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Abstract. In this paper we propose an novel algorithm for detecting
changes in street scenes when the vehicle revisits sections of the street
at different times. The proposed algorithm detects structural geomet-
ric changes, changes due to dynamically moving objects and as well
as changes in the street appearance (e.g. posters put up) between two
traversal times. We exploit geometric, appearance and semantic informa-
tion to determine which areas have changed and formulate the problem as
an optimal image labeling problem in the Markov Random Field frame-
work. The approach is evaluated on street sequences from 3 different
locations which were visited multiple times by the vehicle. The proposed
method is applicable to monitoring and updating models and images of
urban environments.

1 Introduction

Services like Google StreetView and GoogleEarth are becoming great resource
for navigation and search of the constantly growing number of street locations.
From the research standpoint these large image (video) datasets continue to pose
novel computer vision challenges. In the context of this domain several techniques
have been developed for vision based pose estimation, localization and loop clo-
sure detection using stereo, monocular or omnidirectional views. Development
of robust solutions to these problems tackled the challenges related to the large
scale of these datasets and as well as difficulty of lighting conditions due to often
low resolution of images and uncontrolled image acquisition environments. The
existing solutions exploited the advancements in structure and motion estima-
tion techniques, dense multi-view 3D reconstruction and wide baseline matching
and efficient indexing for large scale location recognition. Examples of these can
be found in [1], [2], [3], [4], [5], [6], [7] and references therein.

With the success of these services maintenance of 3D city models and associ-
ated image panoramas is of importance. At the scale of the city many structural
geometric changes (e.g. structures are raised and put down) and appearance
changes (e.g. new posters are raised or facades of the buildings modified) happen
over larger periods of time. Due to the scale of these datasets the development of
automated methods for updating such models or monitoring and reporting the
change is of importance. This work focuses on detecting changes in street scenes
from images acquired by a moving vehicle. To quantify the amount of change
at the level of images we formulate the change detection as optimal labeling
problem in Markov Random Field framework, where regions of newly acquired
images are labelled into two categories: changed or unchanged.
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(a) (b) result and ground truth

Fig. 1. Left: (a) and (b) are images of a single location visited at different times;
changes are present due to moved cars. Right: is the change detection results obtained
by our method and the ground truth. We crop the boundaries for the visualization of
the results to visualize only parts which are common in both views.

Contribution. The proposed algorithm for change detection in Street ViewTM

images exploits geometric, appearance and semantic information to determine
which areas in the image have changed. In the first stage of our approach we
recover a coarse 3D geometry of the scene and register the novel views with the
previously acquired reference images of the location. The coarse geometric reg-
istration is followed by an appearance transfer stage, where the image regions of
a novel view are reprojected to the closest view captured at previous time and
their appearance consistency is quantified. In the last stage we exploit semantic
content of both previous and current views to gather additional evidence about
the change hypotheses. These sources of evidence and integrated in the final en-
ergy minimization framework. Depending on whether the changes are structural
(building went down), appearance (billboards) or just temporary presence of
dynamically moving objects (pedestrians, cars) additional processing steps can
be invoked to update 3D geometric models, or Street View images. The example
results of the proposed approach can be found in Figure 1.

2 Related Work

The problem of mapping and maintaing models of environments is of fundamen-
tal importance for continuous operation in urban environments. Depending on
the application domain various instances of this problem have been considered
in the autonomous robot localization and mapping communities and surveil-
lance communities. In the surveillance setting the change detection problem is
often formulated as 2D-2D image comparison and typically assumes static cam-
eras focusing on the problem of background subtraction [8]. Review of different
approaches can be found in 2D images [9]. The methods based on purely 2D
information have been found sensitive of changes in illumination and weather
conditions. In the work of [10] authors proposed to learn a probabilistic appear-
ance model for a 3D scene and formulated the change detection problem in 3D
using voxel based representation of the world. The proposed per voxel appear-
ance model was an extension of mixture of Gaussians estimated from reprojected
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pixel intensities. In more recent work of [11] authors focus on geometric changes
only. They assume the availability of an accurate 3D model of the scene and use
the images and their reprojections to new views to generate hypotheses about
consistency of the new images with the 3D model. The final inference was for-
mulated in the Markov Random Field framework, where the graph was induced
by a 3D voxel grid and the evidence about the voxel change was computed by
counting inconsistently projected regions.

