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Abstract

Background: Cellular differentiation and reprogramming are processes that are carefully orchestrated by the
activation and repression of specific sets of genes. An increasing amount of experimental results show that despite
the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes,
which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce
cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial
problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge
to narrow down the list of candidates.

Results: Here we present a computational method, without any preliminary selection of candidate genes, to
identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The
method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability
elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular
phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming
involves transition between these attractors, and therefore current method searches for combinations of genes that
are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate
perturbations.

Conclusions: The method presented here represents a useful framework to assist researchers in the field of cellular
reprogramming to design experimental strategies with potential applications in the regenerative medicine and
disease modelling.

Keywords: Cellular reprogramming, Transdifferentiation, Dedifferentiation, Stability, Attractor, Positive circuit,
Reprogramming determinants

Background
During classical cellular differentiation cells lose phenotypic

plasticity until they become fully differentiated. Some

differentiated cells have the remarkable ability to be

converted into different cell types via a process termed as

developmental redirection or cellular reprogramming.

Both differentiation and reprogramming are processes

that are carefully orchestrated by the activation and

repression of specific sets of genes. The knowledge

about these activation and repression mechanisms can

be integrated as network of regulations. Modeling these

regulatory networks allow us to describe biological pro-

cesses, in general, as transitions between network states

and cellular reprogramming, in particular, as transitions

between stable steady states also called as attractors of

the network model. On the other hand, the relationship

between cellular phenotypes and the attractors has been

proposed by several authors [1-3], and recent literature

authenticates this claim with experimental validation of a

number of examples showing that only few key genes can

induce transitions between cellular phenotypes [4-7].

Prediction of these key genes finds wide range of ap-

plications for cellular reprogramming. However, there is

only handful of approaches in literature that can predict
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effective cocktails of transcription factors for cellular

reprogramming [8,9]. Most of these methods either

requires a list of candidate genes to narrow down the com-

binatorial problem or based on computational brute force

to simulate network response under perturbation. Both the

said strategies become prohibitive for the larger number of

genes in the network. To this end, here we propose a com-

putational methodology, which systematically identifies

these key driver genes that are able to induce transitions

between various cell types including differentiation,

de/trans-differentiation.

Stable cellular phenotypes (representing attractors of

our network model) are part of a large space of all avail-

able cellular states. At the transcriptional level, attractors

represent stable expression patterns or transcriptional

programs. The existence of multiple attractors in a GRN

requires the presence of positive feedback loops or also

called as positive circuits (i.e., including even number of

inhibitions/repressive regulations) [10]. However, not all

positive circuits in the network are involved in network

multistability; those whose participating genes cannot be

in a coherent stable state according to the connectivity of

the circuit (i.e., mismatch between the logical rules and

the expression pattern) are not contributing to stabilize

the network because they are not stable by themselves.

Moreover, there are positive circuits that are contributing

to stabilize specific attractors but not another.

In a previously published work [11] we proposed the so

called differentially expressed positive circuits (DEPCs) as

targets to induce cellular transitions and showed how a

topology based strategy pointed out genes involved in the

so called bi-toggle switches (transcription factor cross-

repressing motifs) as driver genes for these transitions.

Here we used a bioinformatics approach to interrogate

synthetic networks preserving properties of the well char-

acterized gene regulatory network (GRN) of E. coli and we

observed that there always exists at least one DEPC, which

constitutes a necessary condition for the general applic-

ability of the methodology presented here. A positive

circuit is considered DEPC if its constitutive genes change

their expression values between two given attractors of

the GRN. Hence, we assume that DEPCs forms the barrier

between the given two attractors. Therefore, appropriate

perturbation of genes belonging to these differentially

expressed stability elements is expected to destabilize the

initial cellular phenotype and stabilize the final one.

Thus, by combining transcriptomics profiling, and

stability analysis, proposed methodology identifies key

genes, called here as reprogramming determinants (RDs),

without considering any prior list of candidate genes.

Here, RDs are defined as minimal set of genes, a single

gene or group of genes, that are participating in the differ-

ential stability elements of the network model, when

perturbed with an appropriate stimulus (either activation

or repression) can effect transitions between stable cellular

programs. In this formalism, there are no constraints on

the nature of products encoded by RDs (i.e., key genes);

both proteins as well as non-coding RNAs are equally

eligible. Finally, RDs encompass as many number of gene

combinations, as long as the set is minimal and can effect

transitions between attractors of the network model.

The objective of this methodology is to identify all pos-

sible RDs which can bring about the cellular transitions.

Here we propose a novel strategy to select combinations

of genes to be perturbed based on dynamical simulations

instead of the purely topology based strategy proposed

before [11]. By focusing on genes involved on the stability

of the gene regulatory network (GRN), the algorithm

dramatically reduces the huge search space constituted by

all possible combinations of genes. The efficiency and

general usability of our methodology is demonstrated by

analyzing a large number of in silico GRNs generated with

biological properties as that of E. coli regulatory network,

and selective six different biological examples of cellular

reprogramming. Analysis of in silico gene regulatory

networks showed that these minimal sets of driver genes

were always able to trigger transitions between all pairs of

attractors. Application to six biologically relevant exam-

ples finds experimental validation in literature for the

identified sets of RDs as effective inducers of transitions

between cellular phenotypes. Given the increasing interest

of cellular reprogramming in regenerative medicine and

basic research, our method represents a useful computa-

tional methodology to assist researchers in designing

experimental strategies.

