
Detecting Bots via Incremental LS-SVM Learning with
Dynamic Feature Adaptation

Feilong Chen
Dept. of Computer Science
Michigan State University
East Lansing, MI 48824

chenfeil@msu.edu

Supranamaya Ranjan
Narus Corporation
570 Maude Court

Sunnyvale, CA 94085
soups@narus.com

Pang-Ning Tan
Dept. of Computer Science
Michigan State University
East Lansing, MI 48824

ptan@cse.msu.edu

ABSTRACT

As botnets continue to proliferate and grow in sophistica-
tion, so does the need for more advanced security solutions to
effectively detect and defend against such attacks. In partic-
ular, botnets such as Conficker have been known to encrypt
the communication packets exchanged between bots and
their command-and-control server, making it costly for ex-
isting botnet detection systems that rely on deep packet in-
spection (DPI) methods to identify compromised machines.
In this paper, we argue that, even in the face of encrypted
traffic flows, botnets can still be detected by examining the
set of server IP-addresses visited by a client machine in the
past. However there are several challenges that must be
addressed. First, the set of server IP-addresses visited by
client machines may evolve dynamically. Second, the set
of client machines used for training and their class labels
may also change over time. To overcome these challenges,
this paper presents a novel incremental LS-SVM algorithm
that is adaptive to both changes in the feature set and class
labels of training instances. To evaluate the performance
of our algorithm, we have performed experiments on two
large-scale datasets, including real-time data collected from
peering routers at a large Tier-1 ISP. Experimental results
showed that the proposed algorithm produces classification
accuracy comparable to its batch counterpart, while con-
suming significantly less computational resources.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications

General Terms

Algorithms

1. INTRODUCTION
Recently, many security solutions have begun using online

supervised learning algorithms to address a variety of mal-
ware and spam detection problems. For instance, Wang et

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

al. [17] presented an online support vector machine (SVM)
classifier that uses “bag of keyword” features from e-mail
content to label future e-mails as ham or spam. More re-
cently, Ma et al. [8, 9] applied the online SVM and confidence-
weighted (CW) algorithms to detect URLs suspected of host-
ing malware on the basis of the lexical and host-based fea-
tures extracted from each URL.

A third application that we consider in this paper centers
around the problem of detecting botnets, defined as a collec-
tion of machines that have been infected by malware. Some
known botnets consist of tens of thousands of machines and
botnets in general are responsible for launching most of the
malicious attacks on the Internet including sending spam
e-mails, hosting phishing sites, stealing credit card informa-
tion via keyloggers, etc. The bot owner co-ordinates all the
bot machines by sending them common commands about
the next attack to launch, or sending them new spam tem-
plates. In this regards, one way of detecting botnets is by
examining the command-and-control traffic exchanged be-
tween bots and the group of command-and-control servers
that the bots have to obtain their instructions from.

However, some sophisticated botnets such as Conficker
[12] have been known to encrypt the communication packets
exchanged between the bots and the command-and-control
server. This makes the detection process extremely costly
for many existing botnet detection systems [6, 7] that re-
quire inspecting the encrypted packet payloads to identify
compromised machines. In this paper, we argue that even
in the face of encrypted traffic flows, botnets can still be de-
tected by virtue of the fact that bots must communicate with
command-and-control servers to obtain instructions whereas
legitimate clients are unlikely to communicate with the same
servers. In this regards, we position the problem of botnet
detection as a binary classification problem where we label
each client IP-address seen in the network as good or bad
depending on a classifier built for the client machines, with
features being the set of server IP-addresses that each client
talks to within a certain time period. We obtain ground
truth labels for a set of client IP-addresses by (i) consulting
with IP blacklists maintained by several reputation systems
such as Spamhaus, SORBS, etc. as well as (ii) consulting
with an Intrusion Detection System [1] that labels a client
IP-address as suspicious if it is found to exchange a traffic
flow that matches a set of regular expression signatures.

A key challenge in developing an effective classifier for
botnet detection is that the set of server IP-addresses used
to represent the features often evolves dynamically. For in-
stance, after a new machine gets infected, it may begin com-

386

municating with command-and-control servers, for which we
may not have seen any traffic originating to or from in the
past. Even if the feature set remains the same, effects due
to churn in the hosting infrastructure with new machines
being infected and infected machines being cleaned up leads
to changes in the importance of each feature. For instance,
a newly infected machine may be elevated to the position of
a command-and-control server and hence the feature weight
learnt for this IP-address should be modified accordingly.
Similarly, an existing command-and-control server may be
taken down either by law-enforcement or due to cleaning-up
of that machine by anti-virus solutions, and hence the fea-
ture weight corresponding to that IP-address should be ad-
justed accordingly. As a result, a supervised learning model
trained on an initial feature set may not be as effective when
applied to the next day’s data set because it would not be
able to utilize the new features present in the next day’s data
set. To improve its detection rate without incurring signif-
icant computational overhead, the model must be updated
incrementally to take these effects into account.

