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AbstractÐBinocular half-occlusion points are those that are visible in one of the

two views provided by a binocular imaging system. Due to their importance in

binocular matching as well as, subsequent interpretation tasks, a number of

approaches have been developed for dealing with such points. In the current

paper, we consider five methods that explicitly detect half-occlusions and report on

a more uniform comparison than has previously been performed. Taking a

disparity image and its associated match goodness image as input, we generate

images that show the half-occluded points in the underlying scene. We

quantitatively and qualitatively compare these methods under a variety of

conditions.

Index TermsÐStereo matching, binocular half-occlusions, three-dimensional

vision, empirical comparisons.

æ

1 INTRODUCTION

OWING to the geometry of the situation, certain scene points will be
visible in only one of the two views provided by a binocular
imaging system. We refer to the image of these points as binocular
half-occlusion points. They usually occur around object contours
and other scene discontinuities. As such, these points have great
potential to aid in image understanding tasks like distance
estimation and object segmentation. It appears that the human
visual system is capable of exploiting such information to great
advantage [20], [13], [23], [1]. In contrast, computer vision has not
been able to achieve similar success.

The basic geometry and perceptual significance of binocular

half-occlusions has been known at least since the time of Leonardo

DaVinci [25]. In contrast, the majority of computer vision

algorithms for binocular stereo vision have ignored half-occlusions

or treated them simply as noise in the matching process [3].

However, a number of approaches have emerged that deal with

occlusions with various degrees of explicitness. Although the

stereo matching techniques that deal with occlusions differ in

many ways, it is possible to discern certain geometric assumptions

and constraints that recur across these methods. In such a manner,

it is possible to distinguish five major approaches:

1. Bimodality (BMD) is based on the principle that points
around occlusion points will match both the occluded and
occluding surface, creating a bimodal distribution in a
local histogram of the disparity image. Previous research
that has considered this approach includes [29], [21], [35].

2. Match Goodness Jumps (MGJ) assumes that badly
matched points are occlusion points and that the matching
algorithm itself can detect badly matched points. Previous
research into this idea includes [28], [1].

3. Left-Right Checking (LRC) assumes that the left-based and
right-based disparity images are viewing the same scene
except at half-occlusions; therefore, values at correspond-
ing points in the left and right disparity images should
differ only in sign except at those points that arise from
occlusions. Researchers that have examined this constraint
include [34], [21], [8], [22], [16], [32].

4. Ordering (ORD) asserts that if two points match in a
different order than they occur in the other view, then the
point is an occlusion point. Previous research looking at
this approach includes [2], [36], [24], [15], [12], [4].

5. The occlusion constraint (OCC) is based on the principle
that a discontinuity in the left-based disparity image
corresponds to an occlusion region in the right-based
disparity image and vice versa. Previous research into this
theory includes [15], [12].

Finally, we note that other approaches can be seen as dealing with

occlusion not as part of image matching, but rather as a part of 3D

reconstruction (e.g., [19], [31]), by assessing the degree to which the

recovered 3D representation properly projects to the given images.

We will not deal further with this last class of approaches in the

present paper, as our emphasis is on the analysis of half-occlusion in

conjunction with stereo matching.
In the light of previous work, our main contribution in the

current paper is to report on an empirical evaluation of five

methods of half-occlusion detection: BMD, MGJ, LRC, ORD, and

OCC. The evaluation explicitly treats half-occlusions based on their

underlying geometric derivation. Taking a disparity image and

match goodness image as inputs, we generate images which show

the half-occluded points in a scene and provide qualitative and

quantitative evaluation. We employ laboratory images and real

world images in our study, representing a small, but illustrative,

subset of the infinity of possible scenes. We compare the occlusion

methods under two different matching algorithms that generate

the disparity and match goodness images (correlation-based

scanline search (COR) and gradient-based plane-plus-parallax

(PPP)). A preliminary version of this research has appeared

previously [10].

2 ALGORITHM DEFINITIONS

We can subdivide the five occlusion detection methods into two

groups. The first two algorithms (BMD and MGJ) detect occlusion

borders, or where occlusion regions begin or end. The last three

algorithms (LRC, ORD and OCC) label the entire half-occlusion

region. Our comparisons accomodate for this difference; we only

look for occlusion borders for the first group, and we look for the

entire occlusion region for the second group.