Results
Description of the differential expression stability analysis

Cellular phenotypes are characterized by stable expression

patterns at the transcriptional level. The underlying GRN

can be conceptualized and described as Waddington

landscape [12-14], where stable cellular phenotypes,

corresponding to the attractors of network model, are

represented as wells separated by barriers (see Figure 1).

These barriers are established by those network elements

that are stabilizing GRNs in their attractors. In the motive

of identifying these barriers, the method presented here

takes reconstructed GRNs and the associated expression

patterns of the cellular phenotypes as input, and gives

RDs as output. Since stable cellular phenotypes can be

considered as attractors of GRNs, cell fate and cellular

reprogramming involve transitions between these attrac-

tors. To this end, our method looks for combinations of

genes in the reconstructed GRN that are able to destabilize

a specific initial attractor and stabilize the final one in

response to the appropriate perturbation. Therefore, this

strategy allows us to narrow down a huge combinatorial

searching problem to a set of minimal combinations that
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constitutes alternative reprogramming protocols. It is

to note that this method operates on previously recon-

structed GRNs (both from knowledge based or data

based approaches).

The method takes as input GRNs and experimental

expression data and delivers combinations of RDs (see

flow-chart in Figure 2) and can be described in three steps

(see Figure 3): 1) computing GRN attractors 2) detecting

DEPCs 3) obtaining minimal combinations of RDs genes

targeting the DEPCs, in detail as follows.

Computing attractors of the network

Attractors are calculated with a Boolean model of the

GRN (see Methods for details). In this Boolean model, up

and down regulated genes assume values of “1” and “0”

respectively. This is necessary to find suitable attractors of

the network model representing the cellular phenotypes.

Detecting DEPCs

At first, all positive circuits are detected using modified

Johnson’s algorithm (see Methods section for details).

Later, from this set of positive circuits a subset, whose

constitutive gene expression profiles are differentially

expressed between the attractor states involved in cellular

transition (initial and final), are identified. For a positive

circuit to be differentially expressed it has to fulfill two

requirements: (i) all of their constitutive genes change

between the two attractors (i.e., they are differentially

expressed), and (ii) the states of the circuit in both initial

and final phenotypes should match attractors of the

circuit when considered in isolation; (i.e., only circuits in

stable state whose logical rules are in accordance with

their expression patterns are considered as differentially

expressed stability elements).

Obtaining minimal combinations of RDs genes targeting all

DEPCs

We look for the minimal combination of genes that are

able to directly or indirectly target all DEPCs. For this pur-

pose, we formulated this as a two-step integer optimization

problem, where in the first step by perturbing all the genes

in a given circuit, minimal numbers of circuits that can

bring about the cellular transitions are identified. In the

second step, minimal combinations of genes are identified

from the minimal number of circuits using an algorithm

that look for combinations of genes in minimal DEPCs

with the requirement that there should be at least one gene

for each DEPCs (see Methods). Consequently this strategy

reduced further the required number of genes to be per-

turbed. Afterwards, as a final step, the algorithm deter-

mines which DEPCs are not necessary to be directly

perturbed (see Figure 3c) by simulating the network re-

sponse (according to the model assumed to compute

attractors) under perturbation of the minimal combination

Figure 1 Description of transitions between cellular phenotypes using transcriptional landscapes and networks. a) Cell transcriptional
program landscape representing two attractors and the epigenetic barrier between them. This conceptual figure represents a cell stabilized in an

initial cellular phenotype and how a hypothetical perturbation can destabilize the cellular program and make cell exceed the barrier and fell
down in a final cellular phenotype. This cellular reprogramming is represented as a blue arrow from the initial to the final attractor. b) Cellular
reprogramming as transitions between network states. Differentially expressed positive circuits (DEPCs) are perturbed to induce the transition

from Attractor 1 to Attractor 2 passing by a transient state. This transient state can be considered as a “short” term changing expression pattern
until the system reaches an attractor. Regular arrows represent activation and T-arrows represent inhibitions. Blue and red nodes represent

inactive and active genes respectively in attractors. Violet nodes represent transient states.
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of genes but the gene belonging to specific DEPCs one at a

time. By this mean we are able to reduce the final number

of RDs removing genes targeting DEPCs that are regulated

by others.

Validation with in silico gene regulatory networks

In order to validate this strategy, we applied our method to

1000 GRNs of different size, but with the same topological

properties of a well-characterized GRN of E. coli. As a re-

sult of our analysis we obtained the following conclusions:

a) Between any two given attractors we always obtained at

least one DEPC; and b) perturbation of minimal combina-

tions of genes that include DEPCs between pairs of attrac-

tors always succeeded triggering transitions between these

states (see Figure 1 as example). Further, we calculated the

percentage of RDs that can trigger transitions between all

calculated attractors. As it is shown in Figure 4, interest-

ingly on an average only 6% of the genes from the whole

network is sufficient enough to bring about the transitions

between any given attractor to any other. Also, on an

average maximum 4 genes and a minimum of 1 gene is

sufficient to bring these transitions.