Current approaches deal with this problem either via batch
learning, or via online learning. Batch learning based so-
lutions build a new model from scratch by utilizing the
new data points as well as new features seen. We argue
that in these class of applications, the data set size can be
prohibitively large such that throwing away past computa-
tions and rebuilding from scratch may be highly compute-
intensive as well as suffer from detection lags, i.e. attackers
can get around the detector by introducing new features at
a rate faster than the retraining rate. Moreover, during the
classification phase, the batch learning based approachs sim-
ply apply the old model to the new data set while ignoring
the new features that were encountered. Clearly, due to in-
frequent retraining periods and being unable to make use
of new features as soon as they appear, the batch learning
based approaches may not achieve a high enough detection
accuracy as we will show later during our experimental eval-
uation. In contrast, in online learning, the model is updated
with every incoming data point.

In this regards, one of the primary contributions in this
paper is in the development of a botnet detection approach
based on a novel online least-square support vector machine
(LS-SVM) algorithm, which is incremental in terms of both
evolving feature-set as well as data-points. While the prob-
lem of how to update an existing SVM model in presence of
incremental data-points has been dealt with before [17], we
consider our work to be the first (to the best of our knowl-
edge) to consider the problem of updating an existing SVM
model when the feature set also evolves. Towards this end,
we propose a novel algorithm that achieves a time-accuracy
trade-off and reduces the model update time by collapsing
the old features into one feature during the retraining phase.
Moreover, we constrain the (re)training time of our algo-
rithm by constraining the number of training instances that
are used, and in this regards, we introduce an approach to
choose which training instances be re-used during the re-
training phase.

Finally, we evaluate the performance of our proposed algo-
rithm on two real-world datasets. First, we use the dataset
evaluated in [8, 9], which considers the problem of labeling
URLs as malicious. The second dataset is obtained from
peering routers at a large Tier-1 ISP and provides a who-
talks-to-whom graph for a one day time period. We eval-

uate our incremental LS-SVM approach against both the
datasets and show the following. First, our dynamic fea-
ture adaptation method achieves a bounded retraining time
compared to retraining from scratch and counter-intuitively,
in some cases, even achieves higher detection accuracy since
we bound the number of features and thereby avoid over-
fitting. Second, our incremental LS-SVM with dynamic fea-
ture and data adaptation method significantly outperforms
the CW algorithm [9], a state-of-the-art online classification
algorithm, when applied to the large-scale botnet data from
an ISP.

The rest of this paper is organized as follows. First, we
provide an overview of the proposed system in Section 2.
We then present the related work in Section 3. Section 4
discusses background on SVM and the various formulations
of online learning. Next, Section 5 provides details about
the dynamic feature adaptation part of our incremental LS-
SVM approach. Section 6 discusses the approach to deal
with evolving data and how we combine both the incremen-
tal feature- and incremental-data approaches. Next, we per-
form a comprehensive evaluation in Section 7. Finally, we
conclude in Section 8.

2. SYSTEM ARCHITECTURE
As proof of concept, we develop a prototype system called

BotWatch that passively monitors and continuously ana-
lyzes the Internet traffic in real time to detect bots. A key
component of our system is an incremental LS-SVM classi-
fier to identify emerging bots and consequently new botnets.

BotWatch relies on the following hypothesis to detect bots:
the set of servers that bots communicate with are different
from the set of servers that legitimate clients communicate
with. This can be explained by the fact that botnet opera-
tors need to maintain communication with their bots in or-
der to issue commands to them for the next attack to launch
or to ensure that they have proper control over their bots
by having the bots contact them frequently via “heart-beat”
requests. However, this hypothesis can be complicated by
the fact that the bot machines also communicate with legiti-
mate servers either because the humans behind the machine
are also using it or for subversion purposes. For instance,
e.g. Conficker [12] bots first open an HTTP GET request
to one from a set of over hundred legitimate servers includ-
ing Google, Amazon, etc. to first obtain the current time
of day. Regardless, as we will show later, bots can still be
distinguished from legitimate clients on the basis of which
unique set of machines they communicate with.

The system architecture is composed of the following com-
ponents: (i) flow parser, (ii) graph feature extractor, (iii)
external IP blacklists, and an (iv) an online classifier. The
input to the system is traffic as obtained via the routers at
an Internet Service Provider.

The flow parser reconstructs all the packets that corre-
spond to the same traffic flow, where a flow is defined as
the unique 6-tuple of client and server IP-addresses, client-
and server-ports, timestamp and layer-3 protocol (TCP or
UDP). On seeing each new flow, the BotWatch system up-
dates the aggregated statistics for the pair of IP-addresses
which are communicating with each other. In our imple-
mentation, we currently compute simple aggregated counts
for how many flows were exchanged between the IP-pair
within a pre-configured time interval. At the end of this
time-interval, the following information is passed on to the

387

online learning module: timestamp for the end of the time
window, client IP-address, server IP-address and number of
flows exchanged between the IP-pair.

Note that this window based updation of statistics does
not have any relationship with our online algorithm which
we explain in Section 5, and is only reflective of the applica-
tion area of botnet detection. Essentially, in the botnet de-
tection application, we found that gathering statistics about
each IP-pair over a time window provides better detection
rates than labeling each IP-pair as it is seen. Finally, the
online learning module trains a classifier that is updated on
each incoming IP-pair. We use an external blacklist to train
the classifier, where the blacklist contains all the known bot
IP addresses, and is either updated whenever the external
source releases a new list, or is queried individually for each
new IP address detected by the system. Due to the tempo-
rary nature of bots, as ideally users will clean their devices
and remove bots, a timestamp is assigned to each entry in
the list and entries are removed after a pre-configured time
interval.