Earlier works in the robotics community considered issues of dynamically
changing environments in the context of simultaneous localization and mapping
problem. These methods typically rely purely on 3D geometry or 2D occupancy
maps. [12] addressed the problem of localization in dynamic environments in an
on-line manner using occupancy grid based representation, where both static
and dynamic parts of the environment were represented in terms of separate
occupancy grids. In the work of [13] the issue of dynamic changes have been
tackled at the level of entire map using map differencing techniques and Expecta-
tion Maximization Algorithm; [14] proposed a method for on-line detection and
identification of moving objects assuming ideal localization. The proposed work
is the closest to [10,11] approaches to change detection. We also exploit infor-
mation about 3D geometry and relative poses between the views, but formulate
the final inference problem in 2D space of the new image instead of 3D voxel
grid. In addition to geometric geometric changes, we consider capturing changes
in environment appearance, such as posters or billboards put up or removed.

Instead of considering freely moving camera, we tackle the change detection
problem using Street View image panoramas acquired by moving vehicle. The
problem of change detection in this context is relevant for navigation and loop
closing, where areas of the city are revisited by the vehicle. These omnidirec-
tional views make the problem of image registration better conditioned despite
their lower resolution, but also pose some challenges due to dramatic appear-
ance variations and presence of large repetitive structures. The change detection
algorithms are applied only to the side views of the panorama, oriented 90o from
heading direction of the vehicle.

Outline. In Section 3 we discuss the techniques for pose estimation used to
register the views of a location acquired at different times. Section 4 describes
our algorithm for change detection, detailing the geometric, appearance and
semantic cues. We formulate the problem as optimal image labeling in Markov
Random Field framework, followed by the results and conclusions in Section 5.

3 Preliminaries

The Street View images have been acquired by standard perspective cameras
aligned in a circle. Our panorama is composed of four perspective images covering
360o horizontally and 127o vertically. We have multiple frames of each location
available. Examples of images from 3 different locations at different times and
changes we consider are in Figure 2.
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Fig. 2. Images of example locations and the same locations revisited at different time
of the day

Given a reference sequences of images Iri , ..., I
r
j and a sequence acquired at

later time Iqk , ..., I
q
l , the first stage of our algorithm recovers the relative pose

between the views in the reference sequence and recovered 3D structure. We
employ standard visual odometry pipeline to recover relative poses and one single
global scale of these views from the images. We use the wide baseline matching
using SIFT features between each consecutive image pair along the sequence.
The prismatic representation of the omnidirectional image allows us to construct
corresponding 3D rays p,p′ for established tentative point matches xq

t ↔ x
q
t+1.

The tentative matches are validated through ransac-based epipolar geometry
estimation formulated on their 3D rays, p′⊤

Ep = 0, yielding thus the essential
matrix E [15]. Improved convergence of ransac can be achieved if rays are
sampled uniformly from each of four subparts of the panorama. It has been
shown in the past that this yields more accurate estimates of pose [16] even in the
absence of bundle adjustment. We denote the two consecutive novel views Iqt and
Iqt+1 and the nearest reference view Irk . We establish correspondences xq ↔ xr

between the novel view Iqt and the closest reference view Irk and compute the pose
from the essential matrix between the views. For solving the scales of translations
between consecutive pairs of images and the reference view we set the norm of the
translation for the first novel pair to be 1. Scale of the translation is estimated by
a linear closed-form 1-point algorithm on corresponding 3D points triangulated
from the query image pair and the reference view.