Application to cellular reprogramming

We demonstrated the efficacy of the current protocol using

six different biological examples of cellular reprogramming.

These examples provided an experimental confirmation of

the identified RDs as effective inducers of transitions

between stable cellular phenotypes. The T-helper and

EMT examples are based on GRNs, which have been

previously published [15,16]. In the latter case we expanded

the original network with the addition of a novel double-

negative feed-back with miRNA34A, which has been

recently published [17]. For the remaining examples (HL60,

iHEP, iCM and iPSc) we used knowledge bases, like

Ariadne’s MedScan technology [18,19], to construct

Figure 2 Flow chart from input information to reprogramming determinants detection. Differential stability analysis takes as input a gene

regulatory network and experimental expression data comparing initial and final cellular phenotypes. The output of the analysis consists on
combinations of target genes to be perturbed to induce the desired cellular transition.
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Figure 3 (See legend on next page.)
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gene regulatory networks. We also tried to enrich, when

possible, the GRNs by addition of miRNA interactions ex-

perimentally validated and available in public databases,

like TransmiR [20] and miRTarBase [21] (see Methods for

details). Consequently, these networks were pruned in

order to maximize matching between gene expression

profiles and gene states found by our network dynamics

simulation. This procedure allowed us to contextualize

the networks to the biological conditions under which the

experiments were performed [22] (more details about the

network reconstruction and contextualization processes

are included in the Methods section below). Detected RDs

and transitions between known phenotypes are shown in

Table 1 for each example.

T-helper

T lymphocytes are classified as either T helper cells or T

cytotoxic cells. T helper cells take part in cell- and

antibody-mediated immune responses and they are sub-

divided in Th0 (precursor) and effector Th1, Th2, Th17

and Treg cells. T-helper differentiation network determin-

ing the fate of the lineage has been proposed previously

[15]. Here we are focused on the transition between Th2

and Th1 phenotypes. We detected T-bet and GATA3 as in-

dependent RDs for Th2-Th1 (see Figure 5a) and Th1-Th2

respectively. These predictions are in full agreement with

previously published experiments [6,23,24].

EMT

A transient phenomenon referred to as epithelial to

mesenchymal transition (EMT) occurs during regular

embryonic development and as a part of the metastatic

cascade initiated by the breakdown of epithelial cell

homeostasis in carcinomas. During the Epithelial to

mesenchymal transition (EMT), cells change their genetic

and transcriptomic program leading to phenotypic and

functional alterations, including the loss of epithelial

features like cell-cell adhesions and cell polarity and gain

of cell motility and mesenchymal and stem-like properties.

EMT can be initiated by multiple pathways converging in

the activation of EMT inducers. The EMT example shows

that SNAI1 is a triggering gene for the transition from

epithelial to mesenchymal (see Figure 5b), which has been

validated by experimental perturbation of this gene [16].

HL60

The multipotent promyelocytic leukemia cell line HL60

was originally isolated by Dr. Steven Collins from an acute

promyelocytic leukemia (APL) patient [25]. The multipo-

tent promyelocytic leukemia cell line HL60 can be

stimulated to differentiate into neutrophils using different

chemical agents like including granulocyte macrophage

colony-stimulating factor (GM-CSF) [26], DMSO [27], all-

trans-retinoic acid (ATRA) [28], 1,25-dihydroxyvitamin

D3 [29], and 12-O-tetradecanoylphorbol 13-acetate (TPA)

[30]. Nevertheless, how these chemical agents act at the

gene regulatory level to induce the transition is still a rele-

vant question to understand the underlying mechanisms

of differentiation or reprograming. Application of our

method to the HL60 example allowed us to detect IRF1 as

triggering gene for inducing the differentiation from HL60

to neutrophil (see Figure 5c), which is a consistent result

with previous experimental findings [31].

iHEP

Normally, hepatocytes differentiate from hepatic progeni-

tor cells to form the liver during the regular development.

(See figure on previous page.)
Figure 3 Differential stability analysis: recipes for cellular reprogramming in three steps. a) Computing attractors. Network stability is

analyzed assuming a Boolean model and a synchronous updating scheme. Genes in “1” are active or “ON” and genes in “0” are inactive or “OFF”
and are represented in grey and white respectively. b) Detecting DEPCs. A positive circuit is considered a DEPC if all of their constitutive genes

change their expression values between two given attractors of the GRN. c) Obtaining minimal combinations of reprogramming determinants.
Both Circuit 1 and Circuit 2 are DEPCs, but Circuit 2 is regulated by Circuit 1; any perturbation of Circuit 1 capable to move it to a different
attractor is going to change the state of Circuit 2 too. Simulations showed that genes in Circuit 2 have not to be perturbed to achieve transition

from Attractor 2 to Attractor 3. Therefore, minimal combinations of reprogramming determinants are any individual gene of Circuit 1, i.e., genes
“a”, “b” or “c”. Regular arrows represent activation and T-arrows represent inhibitions.