Figure 1: System Architecture

3. RELATED WORK

3.1 Botnet Detection
Botnets have emerged as one of the biggest security threats

facing the Internet today. They can be broadly catego-
rized into two types—centralized botnets and Peer-to-Peer
(P2P) botnets. Centralized botnets employ one or more
Command-and-Control (C&C) servers to control all infected
bots and instructs them when, whom and how to attack.
Most centralized botnets are based on the IRC protocol.
There have been several works focusing on monitoring IRC
channel traffic to detect such botnets [2, 5, 3]. Once they
have been identified, the centralized botnets can be easily
destroyed by blacklisting them.

Newer botnets have evolved from a centralized structure
to a more distributed, P2P configuration, to make it harder
for them to be detected and shut down. As P2P botnets
became prevalent, more sophisticated methods are needed.
Some of the recent works have focused on detecting sim-
ilar communication patterns exhibited by members of the
botnet ([6, 7, 10]). For instance, [11] clusters HTTP traces
based on their structural similarity to detect bots. Bot-
Grep [10] analyzes the communication graph between hosts
and partitions the graph into several components based on
some metrics to separate bots from non-bots. None of these

approaches however employ a sophisticated online classifier
such as SVM to improve their detection rate.

3.2 Online Learning Algorithms
Online learning algorithms have been developed to han-

dle situations where the data set is extremely large and it
is infeasible to load the entire data set to the main mem-
ory. A classic online learning algorithm is perceptron [13],
a linear classifier that takes one data example at a time
and updates the weight vector when the current classifier
misclassifies the example. The perceptron is simple to im-
plement and fast to learn but not effective when applied to
nonlinearly separable problems. More recently, Ma et al. [9]
applied a variety of online learning algorithms, including
Passive-Aggressive (PA) and Confidence Weighted (CW), to
the problem of classifying URLs as suspicious or legitimate.
These algorithms were designed to minimally update the
target function as new data arrives by employing different
objective functions (PA minimizes a least-square loss func-
tion whereas CW uses Kullback-Leibler divergence). CW
also maintains a confidence measure for each feature and
updates more aggressively the weights for the features with
lower confidence. However, these heuristics do not guaran-
tee that the updated model has better generalization error.
For example, if the initial model was poor, then adjusting
the model minimally may not be an effective strategy. In
contrast, the online LS-SVM algorithm investigated in this
paper is designed to maintain a large margin to ensure good
generalization performance. Though there are several online
SVM classifiers proposed in the literature [16, 14], none of
them were designed to adapt to new features in the data.

4. PRELIMINARIES
Let D = D(1)D(2) · · · D(T) denote an ordered collection of

labeled data sets, where each D(i) = {(x
(i)
j , y

(i)
j)}Ni

j=1 is a set
of training instances collected during the time interval ti−1

and ti. Each training instance is associated with a feature

set x
(i)
j ∈ ℜdi and a binary class label y

(i)
j ∈ {−1, +1}.

Many online learning algorithms are designed to update the
classification model instantaneously, as each data example
arrives (i.e., Ni = |D(i)| = 1 for all i). However, for efficiency
reasons, it may be more practical to consider the situation
where the time interval is sufficiently large such that Ni ≫ 1.
Furthermore, we consider several formulations of the online
classification problem:

Dynamic feature adaptation (DynF) This formulation
assumes that the training instances are the same through-
out the entire time period, but the feature set may
grow with the addition of new features that have never
been seen in the past. Furthermore, the class label of
a training instance may also change over time.

Dynamic feature and data adaptation (DynFD) This
formulation assumes new training instances may be
collected at each time period while older instances con-
tinue to be monitored. The feature set and class labels
for the training instances may evolve over time.

The classification algorithm considered in this study is the
well-known support vector machine (SVM) classifier. SVM
is designed to learn a linear decision surface, either in the
original feature space or in a projected high-dimensional fea-
ture space, that maximizes the geometric margin of the

388

separating hyperplanes between different classes. In this
study, we consider a variation of the classifier known as
least-square support vector machine (LS-SVM) [15]. Unlike
regular SVM, which minimizes a hinge loss function with lin-
ear inequality constraints, LS-SVM optimizes the following
least-square loss function with equality constraint:

1

2
wT w +

γ

2

N
∑

i=1

e
2
i (1)

s.t. yi

[

wT xi + b
]

= 1 − ei, ∀i ∈ {1, . . . , N}

where γ is a user-specified parameter and N is the num-
ber of training instances. An appealing feature of the opti-
mization problem for LS-SVM is that it has a closed form
solution, compared to the optimization problem for regular
SVM, which requires numerical methods to solve a quadratic
programming problem. Previous studies have found that the
generalization performance of LS-SVM is comparable to that
of regular SVM [4, 19]. Furthermore, it has been theoret-
ically proven the equivalence between linear LS-SVM and
hard margin SVM with Mahalanobis distance measure [18].