Given the registered set of novel views, we compute a coarse 3D structure
of the scene. Instead of employing the full 3D dense reconstruction pipeline,
we segment the image into small superpixels and establish correspondences be-
tween each centroid of the superpixel and it’s consecutive view in the query
sequence. Due to the fact that these frames are relatively close in time and the
displacements are small, we used dense optical flow method [17] to establish the
correspondences and using the median flow of pixels in the superpixel as dis-
placement. 3D position of the superpixel centroid is then triangulated yielding a
coarse 3D model. The quality of the model can be substantially improved using
more advanced multi-view stereo reconstruction techniques. An example of 3D
reconstruction at the superpixel level can be seen in Figure 3.
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(a) (b) (c)

Fig. 3. (a) Image segmented into small watershed superpixels; (b) Bird’s eye view of
3D reconstruction of elementary superpixels; (c) Side view of the same 3D structure

4 Change Detection

Previous section discussed the components of our system for the image alignment
and a coarse 3D reconstruction. We propose to formulate the change detection
problem as an optimal labeling problem in MRF framework, where we will seek
an optimal label assignment 0 or 1 to each superpixel signifying whether the
region changed (1) or remained the same (0). We seek to maximize the posterior
probability of the labels L = {0, 1} given image observations. The label like-
lihoods and joint prior are expressed as unary and binary functions used in a
second-order MRF framework. This maximization problem is equivalent to the
energy minimization re-written in a log-space and has the following form

argmin
L

(

∑

si∈S

φU (si) + λs

∑

(i,j)∈G

φP (si, sj)
)

. (1)

where the terms φU (si) are unary potentials quantifying the amount of change
in a superpixel and φP (si, sj) measure the pairwise consistency between the
neighboring superpixels. The structure of MRF is induced by image superpixels
si. These in our case are computed by watershed segmentation on Laplacian of
Gaussian (LoG) interest points as seeds and can be seen in Figure 3(a). LoG
interest points are selected as extrema of 4 level Laplacian of Gaussian pyra-
mid described in more details [18]. This method of seed selection places interest
points densely yielding small regions when followed by watershed segmentation.
These elementary regions typically do not straddle boundaries between different
classes and naturally contain semantically meaningful object or scene primitives.
Furthermore, they dramatically reduce computational complexity of 3D recon-
struction and an MRF inference. We describe the form of unary and binary
potentials next.
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4.1 Unary Term

Geometry and Appearance. One component of the unary term quantifies
the geometric and appearance change for each superpixel. To capture the ap-
pearance of superpixel sqi in the query view Iqt , each superpixel is characterized
by SIFT descriptor di computed at the superpixel’s center. We use the 3D re-
construction of the superpixel sqi and the pose between the novel view and the
closest reference view to find the corresponding superpixel in the reference view
srj and its associated descriptor dj . As a measure of similarity dist(si, sj) we use
the cosine of the angle between the descriptor of the query superpixel si and the
superpixel sj which is nearest to the location of the reprojected centroid of si in
the reference view Ir.

φSIFT (si) =

{

exp
(

−
(1−d(si,sj))

2

2σ2

)

, if rerr(si) < τ

0.5 otherwise
(2)

where rerr(si) is the reprojection error of the 3D reconstruction of ith superpixel,
from the two consecutive views of the novel sequence. In our experiments we use
σ = 0.25 and τ = 1 pixels. This strategy for appearance transfer is similar to the
methods used for semantic labeling explored by SIFT flow [19], but the process
of finding correspondences is eased by the availability of a coarse 3D geometry.
Figure 5c shows an example visualizing different confidence values of appearance
changes. Note that darker areas of lower confidence are due to either dramatic
lighting changes or large reprojection errors errors caused by dynamically moving
objects (e.g. cars).

Semantic Labeling. In order to gather additional evidence to support the final
inference process, we propose to incorporate evidence about different semantic
labels associated with image regions. In the next section we describe our ap-
proach to semantic labeling and describe how to incorporate the evidence about
semantic labels into the final inference stage. Various approaches to semantic la-
beling with the focus on street scenes include works of [20], [21], [22] and [23]. In
the context of our domain we consider the problem of assigning semantic labels
ground, sky, building, car, tree to different regions of the image. We choose the
superpixels obtained by color based over segmentation scheme proposed in [24].