Figure 4 Probability density function of fraction of genes to be

perturbed in the whole network to induce the transitions from

any given attractor to any other. In average, only 6% of the genes
in 1000 randomly generated networks preserving E. coli GRN

topological properties are identified by our method as RDs.
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However, hepatic programs can also be activated in

different cells under particular stimuli or fusion with

hepatocytes. The transition from human fibroblasts to

hepatocyte-like cells (iHEP) induced by the perturbation

of specific combinations of transcription factors has been

previously reported by Sekiya and Suzuki [32]. In the

iHEP example we found several minimal combinations

able to trigger the transition from fibroblast to hepatocyte.

Among these minimal combinations, the combined per-

turbation (activation) of HNF4A and FOXA2 has been

experimentally validated [32] (see Figure 5d).

iCM

In the postnatal heart during the regular development, a

large pool of existing fibroblasts is directly reprogrammed

to an alternative fate as cardiomyocytes. No single master

regulator of direct cardiac reprogramming has been

identified till date, but the combined perturbation of three

developmental transcription factors (GATA4, MEF2C and

TBX5) has been proposed and validated experimentally as

a rapid and efficient way to induce this transition [5]. Our

method found that when GATA4 and MEF2C are per-

turbed separately or in combination (see Figure 5e) are

able to trigger the transition from fibroblast to induced

cardiomyocyte (iCM), indicating the important role that

these genes play in this cellular transition. This finding is

partially consistent with the experiment performed by Ieda

and Co-workers [5], where GATA4 and METF2C in com-

bination with TBX5 were simultaneously perturbed to

achieve this cellular transition. Thus, our results propose

the hypothesis that either GATA4 or METF2C are

individually capable to trigger this transition. To our

knowledge, this prediction has not been experimen-

tally validated in fibroblast-cardiomyocyte transition,

but GATA4 has been reported capable to reprogram

mesenchymal stromal and P19 cells [33] into cardio-

myocytes [34,35].

iPSCs

The combined perturbation of POU5F1, SOX2, KLF4

and MYC is known to be effective to induce the repro-

gramming of human fibroblasts to the iPSCs. We ana-

lyzed a previously published microarray dataset [36] of

human Fibroblast to iPSCs. Here an initial population of

fibroblast is stimulated using above said four Yamanaka

transcription factors to induce transitions to iPSCs. The

application of our method to this dataset resulted on the

identification of POU5F1, SOX2, and MYC as RDs

among other alternative combinations. However, KLF4

was not pointed out as RD according to the recon-

structed model and by our methodology due to it is not

involved in DEPCs. That might be due to missing inter-

actions within the network, one of the limitations of

using only interactions from knowledgebase. ATF3,

mir-107, MYB and TP53 were detected as suitable

alternative targets to accompany POU5F1 and SOX2,

being TP53 the only one with a previously reported key

role in cellular reprogramming [37]. The blind-folded

application of our methodology to the available tran-

criptomics datasets pointed out well known key genes

involved in pluripotency recovery mechanisms and also

proposed a handful of alternative candidates.

Discussion and conclusions
An increasing amount of experimental results showed that

only few key driver genes are required for cellular repro-

gramming. Since stable cellular phenotypes can be consid-

ered as attractors of gene regulatory networks, cell fate and

cellular reprogramming involve transitions between these

attractors. Hence, this implies that by destabilizing the

initial attractor and stabilizing the final one, one can induce

the required transitions. Here, we present a topology based

method to identify minimal set of key genes belonging to

specific stability elements (DEPCs), capable to induce tran-

sitions between cellular phenotypes when. We call their

identification as differential expression stability analysis.

Table 1 Minimal combinations of reprogramming determinant genes obtained after the application of our method in

five different biological examples for specific transition between attractors corresponding to cellular phenotypes

Example Transitions DEPFCs Minimal combinations of reprogramming determinant genes

T-helper Th2-Th1 4 GATA3, T-bet

EMT Epithelial-
Mesenchymal

12 SNAI1, ZEB2, MIR203

HL60 HL60-Neutrophil 1 IL1B, CASP1, IRF1

iHEP Fibroblast-
Hepatocyte

2 FOXA2:PPARGC1A,NR5A2:UCP2, HNF1A:PPARGC1A,HNF4A:NR5A2, NR5A2:PPARGC1A, FOXA2:HNF4A, HNF1A:
UCP2, AGT:NR5A2,AGT:FOXA2,FOXA2:UCP2, AGT:HNF1A, HNF1A:HNF4A

iCM Fibroblast-
Cardiomyocyte

2 GATA4, MEF2C

iPSCS Fibroblast-iPSCS 7 MYC:POU5F1:SOX2, POU5F1:SOX2:mir-107,MYB:POU5F1:SOX2, ATF3:POU5F1:SOX2,POU5F1:SOX2:TP53,

Genes in bold correspond with those whose perturbation are represented in Figure 5.