2.1 Bimodalities in Disparity (BMD)

The idea behind BMD is that points in the horizontal disparity

image that correspond to half-occlusion borders will have in their

neighborhood disparity values that arise from both occluding and

occluded surfaces. In such regions, the histogram of the disparity

should be bimodal (see Fig. 1). We choose the peak ratio test to

determine if there is a bimodality based on [29]. The peak ratio is

the ratio of the second highest peak over the highest peak. If the

peaks are of similar size, signifying bimodality, the peak ratio is

closer to one. Analytically, one can express BMD as

Bimodality �
max�M2�

max�M1�
;

where M1 andM2 are the first and second largest peaks in the local

disparity field.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 8, AUGUST 2002 1127

. G. Egnal is with the GRASP Laboratory, University of Pennsylvania, 3401
Walnut St., Suite 300C, Philadelphia, PA 19104.
E-mail: gegnal@gradient.cis.upenn.edu.

. R.P. Wildes is with the Department of Computer Science and Center for
Vision Research, York University, 4700 Keele St., Toronto, Ontario M3J
1P3 Canada. E-mail: wildes@cs.yorku.ca.

Manuscript received 2 Mar. 2001; revised 17 Sept. 2001; accepted 9 Jan. 2002.
Recommended for acceptance by Z. Zhang.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 113733.

0162-8828/02/$17.00 ß 2002 IEEE



2.2 Match Goodness Jumps (MGJ)

When amatcher is operating over data that arises from portions of a

surface that are visible in both images of a binocular view, the

goodness-of-match should be relatively high. In contrast, when the

matcher considers data arising from a half-occlusion, the goodness-

of-match should be relatively low since it is impossible to establish a

correct correspondence. MGJ capitalizes on this state of affairs by

detecting adjacent regions of high/low scores in goodness-of-match

images (see Fig. 1). Analytically, one can express MGJ as

Error � max�Cx ÿ Cx�w; Cx ÿ Cxÿw�;

where x is the horizontal coordinate of the current pixel, and C is

the summed match score within a window of size w.

2.3 Left/Right Checking Failures (LRC)

Since the left and right images are viewing roughly the same scene,

the horizontal disparity images derived from matching right-to-left

and left-to-right should be negatives of each other. The

LRC hypothesis is that the points where the two images are not

negatives of each other are occluded (see Fig. 1).More formally, if xR

matches x0L � xR � dRxR , where xR is a right coordinate and x0
L is an

estimated left match at rightbased horizontal disparity dRxR , then the

right-based left/right error is,

Error � xR ÿ �x0L � dLx0
L
�;

with dL
x0
L

the left based horizontal disparity.

2.4 Ordering Constraint (ORD)

ORD states that if point A is to the left of point B in the left stereo

image, then point A is also to the left of point B in the right image.

In occluded regions, the false matches may be out of order and

ORD can be used to label such points as occluded (see Fig. 1).

Using the previous notation, we can express the ordering

constraint as,

Error � max�0; dRxR ÿ dRx00
R
�;

where x00 represents the rightmost match so far.

2.5 Occlusion Constraint (OCC)

An ideal matcher produces a continuous disparity map between

two continuous surfaces. However, near occluding boundaries, the

disparity jumps from the occluding surface to the background,

leaving occluded points in the opposite image unmatched. When

the matching process jumps over points in the opposite image,

OCC labels the unmatched points in the opposite image as

occluded (see Fig. 1). Analytically, we can express the occlusion

constraint near an occluding boundary as

Error � max�0; dLxL�1 ÿ dLxL �:

3 Empirical Results

For each stereo pair, we run two matching algorithms (COR and

PPP, as described in the Appendix) and all five half-occlusion

algorithms. The only adjustment to the algorithms between runs is

the disparity search range of COR as detailed in the appendix. All

other parameters are optimized by hand, but remain constant

throughout the trials. The occlusion image results are plotted as

grey-levels, with higher intensity corresponding to a stronger

ªocclusion signal,º according to the algorithm definitions that were

given in Section 2. We present only the results of right-based

occlusion detection because the left-based results are similar and

space limits such duplication.

The first data set is the University of Tsukuba [33] scene, which

comes with a dense ground truth that is accurate within a pixel.