The constraint optimization problem given in (1) can be
cast into the following Lagrangian formulation:

L(w, b, e, α) =
1

2
wT w +

γ

2

N
∑

i=1

e
2
i

−
N

∑

i=1

αi

{

yi

[

wT xi + b
]

− 1 + ei

}

, (2)

where {αi} is the set of Lagrange multipliers. The optimiza-
tion problem can be solved by taking its partial derivative
with respect to the parameters w, b, e, and α and setting
them to zero:

∂L

∂w
= w − ZT

α = 0d

∂L

∂b
= α

T y = 0

∂L

∂e
= γe − α = 0N

∂L

∂α
= Zw + by + e − 1N = 0N ,

where Z is a rectangular matrix whose (i, j)th element is
equal to yixij (i.e., the product of the class label for the i-th
instance and its j-th attribute value), 0p is a p-dimensional
column vector of all zeros, and 1p is a p-dimensional column
vector of all ones. The preceding set of linear equations can
be further reduced to the following form:









Id 0 0 −ZT

0 0 0 −yT

0 0 γIN −IN

Z y IN 0

















w
b
e
α









=









0d

0
0N

1N









, (3)

where Ip is a p × p identity matrix. Since

Idw − ZT
α = 0 =⇒ w = ZT

α (4)

γINe− INα = 0 =⇒ e = γ
−1

α, (5)

the system of linear equations can be further simplified as
follows:

[

0 yT

y ZZT + γ−1IN

] [

b
α

]

=

[

0
1N

]

(6)

which leads to the following closed form solutions:

b =
yT (ZZT + γ−1IN)−11N

yT (ZZT + γ−1IN)−1y
(7)

α = (ZZT + γ
−1IN)−1[1N − yb] (8)

Once the values for the Lagrange multipliers α are found,
w is computed using Equation (4). Note that the solutions
for α and b involve the matrix product (ZZT)ij = yiyjxi ·
xj . This suggests that we can easily turn LS-SVM into a
nonlinear classifier by replacing the dot-product xi ·xj with
its corresponding kernel function, i.e., Aij = yiyjΦ(xi,xj).

Finally, having solved the equations above and obtain the
model parameters, we can predict the class label for a new
data instance, say xtest, as f(xtest) = sign[wT xtest +b]. For
nonlinear LS-SVM, this is equivalent to

f(xtest) = sign

[

∑

i

yiαiφ(xi,xtest) + b

]

.

The runtime complexity for LS-SVM is O(N3), with most
of the computational overhead spent on computing the ma-
trix inverse (ZZT + γ−1IN)−1 in Equations (7) and (8).

5. ONLINE LS-SVM WITH DYNAMIC FEA-

TURE ADAPTATION
Let xt be the feature set at time t and x(t+1) = x(t)∪x̂(t+1)

be the expanded feature set at t+1, where x̂(t+1) denote the
newly added features. For notational convenience, we will
drop the superscript in the remainder of the paper. We begin
our initial discussion with an exact formulation of online
LS-SVM in the presence of dynamic features. However, the
formulation makes an unrealistic assumption that the class
labels are unchanged. We then discuss an efficient method
for approximating the solution that allows the class labels
to evolve over time.

5.1 Exact Method
Let f(x) = wT x + vT x̂ + b be the decision function of

the LS-SVM classifier, where w and v are the weight vec-
tors associated with the old features (x) and new features
(x̂). The weights are computed by optimizing the following
objective function:

L =
1

2
[wT w + vT v] +

γ

2

N
∑

i=1

e
2
i

−

N
∑

i=1

αi

{

yi

[

wT xi + vT x̂i + b
]

− 1 + ei

}

, (9)

which is equivalent to the objective function given in (2)
when the feature set consists of x ∪ x̂. The closed form
solutions to the objective function are as follows:

b =
yT (Z̃Z̃T + ZZT + γ−1IN)−11N

yT (Z̃Z̃T + ZZT + γ−1IN)−1y
(10)

α = (Z̃Z̃T + ZZT + γ
−1IN)−1[1N − yb]

w = ZT
α, v = Z̃T

α,

where Zij = yixij and Z̃ij = yix̂ij . As can be seen from
Equation (10), the exact solutions require computing the

inverse of the matrix Z̃Z̃T + ZZT + γ−1IN , which is an
O(N3 + N2d + N2d̂) operations (where N is the number

389

of training instances, d is the cardinality of x and d̂ is the
cardinality of x̂). Thus, re-computing the matrix inverse at
each time period can be very expensive especially when both
number of training examples and features are large.

If we assume that the class labels of the training instances

do not change, i.e., y
(t+1)
i = y

(t)
i (∀i = {1, 2, · · · , N}), or

equivalently, Z(t+1) = Z(t), then the matrix inverse can be
computed more efficiently as follows:

Lemma 1. Let A be an invertible N ×N matrix and Ẑ be
an N × d̂ matrix (where d̂ ≪ N). The inverse of the matrix

(A + ẐẐT)−1 can be computed efficiently as follows:

(A + ẐẐT)−1 = A−1 − A−1Ẑ

(

Id̂ + ẐT A−1Ẑ

)−1

ẐT A−1

The proof of this lemma follows from a special case of the
well-known Sherman-Morrison-Woodbury formula. Although
the formula requires computing the inverse of another ma-
trix (Id̂ + ẐT A−1Ẑ), the size of this matrix is only d̂ × d̂,
which is less costly than computing the inverse of its origi-
nal matrix. If A−1 is already known, then the overall cost
for computing the matrix inverse using Lemma 1 reduces to
O(N2d̂) instead of O(N3).