Alternative combinations of reprogramming determinant genes are separated by comma. Combinations of reprogramming determinants genes perturbed in

Figure 6 are in bold.
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DEPCs detection relies on attractor computation as-

suming a Boolean model, which is relatively simple and

does not require kinetic parameter identification for a

given topology. Also, given that we are not interested in a

detailed description of the regulatory mechanism we con-

sider a Boolean model suitable for our purposes, but not

for the elucidation of transient states. GRN models in this

work do not take into account detailed cellular informa-

tion, such as the strength of regulatory interactions and

continuous gene expression values. However, it preserves

the regulatory logic that rules the flow of information in

gene regulatory networks, and consequently allows to

roughly describing stable cellular phenotypes. It is worth

mentioning that, given that this methodology neglects

important dynamical aspects like kinetic parameters or

affinity values, all interactions within the network are

equally strong. This simplification may result in incom-

plete results because we are assuming that perturbing one

gene is enough to effectively destabilize the circuit it

belongs to, whereas weak interactions in the circuit may

interrupt the regulation signal transfer. Such situation

would require perturbation of the circuit at different

points (genes) and this is something not considered by

our approach.

Analysis of a large number of in silico gene regulatory

networks using a Boolean model showed that for any

couple of given attractors there always exists at least one

DEPC, and that RDs detected by the application of the

methodology presented here were able to trigger transi-

tions between all pairs of attractors. It is worth noting

that this detection differs from a previously published

work on the dynamical simulations of gene perturbations

instead of the former simulations purely topology based

approach [11]. Further, we analyzed six different gene

Figure 5 Six cellular transitions corresponding to six illustrative

biological examples are represented in this figure after the

perturbation of specific minimal combinations of

reprogramming determinant genes. Simulated perturbations

performed assuming a Boolean model succeeded in triggering the
transition. These results are consistent with experimental
perturbations previously published. Genes in “ON” and “OFF” are

represented in grey and white respectively; these states correspond
to the characteristic expression profile in both initial and final states.

Points of perturbation of DEPCs are marked with red arrow. These
genes should change their states in order to induce the desired
cellular transition. a) T-helper. Perturbation of T-BET induces the

transition from Th2 to Th1. b) EMT. Perturbation of SNAI1 induces de
transition from epithelial to mesenchymal c) HL60. Perturbation of
IRF1 induces the transition from HL60 to neutrophils. d) iHEP.

Combined perturbation of HNF4 and FOXA2 induce the transition
from fibroblast to hepatocyte. e) ICM. Perturbation of GATA4 induces

the transition from fibroblast to cardiomyocyte. f) iPSCS. Combined
perturbation of SOX2, POU5F1 and TP53 induce the transition from
fibroblast to iPSCS. Regular and T-arrows represent activation and

inhibition respectively.
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regulatory networks that describe representative biological

examples (see Figure 4). Namely, we illustrate the process

of cellular differentiation (T-helper differentiation and

Epithelial-Mesenchymal transitions (EMT)), in which cells

lose phenotypic plasticity until they become fully differenti-

ated as well as the remarkable ability of some differenti-

ated cells to be converted into different cell types

via cell reprogramming (HL60-Neutrophil, Fibroblast-

hepatocyte, Fibroblast-cardiomyocyte and Fibroblast-

induced pluripotent stem cell reprogramming). These

examples provide an experimental validation of the iden-

tified RDs as effective inducers of transitions between

cellular phenotypes. Thus, our method can be used to

identify RDs that are able to induce transitions between

cellular phenotypes, and finding potential applications in

the areas of disease modeling, to create novel disease

models and in regenerative medicine for formulating new

cellular therapies.

The method provides a strategy to induce transitions

between cellular phenotypes exploring the stability

landscape, eventually with alternative combinations of

perturbed genes with the subsequent differences in

trajectories. The fact that our methods provides these

alternative combinations could help to address three

major problems in cell reprogramming: a) Safety in

reprogramming process, avoiding undesired turnings

often leading into cancer; among the alternative solu-

tions, some combinations of RDs genes inducing risky

transitions too close to a tumorigenic profile can be

avoided and safe transitions can be selected [38]; b)

Efficiency; The reduced set of alternative experimen-

tally testable solutions facilitates finding more efficient

strategies to induce cellular transitions; c) Fidelity; The

potentially incomplete reprogramming or the appear-

ance of aberrant phenotypes (for instance, no effective

equivalence between iPSC and ESC). Such alternative

phenotypes could be detected as additional attractors

in the stability landscape and can be taken into account

to obtain the desired transitions.

It is to note here that the predicted RDs are purely

based on the initially assumed GRN from the literature

and the finally contextualized GRN topologies (i.e., the

connectivity among genes). GRNs in this work are

reconstructed fully from literature knowledgebase. Comple-

mentarily, a data oriented approach, like co-expression [39]

or mutual information [40] based inference techniques, can

also be followed for this particular task. Both literature-

based and data-based approached have their own advan-

tages and disadvantages. For example, literature-based

approach usually integrates interactions described in vary-

ing biological contexts, like different cell types, tissues or

even organism, hence resulting in noisy GRNs that are not

suitable to describe the system. On the other hand, data

based approaches require large amount of data to classify

statistically the true positive from false positive interactions

of GRN, which may arise due to indirect interactions. Con-

sidering the data availability (i.e., number of replicates and

perturbation studies) in cellular reprogramming, we opt to

employ a former approach to contextualize literature-based

GRNs with respect to the available data, hence removing

noise.