The results of the five occlusion detection methods are shown in

Fig. 2. As expected, the performance of the border detection (BMD

and MGJ) and region detection algorithms (LRC, ORD, and OCC)

is markedly distinct: the former signals the transitions into and out

of occlusion regions while the latter signals the occluded region
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Fig. 1. Five Approaches to Detect Half-Occluded Points. The top row describes the border detection methods (BMD, MGJ), while the bottom row contains the region

detection methods (LRC, ORD, and OCC). Each image shows three descriptions of how a given method would detect right occlusions. A stereo pair lies at top; an

overhead view lies at bottom left, and a graph lies at bottom right that depicts either disparity along a scanline, disparity within a window, or match goodness along a

scanline. An arrow indicates a match in a certain direction, and the check/cross indicates high and low match score for the MGJ measure. All depicted matches lie along a

single scanline.



itself. Of the region detection algorithms, OCC detects the most

occlusions, but falsely detects occlusions under COR on the left

side of the head, where widely varying disparity estimates in the

left-occluded region create spurious discontinuities. LRC comes

close to OCC, but detects more false positives. While ORD is the

most conservative measure, its accuracy is suprisingly low for two

reasons. First, good matches can be labeled as occluded where

noise-induced irregularities in matches appear: in essence, a bad

match along a scanline can make ordering violations appear for

some distance following the match. Second, ORD can miss those

occlusion points that happen to match in order. Note that while the

actual occlusion is at the right side of the objects, the different

algorithms exhibit various degrees of ability to detect more general

disparity discontinuities. The histogramming of BMD leads to

detection of all occluding borders; the other methods are far less

sensitive to nonoccluding borders. Interestingly, MGJ's false

positives can differ from the others as MGJ is driven not by the

disparity per se, but rather by the goodness of match. For example,

geometrically correct matches can still cause problems if there is

significant photometric variation between matched features, as

seen in the strong signals near the edges of the books on the

bookshelf. Here, the edges have high match scores, while the

interiors have low match scores, causing MGJ to pick up a false

occlusion signal.

Quantitative analysis derives from the Tsukuba disparity

ground truth, from which we have built a right-occlusion ground

truth by labeling any unmatched pixel in the right image as a right-

occlusion and disparity borders as an occlusion border (see Fig. 2).

Using the ground truth, we compare the five methods (see Fig. 3).

The graph plots hit rate and false positive rate at various

thresholds. For parity, we limit the displayed false positive rate

for all methods to 30 percent. After this point, BMD and PPP do

not produce any more false positives before labeling all pixels

occluded. Similarly, because there are only a certain number of
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Fig. 2. Occlusion Borders and Regions Detected. The top two rows depict the original data sets. The results are in the following rows. From top to bottom, they are the

Tsukuba data set, an aerial stereo pair of the Pentagon and a stereo pair depicting birch trees on a lawn. For each set, the the 2 x 5 matrix of images shows the results of

occlusion detection: Left-to-rightÐBMD, MGJ, LRC, ORD and OCC; top rowÐresults using PPP matcher; bottom rowÐresults using COR matcher. Brighter intensity

values correspond to a stronger occlusion signal.



ªout of orderº matches, ORD can not label more pixels as false

positives without labeling everything as occluded. For BMD and

MGJ, we relax strict border detection and count hits within one

pixel of the truth as correct to accommodate single-pixel misloca-

tions. The most striking features of this comparison are as follows.

OCC has the highest hit rate under PPP, but the second highest

under COR. Presumably, the false matches on the left side of the

head limit OCC's hit rate under COR. ORD is the most

conservative measure, with the lowest overall false positive rate,

but also the lowest hit rate of the region detection methods. BMD

and MGJ perform similarly in detecting occlusion borders.
The last two tests use images of real world outdoor scenes. We

consider the performance of the occlusion detection algorithms on
two standard stereo vision data sets: the pentagon stereo pair from
Carnegie Mellon University's VASC Image Database [7] and the
birches stereo pair from the JISCT test set [5] (see Fig. 2).

For the Pentagon case, all of the algorithms perform reasonably

in signalling the major occlusions arising from the rightmost edges

of the building against the ground. Further, under PPP, the region

detection algorithms, LRC,ORD, and OCC, provide markedly less

spurious signal than the border detection algorithms. All of the

algorithms deliver more false positives under COR. Presumably,

this is due to its greater search range allowing it to find false

matches, that subsequently are interpreted as occluded (see Fig. 4).

There is considerable variability in the ability of the algorithms to

detect the interior slits in the roof-top as occlusions. Under PPP,

only MGJ shows any real ability to do this. This is due to the

matcher producing uniform matches across the roof top, albeit

with poor qualityÐa situation that only MGJ can capitalize on.

Under COR, all algorithms are able to detect the occlusion-causing

slits. Here, COR's larger search range works to its advantage in an

interesting fashion: by looking further in an attempt to match the

half-occluded regions, it produces matches that stand out geome-

trically to the BMD, LRC, ORD, and OCC approaches.
In the birches case, MGJ stands out as the best performer.