We can apply Lemma 1 to solve Equation (10) by setting
A = ZZT +γ−1IN . However, the limitation of this approach
is that it assumes the class labels of the training instances
do not evolve over time. The next subsection presents an
approximate algorithm that can overcome this limitation.

5.2 Approximate Method
This section approximates the LS-SVM objective function

with the following assumption, that the weights associated
with the original feature vector is modified uniformly as fol-
lows: wnew = λwold. This assumption leads to the following
modified objective function:

L =
1

2
[λ2wT w + vT v] +

γ

2

l
∑

i=1

e
2
i

−
l

∑

i=1

αi

{

yi

[

λ(wT xi + b) + vT x̂i + b̂
]

− 1 + ei

}

+ cλ
2

where we have included a regularization term cλ2 to con-
strain the magnitude of λ. For brevity, the subscript for
wold has also been omitted in the remainder of this section.
As will be shown below, the parameter λ is determined au-
tomatically, based on the degree of agreement between the
previous classification model and the current labels of the
training instances. The more agreement there is, the larger
λ will be. Furthermore, even if the uniformity assumption
about the modification to w does not hold, any inaccura-
cies in the new model can be compensated by the weights
associated with the new features x̂. Experimental results
have suggested that the approximate model performs quite
as well as its batch counterpart.

Taking the partial derivative over the model parameters
and setting them to zeros yield the following:













Id 0 0 0 −ẐT

0 0 0 0 −yT

0 0 0 γIN −IN

0 0 c + wT w 0 −gT

Ẑ y 0 IN 0

























v

b̂
λ
e
α













=











0d

0
0N

0
1N











,(11)

where g = Zw+ by = (Xw+ b1N)⊙y is an N-dimensional
column vector that measures the agreement between the pre-
dicted values of the previous model and the current labels of
the training instances. The symbol ⊙ denotes an element-
wise vector product. After some simplification, the opti-
mization problem reduces to solving the following system of
linear equations:

[

0 yT

y ggT

c+wT w
+ ẐẐT + γ−1IN

]

[

b̂
α

]

=

[

0
1

]

(12)

There are several advantages of using this formulation. First,
instead of working with the N × d matrix X, it is sufficient
to collapse the old features into a column vector g, thereby
reducing the storage requirements. This is important be-
cause the number of original features d keeps growing over
time in dynamic feature adaptation. Second, the formula-
tion may accommodate changes in the class labels of training
instances in subsequent time periods. This can be accom-
plished by storing the vector g̃ = Xw + b1N instead of g.
If the class labels for some training instances have changed,
we only need to update the corresponding elements in y to
reflect these changes. The updated vector g is obtained by
computing g̃ ⊙ y.

Note that λ is determined automatically based on the con-
sistency between the predictions made by the previous model
and the current labels of the training instances, i.e.:

λ =
αT g

wT w + c
=

αT [(Xw + b1) ⊙ y]

wT w + c
.

This formula suggests that the value for λ is large when the
predictions made by the previous model are consistent with
the current labels of the training instances (especially for
those instances associated with large values of α). On the
other hand, if the previous model becomes outdated, then
the value for λ will automatically be reduced.

5.3 Efficient Computation
The preceding formulation has to solve the system of lin-

ear equations given in (12) and performs matrix inversion on
ggT

c+wT w
+ ẐẐT + γ−1IN . The problem can be further sim-

plified by choosing c = 1 − wT w (though the methodology
explained below is applicable to other values of c).

Lemma 2. Let S = ggT +ẐẐT +γ−1IN , N be the number
of training instances, and d̂ be the number of new features in
x̂ (where d̂ ≪ d). The overall cost for solving the approxi-
mate LS-SVM formulation with dynamic feature adaptation
is O(Nd̂2 + d̂3 + N2d̂), which is independent of the number
of features d in the previous time period.

Proof. The inverse for S can be computed efficiently as
follows. First, we use the Sherman-Morrison-Woodbury for-

mula (see Lemma 1) to compute the inverse of γ−1IN +ẐẐ
T
:

(γIN + ẐẐ
T
)−1 = γIN − γ

2Ẑ(Id + γẐT Ẑ)−1ẐT (13)

Since (Id + γẐT Ẑ) is a d̂× d̂ matrix, its inverse can be com-

puted efficiently in O(d̂3). Next, we can apply the Sherman-
Morrison formula to compute the inverse of S as follows:

S−1 = (J + ggT)−1 = J−1 −
J−1ggT J−1

1 + gT J−1g

390

where J is the inverse given in Equation (13). Since (1 +
gT J−1g) is a scalar, we do not need to perform any matrix
inversion here. In conclusion, the overall time complexity to
compute the inverse for S is O(Nd̂2 + d̂3 + N̂2d̂).

6. ONLINE LS-SVM WITH DYNAMIC FEA-

TURE AND DATA ADAPTATION
This section presents an extension to the online LS-SVM

method described in the previous section to incorporate new
training instances. We assume the deployed system has
bounded storage capacity to store at most N training in-
stances in memory at a time. Furthermore, since the com-
plexity of the algorithm is proportional to N2, maintaining
the growing number of training instances would make the
computation more expensive. To circumvent this problem,
we present an approach that maintains the size of the train-
ing set to be N at all times. In particular, we focus on
training instances that can either maintain or help improve
the performance of the classifier.