To this end, raw networks reconstructed from litera-

ture are contextualized by pruning those interactions that

are not consistent with experimentally observed expres-

sion data. This contextualization process requires adopt-

ing a Boolean dynamical model that is based on a set of

assumed regulatory logic functions if specific regulatory

mechanisms are not known (see Methods and Additional

file 1 for details). Despite the effect of some wrongly as-

sumed regulatory logic functions is partially overcome by

the contextualization itself (discussed in the Additional

file 1), sometimes both the wrongly assumed regulatory

logic rules and/or network incompleteness may lead us

to wrong or incomplete set of RD. However, there is a

score obtained during the optimization process that rep-

resents the percentage of genes that are well explained by

the dynamical model for the initial and final cellular

phenotype expression profile. This score constitute an

indicator of how reliable the predictions (reprogramming

determinants) performed on the contextualized network

for a given set of regulatory rules are. Leaving apart the

first two examples with previously published networks

(Thelper and EMT) all the other four examples were

reconstructed from the available knowledge in the litera-

ture. Genes included in the reconstructed GRNs of the

examples are those with experimental evidences of up- or

down-regulation, and only the resulting contextualized

topology makes them RD, rather than previous reports

about their participation in reprogramming events.

Also, the knowledgebase (Patway Studio) used in this

work, exploits word association to detect clear sentences,

which describe the interactions with regulatory effects.

Only these known regulations are included in the data-

base (Mammalian ResNet). For example, the sentences

“…we now report that caspase-1-mediated IL-1beta ex-

pression in response to…” and “…activation of caspase-1

is required for the efficient production of biologically

active IL-1 beta and IL-18…” (both sentences and

PubMed identifiers of the original papers are included in

the Additional file 1) allow to include the positive inter-

action between caspase-1 and IL-18. We checked that

the interactions included in the reconstructed GRNs

were not based on wrong or ambiguous sentences, but

we cannot guarantee that they are not the result of the

author’s misinterpretation.

As a limitation of this algorithm, the transitions involving

cyclic stable states are not yet considered but are subject of

possible extension of the method. Modeling transitions
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between cyclic attractors could be applied to identify driver

genes in biological systems with oscillatory behavior. Also,

according to the definition of RDs, the output of the

present method has exactly one gene for each DEPC, how-

ever in general it is possible to perturb multiple genes per

circuit that are redundant or even choose those genes that

are experimentally feasible to perturb from the identified

DEPCs.

Regenerative medicine, where the goal is to replace or

regenerate damaged or lost human cells, is a rapidly

growing research area [41]. However, current therapies

that focus on tissue regeneration are significantly impeded

by our limited understanding of how to reprogram cells

towards specific cellular populations. Hence cellular re-

programming, including the conversion of one differenti-

ated cell type to another (trans-differentiation) or to a

more immature cell (dedifferentiation), has a high rele-

vance for regenerative medicine and disease remodeling

[42]. On the other, with ever increasing amount of experi-

mental observations, it is clearly evident that only few key

genes, called here as reprogramming determinants (RDs),

are more than enough for the orchestration of the com-

plex regulatory events during reprogramming. Although

substantial progress has been made in developing experi-

mental reprogramming techniques, to date there is no

protocol able to systematically predict RDs that can trig-

ger transitions. In this article, we provide an in-time

framework to design protocols to induce transitions

between cellular phenotypes providing effective cellular

reprogramming (including protocols for differentiation,

dedifferentiation, trans-differentiation and pluripotency

recovery). This work thus represents a major potential

advance in the way we uncover RDs and pathways

involved in cellular reprogramming, with enormous scope

for regenerative medicine across diverse tissue- and cell-

types.

Methods
Extraction of in silico gene regulatory networks

In order to validate the applicability of our differential ex-

pression stability analysis, we tested our algorithm using

in silico GRNs of known biological properties. To this

end, one thousand GRNs of size between 20 and 40 genes

were extracted from the E. coli K12 transcriptional net-

work from RegulonDB (http://regulondb.ccg.unam.mx/)

using GeneNetWeaver [43] with greedy neighbor selec-

tion and including self-regulations. This size range is

chosen in accordance with regulatory cores of the

selected biological examples. However, potentially it is

possible to scale the algorithm for increased size of the

regulatory core, but the attractor computation of the net-

work model forms the bottle neck. It is hard to say fixed

numbers a priori as the attractor computation relies on

both the network size and its complexity.

These in silico GRNs, preserves the topological features

and the network complexity of the original K12 tran-

scriptional networks (see an example in Figure 6) Since

these sub-networks are extracted using preferential node

attachment algorithm, the resulting attractor states may

or may not represent experimentally observed expression

patterns in E. coli. Also, these in silico GRNs are only

used to portray the effectiveness of our algorithm in a

Figure 6 Example of randomly generated network preserving E. coli topological characteristics. Perturbation (red pointer) of
reprogramming determinants induced the transition from Attractor 0 to Attractor 6. This network includes 25 nodes and 60 interactions. The
stability analysis assuming a Boolean dynamical model and a synchronous updating scheme detected 8 stable steady states, so there are 16

possible transitions between them. The transition is achieved after the perturbation of CPXR, CSGD, RCSA and BAER. Such perturbation targets all
DEPCs between represented attractors. Genes in “ON” and “OFF” are represented in grey and white respectively. Regular arrows represent

activation and T-arrows represent inhibitions.
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noise free well controlled situation and not to obtain any

biological insights, which could have also been achieved

by choosing other well studied model organisms like

yeast.