Under both matchers, it produces a strong signal around the
occluding borders of the trees while largely avoiding signalling
occlusions in the other image regions. Under PPP, the remaining
methods are only able to find correctly the scene's most
pronounced occlusions. Further, additional signals are produced

in various erroneous regions (especially by BMD and LRC) as the

matcher fails to establish reasonable correspondences between the

stereo pair. Under COR, BMD, LRC, ORD, and OCC are much

more sensitive in the correct occlusion areas. However, this

sensitivity comes at the cost of greatly increased spurious signals.

This overall pattern of results can be explained as follows: faced

with the birches scene's considerable three-dimensional variation

coupled with large areas of low contrast (e.g., the grassy areas), the

matchers produce a large number of erroneous matches (in

conjunction with more veridical matches on the trees). However,

many of the false matches reproject well, especially for the case of

COR. This combination of effects leads BMD, LRC, ORD, and OCC

to mark the more curious (from a geometric standpoint) matches as

occlusion effects; whereas, MGJ only signals occlusion where the
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Fig. 3. Hit Rate versus False Positive Rates for the Tsukuba Data Set. The top graph shows the hit rate and false positive rate at various thresholds for the occlusion

detection methods on the PPP matching results, while the bottom graph displays the methods' performance on the COR output. We limit the false positive rate for all

methods to 30 percent, at which point, BMD and PPP will not produce any more false positives before labeling all pixels occluded. Similarly, because there are only a

certain number of ªout of orderº matches, ORD can not label more pixels as false positives without labeling everything as occluded.

Fig. 4. Comparison of Disparity (left) and Goodness of Match Images (right)
produced by two matching algorithms (PPP and COR). The images are of the
Tsukuba scene, the Pentagon, and the Birches (top to bottom). COR is able to
pick up greater disparities because of its wide search range. In contrast, PPP has
a smaller search range. The match goodness images indicate that these two
matchers have low match scores at similar points.



match is weak, which occurs as the matchers seek a correspon-
dence for the half-occluded areas.

4 DISCUSSION

4.1 Algorithm Results

LRC consistently offers accurate occlusion labelling under many
circumstances. It works best when the underlying scene geometry
is frontoparallel because the matching algorithms work best under
these situations. Although LRC is an expensive software solution, a
parallel hardware implementation would make the method
comparable in speed with the others considered in this paper.
The method is slightly more sensitive to noise than the other
algorithms because it relies on a matcher to perform correctly in
two directions. If either match errs, the method will find an
occlusion. However, the method has proven resistant to the noise
levels presented in this paper.

ORD resists some of the matching errors that LRC labels as
occlusions. In order to be labeled as an occlusion, the tight
geometric assumption behind ORD demands that a bad match not
only be bad, but be bad and out of order. ORD is straightforward
to implement, requiring few parameters and little code. However,
the algorithm has difficulties in the presence of extreme errors in
the rightward direction and occluded matches that are in order.
For these reasons, ORD might produce the fewest false positives
when viewing surfaces whose noise has low magnitude. Although
not seen in the examples presented, ORD will falsely label thin bars
as occluded as they will appear out of order in correct matching,
i.e., the double-nail illusion [17].

OCC labels occlusion regions even more accurately than LRC.
Both quantitatively and qualitatively, OCC has demonstrated a
higher hit rate than LRC. However, it often falsely labels occluded
regions when operating in the occluded region of the opposite
image. The severity of these false positives depends on which stereo
matcher is in use. Under PPP, the false matches in occlusion areas
are relatively smooth, and do not induce spurious OCC occlusions.
Under COR, the matches in occluded areas are highly variable and
discontinuous, which OCC falsely labels as occlusions in the
opposite image. A two-way OCC check might eliminate such false
positives, making OCC an extremely precise tool, albeit at the same
computational expense as LRC.

BMD has the advantage that it detects all occluding edges,
including discontinuities orthogonal to epipolar lines. It thereby
serves as a more general indicator of 3D boundaries than the other
methods. Although the method gives a good qualitative feel for the
scene's occlusions, the method is highly sensitive to its parameters.
The size of the window and the number of buckets in the
histogram all have a large effect on the final appearance of the
occlusion map. Given a certain type of scene, parameter tuning
could increase the accuracy of BMD greatly.