First, we consider only the new labeled instances that have
been misclassified by the existing model to be included in
the training set. Let D = {x1,x2, · · · ,xN} be the current
training set and D2 = {xN+1,xN+2, · · · ,xN+m} be the mis-
classified new instances. In order to include the m new in-
stances, we need to remove the same number of instances
from the training set D. In this paper, we investigate three
instance removal strategies. The first strategy (OLD) sim-
ply removes the m oldest training examples and replaces
them with the misclassified new instances. The second strat-
egy (MIN) discards the m training examples with smallest
values for α. The rationale behind this approach is that such
examples have the least influence on the decision surface of
the classifier.

Our third strategy is designed to identify training ex-
amples whose removal have minimal effect on the current
model. Let fQ(x) =

∑

xi∈Q yiαixi · x + b be the model

constructed from a training set Q and S∗ ⊂ D be the set
of training instances selected for removal. We formalize the
problem of selecting training instances to remove as follows:

S∗ = arg min
S

E

[

|fD(x) − fD\S(x)|

]

= arg min
S

E

[∣

∣

∣

∣

∑

xi∈D

yiαixi · x−
∑

xi∈D\S

yiαixi · x

∣

∣

∣

∣

]

= arg min
S

E

[

∑

xi∈S

yiαixi · x

]

= arg min
S

E

[





∑

xi∈S

yiαixi



 · x

]

. (14)

where E[·] denote expected value. Solving the objective
function shown above can be expensive especially when the
training set size is large. The MIN approach (strategy 2)
tries to find an approximate solution by choosing

S∗ = arg min
S

|
∑

xi∈S

αi|

The limitation of this approach is that it ignores the class
label of the selected training instances unlike the objective
function given in Equation (14). Instead, our third strategy

Table 1: Statistics of identified bots

Botnet Regular Expression #C&C #bots
servers

Conficker URL ∼ http://[0-9]

+.[0-9]+.[0-9]+[0-9]

+./search?q=[0-9]+

28 1,835

Grum URL ∼ [a-zA-Z0-9\.]

+/spm/s_[a-zA-Z]+.

php

24 161

Pushdo URL ∼ [a-zA-Z0-9\

.]+/40E800 ||
[a-zA-Z0-9\.]+/

C00000

19 166

Sality URL ∼ musikrajt.sk

|| musikrajt.wz.cz ||
edmatrix.us

10 232

Total 81 2,394

(GREEDY) is designed to select training instances that
minimize the following objective function:

S∗ = arg min
S

|
∑

xi∈S

yiαi|

After we find S∗, we can construct a new training set
D∗ = (D \ S∗) ∪ D2. Finally, we apply the online LS-SVM
with dynamic feature adaptation approach described in the
previous section to D∗.

7. EXPERIMENTAL EVALUATION
We evaluated our algorithm on two real-world data sets.

The first is a subset of the benchmark dataset used for de-
tecting malicious URLs [9]. The dataset contains URLs
collected over a 20-day period, each of which has 20, 000
unique URLs. The features include 1, 791, 261 lexical fea-
tures and 1, 117, 901 host-based features. Nearly one third of
the data belongs to the positive class (i.e., malicious URL).
The second is a botnet detection dataset we have collected
by monitoring the HTTP network traffic at a large ISP in
24 hours. The data contains features derived from Layer-4
and Layer-7 load information, including source and desti-
nation IP-addresses, number of bytes transmitted, number
of packets, etc. The labels are generated based on the ap-
proach described in Section 2. The botnets found in the
network trace include Conficker, Grum, Pong, Pushdo, and
Sality. Table 1 shows examples of the identified botnets,
their statistics, and signatures used for detecting them in
the data. We partition the data into four subsets, each con-
taining all the client IP-addresses observed in a six-hourly
time window. We then train the LS-SVM classifier on the
first subset and incrementally update the model with new
data from subsequent subsets.

7.1 Dynamic Feature Adaptation
First we evaluated the performance of our proposed dy-

namic feature adaptation method using the malicious URL
dataset. For this experiment, we combine the data for all
the days and partition them into five folds. For each fold,
we designate half of the data as labeled (to be used for train-
ing and incremental model updating) and the remainder as
unlabeled (to be used for testing purposes). In addition, we
randomly split the feature set into ten equal-sized subsets

391

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

Features (%)

C
u
m

u
la

ti
v
e
 E

rr
o
r

R
a
te

(%
)

Batch

DynF

Figure 2: Comparison of classification error between
batch and DynF algorithms on fold 1 data as new
features are incrementally added to the classifier.

and use one of them (10% of the features) for initial model
building and testing. We then iteratively add another sub-
set of features and update the model incrementally using the
approach described in Section 5 (the training and test sets
are assumed to be fixed throughout this experiment). This
iterative update process continues until the entire feature set
is included into the model. The experiment is then repeated
for the remaining four folds.

We consider two metrics for evaluating the performance of
our method—misclassification error rate and training time.
We compared the performance of our method against the
batch LS-SVM algorithm, which retrains a new model from
scratch using both the old and newly augmented features.
Figures 2, 3, and 4 show the classification error rates for
folds 1 to 3, respectively (we omit the results for folds 4
and 5 due to lack of space, but the results are very similar).
Observe that the misclassification error of our dynamic fea-
ture adaptation method (DynF) is comparable to that of the
batch LS-SVM algorithm.