Reconstruction of six biologically relevant examples

We selected six different commonly occurring and bio-

logically relevant reprogramming systems to illustrate

the applicability and utility of our method. For the first

two examples, T-helper and EMT, we used networks

from previously published works [15,16]. For the

remaining four examples, i.e., HL60, iHEP, iCM, and

iPSc, GRNs were reconstructed from literature using

text mining and pathway database tools. Even though,

data based inference methods are commonly used to

infer the GRNs, to avoid spurious false-positive predic-

tions, we use only experimentally validated regulations

from literature. However, potential extension of enrich-

ing GRNs with data based network inference methods

remains open and out of scope to this work. The main

topological properties of the six final networks are

shown in Table 2. Details about network interactions

and the corresponding attractors of the six examples are

included in Additional file 2.

The procedure for the network reconstruction con-

sisted of the following steps:

a) Obtaining a list of differentially expressed genes: In

order to reconstruct GRN, we used set of genes that

are differentially expressed between different cell

types under consideration. Differentially expressed

gene sets for HL60-neutrophil differentiation was

obtained from the experiments performed by

Mollinedo and co-workers [44]. The fibroblast-

hepatocyte and fibroblast-cardiomyocyte gene sets

were obtained from the experiments performed by

Huang and co-workers [4] and Ieda and co-workers

[5] respectively. In the case of the iPSCS example,

we analyzed the dataset from the experiments

performed by [36]. These sets of differentially

expressed genes were obtained after the

performance of a T-test and selection of genes with

a p-value < 0.05.

b) Inferring regulatory interactions from literature:

GRNs of differentially expressed gene sets were

reconstructed using experimentally validated

regulation information from literature. For this

specific purpose we use the information contained

in the ResNet mammalian database from Ariadne

Genomics (http://www.ariadnegenomics.com/).

The ResNet database includes biological

relationships and associations, which have been

extracted from the biomedical literature using

Ariadne’s MedScan technology [18,19]. MedScan

processes sentences from PubMed abstracts and

produces a set of regularized logical structures

representing the meaning of each sentence. The

ResNet mammalian database stores information

harvested from the entire PubMed, including over

715,000 relations for 106,139 proteins, 1220 small

molecules, 2175 cellular processes and 3930 diseases.

The focus of this database is solely on human,

mouse and rat. We selected only the interactions

included in the ResNet mammalian database in the

category of Expression, Promoter Binding,

Regulation and Direct Regulation. Interactions in the

“Expression” category indicate that the expression of

regulatory gene/protein affects their targets, by

(both directly and indirectly) regulating its gene

expression or protein stability. Interactions in the

“Promoter Binding” category indicate that the

regulatory gene binds the promoter of the target

genes and shows potential regulation experimentally.

Interactions in the “Regulation” category indicate

that the regulatory gene/protein changes the activity

of the target gene/protein indirectly. However,

complement to “Regulation” type of interactions,

“Direct Regulation” category focuses only on

regulations that are effected by means of physical

binding. In the inferred interactions, always

more preference is allocated to the type interactions

which are the result of physical bindings

(i.e., Promoter Binding and Direct Regulations).

Finally, genes that are not regulated (i.e., nodes

without any incoming edges) are iteratively

pruned.

Table 2 Number of genes, miRNA interactions and circuits of the six biological examples are shown

Networks Genes miRNAs Interactions Activations Inhibitions Positive circuits Negative circuits

T-helper 36 4 71 47 24 108 108

EMT 4 3 17 2 15 12 0

HL60 18 1 30 28 2 2 0

iHEP 26 0 57 47 10 12 18

iCM 29 0 37 31 6 2 0

iPSCS 20 1 34 21 13 9 7
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c) Network enrichment with experimentally validated

miRNA interactions: GRNs were enriched, when

possible, using miRNA interactions that are publicly

available and experimentally validated in two

different databases: TransmiR [20] and miRTarBase

[21]. These databases potentially include the

information about miRNA regulatory genes and

miRNA regulated genes, respectively. Since

expression data for miRNA’s are not available,

miRNA’s forming positive circuits with differentially

expressed genes and, therefore, potentially capable of

affecting the stability of the network, only were

included (see Table 1). However, miRNAs that forms

negative feedback circuits and are also potentially

participating in system stability are excluded. The

reason behind this choice is that the dynamics of

such a regulatory motif is not well described in a

Boolean representation. In a Boolean system these

motifs generate oscillatory behavior, but it is known

that in reality this dynamics strongly depends on the

kinetic parameters of the interactions [45-47]. We

decided not to introduce noise in the model

assuming that some regulatory effects could be

missing (for example, an increased time response of

specific genes under perturbation with the

consequent delay in reaching an attractor). On the

other hand, a Boolean representation is quite robust

to describe stable steady states or fixed points

(termed in this paper as attractors) and suitable for

our purposes. Information about miRNAs is

included in Table 3. Figure 7 shows examples of

miRNAs finally not included in the model.

The T-helper and EMT examples are based on gene

regulatory networks previously published [15,16]. In the

latter one we expanded the original network with the

addition of a novel double-negative feed-back with recently

published miRNA34A [17].