Unlike the other methods, MGJ depends upon the internal
assessment of the matching algorithm rather than the actual
performance of the matching algorithm. The method uses this
independence to distinguish some bad matches from occlusions.
For instance, in areas of low spacial frequency, such as grass of the
birch tree example, the matcher reports it has a good match, so
MGJ detects no (false) occlusions, see Fig. 2. Other algorithms
falsely label the bad match as an occlusion.

4.2 Overall Comparisons

The two matching algorithms have vastly different effects on the
half occlusion methods. COR minimizes its sensitivity to noise by
using large disparity search ranges. PPP makes use of gradient-
based estimation (justified by assuming brightness constancy) and
has a smaller search range, which can increase sensitivity to noise.
As an example, all methods had more trouble under PPP than COR

with the large disparities found in the birches images. However, at
single points, COR can be more prone to errors because of its larger
search range, which allows it to incorrectly match similar points far
away from the actual disparity. For example, under COR, OCC
finds right occlusions where the left-based match in the left-
occluded region has an incorrect and large disparity range. The
most obvious effect of the different matching algorithms occurs
when PPP cannot match under conditions that exceed its search
range or is led astray due to violations of the brightness constancy
constraint, thus negating any possible occlusion detection.

On an implementation level, the algorithms have many
differences. ORD and OCC require the most straightforward
implementation. The windowing used by the border detection
methods is slightly cumbersome, and the need for two way
calculations makes LRC and OCC the most expensive of the
methods. However, a hardware implementation could perform the
second matching process in parallel, making the methods more
attractive. We also note that in our present study, half-occlusion
detection was performed as post-processing on the stereo match-
ers' output; ultimately, it is of interest to more tightly couple the
matching and occlusion detection processes.

The algorithms' performance depends on the imagery at hand.
Simpler scenes (at an extreme, random dot stereograms) might
have perfectly parallel epipolar lines and clean edges that drive the
matchers to good results yielding correspondingly good results
from the half-occlusion detectors. Another important issue is the
overall amount of textural detail that is apparent in the images. In
particular, image regions that are dominated by low spatial
frequency detail, particularly if also of low contrast, cause many
false positives in all the detectors, save MGJ. In contrast, better
performance is generally achieved in regions with higher spatial
frequency content.

In low frequency/low contrast areas, the matchers often
produce geometrically incorrect matches, since locally the image
features are weakly defined and small amounts of noise can favor a
bad match, even though no occlusion is present. In such situations,
BMD, LRC and ORD detect the curious match and label it
(incorrectly) as due to an occlusion. In contrast, the goodness of
match image in such low frequency areas often has consistently
reasonable values as the match does, at least locally, appear to be
of good quality. Therefore, MGJ passes over these regions without
labeling them as indicative of half-occlusions. Finally, the distance
between the foreground and background regions has an effect on
occlusion detection, with larger separations generally yielding
better performance, provided that the underlying matchers can
capture the attendant disparity.

4.3 Summary

Overall, there does not appear to be a simple one-dimensional
goodness ranking of the methods in the paper. At first glance at the
quantitative data, OCC is the best algorithm. It has the highest hit
rate and the lowest false positive rate within the test sets at hand.
LRCappears a close second.However, the hit/false positive rates do
not tell the whole story: OCC behaves badly in left-based occlusion
regions when finding right-occlusions (and vice versa), while
LRC does not perform well in areas of the scene that are dominated
by low spatial frequency structure. Further, both of their imple-
mentations require a second matching process. Nevertheless, LRC
does perform quite well in highly textured scenes, and OCC
performs well given a matcher with smoother error characteristics.
In contrast, in natural imagery, where low frequency spatial
structure can be common, MGJ labels occlusions in a reasonable
fashion evenwhile being robust to the false positives that can plague
the other methods in similar situations. For scenarios where 3D
border detection is of primary interest, including those borders that
are notmanifest as half-occlusions, BMDperformswell, albeitwith a
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tendency to over segment the scene. In contrast, ORD is overall the

most conservativemeasure; still, it can produce false positives and is

sensitive to the double-nail illusion.
In the final analysis, it may be desirable to have an integrated

battery of half-occlusion detection mechanisms that span the

scenarios of interest. For example, integrating LRC and OCC by

using the left-based and right-based OCC would greatly decrease

OCC's false positives. Further, if a priori knowledge or online

diagnostics are available it could be advantageous to dynamically

favor certain methods over others according to which are expected

to yield the best performance in the situation at hand. Our results

could serve to guide the design of such an integrated process.

