today’s configuration languages. Our
findings should help inform the design of wide-area routing
systems in the future.

Despite the fact that BGP is almost 10 years old, opera-
tors continually make the same mistakes as they did during
BGP’s infancy, and, regrettably, our understanding of what
it means for BGP to behave “correctly” is still rudimentary.
This paper takes a step towards improving this state of af-
fairs by making the following contributions:

• We define a high-level correctness specification for
BGP and map that specification to conditions that can
be tested with static analysis.

• We use this specification to design and implement rcc,
a static analysis tool that detects faults by analyzing
the BGP configuration across a single AS. With rcc,
network operators can find many faults before deploy-
ing configurations in an operational network. rcc has
been downloaded by over 60 network operators.

• We use rcc to explore the extent of real-world BGP
misconfigurations. We have analyzed real-world, de-
ployed configurations from 17 different ASes and de-
tected more than 1,000 BGP configuration faults that
had previously gone undetected by operators.

In light of our findings, we suggest two ways to make
interdomain routing less prone to configuration faults. First,
protocol improvements protocol itself, particularly in intra-
AS route dissemination (iBGP), could avert many BGP
configuration faults. The current approach to scaling iBGP
should be replaced. Route reflection serves a single, rela-
tively simple purpose, but it is the source of many faults,
many of which can’ t be checked with static analysis of
BGP configuration alone [17]. The protocol that dissemi-
nates BGP routes within an AS should enforce path visibil-
ity and route validity.

Second, BGP should be configured with a higher-level
specification language. BGP configuration is too low-level:
it affords flexibility in the mechanisms that implement high-
level policy, but this flexibility introduces complexity, ob-
scurity, and opportunities for misconfiguration rather than
design flexibility or expressiveness. For example, rcc de-
tects many faults in implementation of some high-level
policies in low-level configuration; these faults arise be-
cause there are many ways to implement the same high-
level policy, and the low-level configuration is unintuitive.
Ideally, a network operator would never touch low-level
mechanisms (e.g., the community attribute) in the common
case: instead, an operator could configure interdomain rout-
ing using a language that more directly reflects high-level
policies and goals.
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