Attractor computation

Attractor computation was performed assuming a discrete

dynamic Boolean model with a synchronous updating

scheme [48] (i.e., updates all gene states simultaneously at

each step until the system reaches an attractor). Attractors

were identified using an in house implementation [22]

(written in C++) of the algorithm described by Garg and

co-workers, [49]. An inhibitor dominant logic rule was

applied to calculate attractors (i.e., if none of its inhibitors

and at least one of its activators is active, then a gene

becomes active; otherwise the gene is inactive). However,

if different regulatory rules are known for specific gene

sets, then this knowledge can be included in the model.

Table 3 Interactions with miRNAs included in the examples

T-helper EMT HL60 iHEP iCM iPSCS

FOXP3 - > MIR-155 MIR200 -| ZEB1 MIR-146A -| CXCR4 None None MIR-107 -| CDK6

IFN-G - > MIR-145 MIR200 -| ZEB2 MIR-146A -| IL8 MIR-107 -| MYB

MIR-145 -| STAT1 MIR203 -| SNAI1 TP53 - > MIR-107

MIR-146A -| IRAK MIR203 -| ZEB2

MIR-155 -| IFN-GR MIR34 -| SNAI1

MIR-155 -| SOCS1 SNAI1 -| MIR200

MIR-23A -| IL-6R SNAI1 -| MIR203

TGFB - > MIR-146A SNAI1 -| MIR34

TGFB - > MIR-155 ZEB1 -| MIR200

TGFB - > MIR-23A ZEB1 -| MIR203

ZEB2 -| MIR200

ZEB2 -| MIR203

Figure 7 HL60 GRN. miRNA interactions included and not included
are represented in green and red respectively. MIR-146A has

incoming and outgoing connections with DEPCs. Both MIR-155 and
MIR-124 were removed due to their lack of outgoing and incoming

interactions with DEPCS respectively.
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Network contextualization using optimization algorithm

As said earlier GRNs were reconstructed using existing

literature, and attractors are calculated for the resulting

network model. However, due to the mismatch between

resulting attractors and the network interactions, it is

necessary to contextualize the reconstructed GRN, which

resulted from different experimental conditions, cell types

and organisms, to the biological conditions under study.

To this end, we applied an evolutionary pruning algorithm

[19]. This technique iteratively removes regulatory interac-

tions that are inconsistent between predicted attractor

states and experimentally observed expression patterns.

Originally, the algorithm was conceived to predict missing

expression values in gene regulatory networks, but given

all the expression values of a GRN, it could be applied to

contextualize the network. The method assumes a Boolean

network model to compute its attractors. In gist, this

estimation-determination [50] based evolutionary algo-

rithm removes inconsistent interactions, by iteratively

sampling the probability distribution of positive circuits

and individual interactions within the subpopulation of

the best-pruned networks. The resulting contextualized

network is based not only on previous knowledge about

local connectivity, but also on a global network property

(i.e., stability). Given that this contextualization is based

on the stability of networks, no assessment can be per-

formed on interactions that are not participating in stabil-

ity. Due to this fact, in the previous genes that are not

regulated by any other genes are iteratively removed.

Circuit detection

We implemented a modified Johnsons algorithm [51] to

detect all elementary circuits, including self-loops in the

network. A circuit is a path in which the first and the

last nodes are identical. A path is elementary if no node

appears twice. A circuit is elementary if no node but the

first and the last appears twice. Once we have all elem-

entary circuits, we select positive feedback circuits, or

circuits for which the difference between the number of

activating edges and the number of inhibiting edges is

even. Both elementary circuit detection and positive

circuits sorting scripts were implemented in Perl.

Identification of reprogramming determinants

Once positive circuits are identified, then the differentially

expressed sub-set of positive circuits, called as DEPCs are

mined. Later, a mixed-integer linear programming formu-

lation is adopted for finding minimum number of DEPCs

that can effect cellular transitions. In this formulation, all

the genes of a given DEPC or group of DEPCs are

perturbed simultaneously and the resulting attractor

mismatch with the original attractors are minimized, by

varying the combinations of DEPCs to be perturbed.

Once the minimum DEPCs are obtained, then the mini-

mum genes to perturb these minimum circuits, called as

RDs, are identified as follows:

1. Detection of the gene represented the most within

DEPCs. This gene is added to the growing minimal

combination of RDs.

2. Marking DEPCs including this gene as targeted.

3. Checking if there are untargeted DEPCs left. If this

is the case, the algorithm goes back to the step 1. If

there is no untargeted DEPC left, the algorithm

finishes at this point, and the current list of genes

constitute minimal combination of genes or RDs.

It is worth mentioning that eventually there are genes

drawing in number of targeted circuits. If this is the case

the algorithm split the computation in different branches

that will provide different alternative RDs.

Additional files

Additional file 1: This file includes an explanation based on a small

example to illustrate how the network contextualization partially

overcomes the problem of assuming wrong regulatory rules or at

least provides some guidance about the adequacy of the assumed

dynamical model.

Additional file 2: Supplementary tables: This file includes details
about networks for the selected examples and information about
computed attractors and the correspondences with cellular phenotypes.
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