APPENDIX

STEREO MATCHERS

A.1. Correlation Search-Based Matching (COR)

The first stereo matcher that we employ (COR) is a correlation-

based scan-line matcher [3], [11]. We bring the epipolar lines into

horizontal alignment by hand via a projective image warp.

Following alignment, the images are filtered with a Laplacian

operator [6], accentuating high frequency edges. Next, the matcher

calculates 5� 5 window size cross-correlation values for integral

shifts, which are then smoothed. We use a search range of �17

pixels except for the birches image, which needed a search range of

�27. The disparity is the shift of each peak correlation value.

Subpixel peak localization is made via interpolation with a

quadratic polynomial. The match goodness image is defined as

the correlation value at the final disparity.

A.2. Gradient-Based Plane Plus Parallax (PPP)

The second stereo matcher that we employ (PPP) is a gradient-

based plane-plus-parallax method (as in [18], [26], [27].) The

overall transformation between two images is parameterized as

due to the displacement of a globally dominant plane, the epipole

between the operative cameras and the parallax arising from

points not lying on the plane. The disparity is the final parallax in

the x and y direction. To begin, the algorithm uses a registration

algorithm as a rough estimate of the epipole, allowing for an initial

estimate of the planar parameters and parallax field. Next, the

epipole is updated automatically based on the initial planar and

parallax parameters. The estimation then iterates. To aid in the

search for extended displacements, the estimation begins at a

coarse level of a Laplacian pyramid and continues through finer

levels of resolution [18]. We use five pyramid levels with three

iterations per level. Similar to COR, the match goodness image is

the square root of the sum of the squares of the differences in

intensities between 5� 5windows brought into correspondence by

the local parallax estimates.

A.3. Stereo Matcher Comparisons

In comparison to COR, PPP's use of gradient-based matching

limits its search range. Embedding the matcher in a spatial coarse-

to-fine approach effectively extends this search range, subject to

the availability of spatial detail at coarse scales. In contrast, COR

can search over larger ranges in full resolution, albeit at potentially

great computational expense (see Fig. 4). Unfortunately, the greater

search range provides the opportunity for COR to produce highly

irregular matches, which could be ameliorated by enforcing

continuity between scan-lines. The two matchers lead the occlusion

detection algorithms to behave differently, as discussed in the

main body of this paper. More general discussions of binocular

stereo correspondence are available from a number of sources (e.g.,

[3], [9], [11] provide algorithmic overviews; [30] provides empirical

comparisons of several matchers; and [14] provides a psychophy-

sical point of view).
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AbstractÐTo achieve integrated segmentation and recognition in complex

scenes, the model-based approach has widely been accepted as a promising

paradigm. However, the performance is still far from satisfactory when the target

object is highly deformed and the level of outlier contamination is high. In this

paper, we first describe two Bayesian frameworks, one for classifying input

patterns and another for detecting target patterns in complex scenes using

deformable models. Then, we show that the two frameworks are similar to the

forward-reverse setting of Hausdorff matching and that their matching and

discriminating properties are complementary to each other. By properly combining

the two frameworks, we propose a new matching scheme called bidirectional

matching. This combined approach inherits the advantages of the two Bayesian

frameworks. In particular, we have obtained encouraging empirical results on

shape-based pattern extraction, using a subset of the CEDAR handwriting

database containing handwritten words of highly varying shape.

Index TermsÐModel-based segmentation, deformable models, Bayesian

inference, bidirectional matching, Hausdorff matching.

æ

1 INTRODUCTION

TO achieve integrated segmentation and recognition in complex
scenes, the model-based approach has widely been accepted as a
promising paradigm. For example, one can search for the presence
of a rigid object in an input image by optimizing some data
mismatch measure with respect to the geometric transformation
applied to the model. However, if the object of interest is nonrigid,
the potential shape variations can no longer be described by a
compact set of transformation parameters. Instead, more flexible
representations, commonly called deformable models, are required.
Extracting nonrigid shapes using deformable models is known to
be highly ill-posed. Very often, regularization techniques are used
to alleviate the problem, where some model smoothness criteria
are added to the data mismatch measure to form the overall
optimization criterion [8], [9].

Even with the introduction of smoothness regularizers, the

performance of deformable matching is sometimes still far from

satisfactory, especially when the shape of the target object is highly

deviated from the reference model and the level of outlier

contamination is high. One possible direction to reduce the outlier

influence is to enhance the model adequacy. For example, domain-

specific constraints obtained via careful design can be imposed on

shape variations for the particular application [13], [6]. Also, some

model statistics obtained via learning can be incorporated to
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