Figure 5 shows the training time for both batch and DynF
methods. Clearly, as more features are added, the training
time for the batch algorithm grows more rapidly compared
to our proposed approach. In fact, the training time for
DynF is somewhat stable due to the fact that the features
from previous models are shrunk into a column vector g
while the number of new features used to update the model is
the same (i.e., 10% of the entire feature space). The decrease
in training time for the DynF algorithm after using the first
10% features can be explained by the fact that the compu-
tational complexity for building the initial LS-SVM model
is O(N3), while subsequent updates require only O(N2d̂).

7.2 Dynamic Feature and Data Adaptation
Next we evaluate the performance of our proposed Dy-

namic Feature with Data Adaptation (DynFD) algorithm.
We compared the performance of our algorithm against the
following baseline methods: (1) Static. In this approach,
we train an initial model from the first time period and
applies it to all subsequent time periods (without updat-

10 20 30 40 50 60 70 80 90 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Features(%)

C
u
m

u
la

ti
v
e
 E

rr
o
r

R
a
te

(%
)

Batch

DynF

Figure 3: Comparison of classification error between
batch and DynF algorithms on fold 2 data as new
features are incrementally added to the classifier.

10 20 30 40 50 60 70 80 90 100

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Features

C
u
m

u
la

ti
v
e
 E

rr
o
r

R
a
te

(%
)

Batch

DynF

Figure 4: Comparison of classification error between
batch and DynF algorithms on fold 3 data as new
features are incrementally added to the classifier.

10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

Features (%)

T
ra

in
in

g
 T

im
e

 (
S

e
c
o

n
d

s
)

DynF

Batch

Figure 5: Comparison of training time between
batch and DynF algorithms on fold 1 data as new
features are incrementally added to the classifier.

392

1 2 3 4 5 6 7
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Days

C
u

m
u

la
ti
v
e

 E
rr

o
r

R
a

te
(%

)

DynFD−old

DynFD−min

DynFD−greedy

Figure 6: Cumulative error rate. The results were
obtained using a benchmark suspicious URL detec-
tion dataset.

1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Days

C
u

m
u

la
ti
v
e

 E
rr

o
r

R
a

te
(%

)

Static

DynF

All

DynFD−greedy

CW

Figure 7: Cumulative error rate. The results were
obtained using a benchmark suspicious URL detec-
tion dataset.

6 12 18 24
0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Hours

C
u

m
u

la
ti
v
e

 E
rr

o
r

R
a

te
s
 (

%
)

DynFD−dld

DynFD−min

DynFD−greedy

Figure 8: Cumulative error rates. The results were
obtained using the botnet dataset.

6 12 18 24
0.22

0.24

0.26

0.28

0.3

0.32

0.34

Hours

C
u

m
u

la
ti
v
e

 E
rr

o
r

R
a

te
s
 (

%
)

Static

DynFeat

All

DynFD−greedy

CW

Figure 9: Cumulative error rates. The results were
obtained using the botnet dataset.

ing the model). (2) DynF. In this approach, we train an
initial model during the first time period and refines it at
each subsequent time period using the dynamic feature adap-
tation approach (the training examples are assumed to be
fixed). (3) All. In this approach, we add new features and
new training examples at each iteration without removing
older data examples (this approach assumes that the mem-
ory space is unbounded). (4) CW. This is the confidence-
weighted online algorithm used in [9]. In addition to the
baseline methods, we consider three variations of the pro-
posed DynFD method: (1) DynFD-old. In this approach,
we make room for the new training examples at each time pe-
riod by removing the oldest training examples. (2) DynFD-
min. In this approach, we accommodate the new training
examples by removing training examples that have the low-
est values of α. (3) DynFD-greedy. In this approach, we
choose the older training examples to be removed according
to Equation 14.

Figure 6 compares the performance of the three DynFD
proposed methods on the benchmark malicious URL dataset [9].
The results suggest that both DynFD-min and DynFD-
greedy achieve consistently low error rates compared to
DynFD-old, which performed worse on datasets collected
after Day 3. This is not surprising as DynFD-old may ac-
cidentally discard old but still useful training examples. Fig-
ure 7 compares the performance of DynFD-greedy against
other the baseline algorithms. As shown in the figure, the
method All which allows new examples to be added to the
training set without removing other existing examples, ap-
pears to produce the best result along with the CW al-
gorithm. The performance of DynFD-greedy is slightly
worse, though the difference is not statistically significance
(the error rates for all three methods are less than 2%). The
other two methods, Static and DynF, appear to misclassify
more test examples especially after Day 4. This is because
these methods do not include newer training examples for
model re-building.

Figures 8 and 9 show the performance of the seven meth-
ods on the botnet dataset. In Figure 8, we compare the
three variants of the DynFD method. The results suggest
DynFD-greedy clearly outperformed the other two meth-
ods. Furthermore, in Figure 9, we compare it against other
baseline algorithms. While the All method once again yields

393

the best result, our proposed DynFD-greedy came in close
second. On this dataset, the CW algorithm was signifi-
cantly worse than both All and DynFD-greedy. One pos-
sible explanation is that for the botnet dataset, which is
noisy and harder to classify, the SVM-based methods em-
ploy the maximum-margin principle to achieve better gen-
eralization error. Static and DynF again yield the worst
performance due to the fact that they do not accommodate
additional training examples to rebuild the model.

8. CONCLUSIONS
This paper focuses on the problem of detecting bots in

a large network using an online learning algorithm that is
adaptive to both evolving features and training sets. Our
assumption is that we can identify whether a client ma-
chine is a “bot” by examining the server IP-addresses they
had visited in the past. Using two real-world data sets,
we show that the proposed algorithm produces an accuracy
comparable to its batch counterpart, while consuming signif-
icantly less computational resources. In addition, our pro-
posed algorithm also outperformed the state-of-the-art CW
algorithm when applied to large-scale botnet data obtained
from an ISP.

9. ACKNOWLEDGMENTS
Feilong Chen and Pang-Ning Tan’s research are supported

in part by ONR grant number N00014-09-1-0663.

10. REFERENCES
[1] Snort network intrusion prevention and detection

system, http://www.snort.org.

[2] J. R. Binkley and S. Singh. An algorithm for
anomaly-based botnet detection. In SRUTI’06:
Proceedings of the 2nd Workshop on Steps to Reducing
Unwanted Traffic on the Internet, pp. 43-48, San Jose,
CA, USA, 2006.

[3] E. Cooke, F. Jahanian, and D. Mcpherson. The
Zombie Roundup: Understanding, Detecting, and
Disrupting Botnets. In SRUTI’05: Proceedings of the
1st Workshop on Steps to Reducing Unwanted Traffic
on the Internet, pp. 39-44, Cambridge, MA, USA,
2005.

[4] T. Gestel, J. Suykens, B. Baesens, S. Viaene,
J. Vanthienen, G.Dedene, B. D. Moor, and
J. Vandewalle. Benchmarking Least Square Support
Vector Machine Classifiers. Machine Learning,
54(1):5–32, 2004.

[5] J. Goebel and T. Holz. Rishi: Identify bot
contaminated hosts by IRC nickname evaluation. In
HotBots’07: Proceedings of the First Workshop on Hot
Topics in Understanding Botnets, Cambridge, MA,
USA, 2007.

[6] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and
W. Lee. BotHunter: Detecting malware infection
through IDS-driven dialog correlation. In Proceedings
of the 16th USENIX Security Symposium
(Security’07), pp. 167-182, Boston, MA, USA, 2007.

[7] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting
botnet command and control channels in network
traffic. In NDSS’08: Proceedings of the 15th Annual
Network and Distributed System Security Symposium
(NDSS’08), San Diego, CA, USA, 2008.

[8] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker.
Beyond blacklists: Learning to detect malicious web
sites from suspicious URLs. In KDD’09: Proceedings
of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1245-1254,
Paris, France, 2009.

[9] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker.
Identifying suspicious URLs: An application of
large-scale online learning. In ICML ’09: Proceedings
of the 26th Annual International Conference on
Machine Learning, Montreal, Canada, 2009.

[10] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and
N. Borisov. Botgrep: finding P2P bots with structured
graph analysis. In Proceedings of the 19th USENIX
conference on Security, USENIX Security’10,
Washington, DC, USA, 2010.

[11] R. Perdisci, W. Lee, and N. Feamster. Behavioral
clustering of HTTP-based malware and signature
generation using malicious network traces. In
NSDI’10: Proceedings of the 7th USENIX Symposium
on Networked Systems Design and Implementation,
San Jose, CA, USA, 2010.

[12] P. Porras, H. Saidi, and V. Yegneswaran. An analysis
of conficker’s logic and rendezvous points. Technical
report, SRI International, Menlo Park, CA, USA,
2009.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error
propagation. Parallel distributed processing:
Explorations in the microstructure of cognition, Vol 1,
MIT Press, pp. 318–362, 1986.

[14] D. Sculley and G. M. Wachman. Relaxed online SVMs
for spam filtering. In SIGIR ’07: Proceedings of the
30th International ACM SIGIR conference on
Research and development in Information Retrieval,
pp. 415–422, Amsterdam, Netherlands, 2007.

[15] J. Suykens, T. Gestel, J. Brabanter, B. Moor, and
J. Vandewalle. Least Squares Support Vector
Machines. World Scientific Pub, Singapore, 2002.

[16] D. Tax and P. Laskov. Online SVM learning: from
classification to data description and back. In
NNSP’03: Proceedings of the IEEE 13th Workshop on
Neural Networks for Signal Processing, pp. 499–508,
Toulouse, France, 2003.

[17] Q. Wang, Y. Guan, and X. Wang. SVM-based spam
filter with active and online learning. In TREC ’06:
Proceedings of the 15th Text Retrieval Conference,
Gaithersburg, Maryland, USA, 2006.

[18] J. Ye and T. Xiong. SVM versus least square SVM. In
Proceedings of the 11th International Conference on
Artificial Intelligence and Statistics, pp. 644–651, San
Juan, Puerto Rico, 2007.

[19] L. Zhang, J. Zhu, and T. Yao. An evaluation of
statistical spam filtering techniques. In ACM
Transactions on Asian Language Information
Processing, 3(4), pp. 243-269, 2004.

394