The choice of features has been adopted from [25] where each superpixel is
characterized by location and shape (position of the centroid, relative position,
number of pixels and area in the image), color (color histograms of RGB, HSV
values and saturation value), texture (mean absolute response of the filter bank of
15 filters and histogram of maximum responses) and perspective cues computed
from long linear segments and lines aligned with different vanishing points. The
entire feature vector is of 194 dimensions. In order to compute the likelihood of
individual superpixels, we use boosting [26]. In our implementation, each strong
boosting classifier has 15 decision trees and each of the decision trees has 6
nodes. The classifier was trained using randomly selected half of the 320 side
view dataset similar to [27] and [28]. The other half of the dataset is used for
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(a) (b) (c) (d)

Fig. 4. Top row: (a) Example of the color-based over segmentation using method of [24]
superpixel boundaries are marked by red color; (b)-(d) example street views. Bottom
row: Semantic labeling result for the given over segmentation and boosting classifier,
only data term is visualized. Note that due to the crude initial segmentation, several
image regions are misclassified. (e.g. shaded are of the building in (a) is misclassified
as sky (due to the same color). (c) mailboxes are classified as car. The color coding is
the following: building: yellow, car: purple, ground: green, sky: red, tree: brown.

Table 1. Category wise accuracy of boosting classifier; global and average accuracy in
% correct

System build. car ground sky tree glob. aver.

[28] 89.1 56.4 89.6 97.1 69.7 88.4 80.4

[27] 95.3 40.5 96 92.5 41.4 93.2 73.1

our 96.4 68.3 94.4 97.2 48.9 94.4 81

testing. Each pixel of an image was assigned one of the five classes or void if it
does not fall into any of the categories. Although the semantic labeling is not
the final goal of this work, we have compared the performance of the boosting
classifier and with the state of the art systems in Supervised Label Transfer [28]
and Non-parametric scene parsing [27] in Table 1. Note that despite the fact
that we do not use any MRF regularization stage, our approach outperforms
the previously proposed methods for the categories of interest. Some examples
of the results of semantic segmentation are in Figure 4.

While for the chosen categories the approach performs quite well due to rich
features and large regions of support, there are still many cases where the label
assignments are incorrect, see Figure 4 or 5. One source of errors is the local
ambiguity of the region as described by the features and another is the errors of
initial over segmentation into superpixels.
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(a) (b) (c) (d)

Fig. 5. Change detection example and ingredients. Top row: query view, reference
view, result and ground truth information. Bottom row: (a), (b) semantic labels of
the two views, (c)confidence map: distance between descriptor of a superpixel and
its reprojected counterpart in the previous view, (d) KL divergence between semantic
layout of each superpixel and its reprojected counterpart.

To quantify the amount of semantic change between two views, we use the
entire label distribution obtained for each large superpixel for both the query
view and the reference view. The output of the boosting classifier returns confi-
dence values fk(si) for each superpixel belonging to a particular class k, which
can be interpreted as probability by passing it through a sigmoid function

pk = P (l = k|f(si)) =
1

1− exp(−f(si))
.

This gives a probability distribution of labels for each superpixel pq = [p1, . . . pk]
in the query view and reference view pr = [p1, ...pk]. The amount of change can
then be related to the difference between the two distributions. Commonly used
difference is the Kullback-Leibler Divergence of pr and pq defined as

φKL(si) =
1

k

k
∑

i=1

pq(i) log
pq(i)

pr(i)
.

This difference is computed for each registered small superpixel si and its repro-
jected counterpart sj in the reference view.

The final form of the unary term then becomes weighted combination of the
semantic and the appearance information

φU (si) = αφSIFT (si) + (1− α)φKL(si) . (3)
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In our experiments the we find the optimal α by validation with respect to
the ground truth data as α = 0.7. We have a small dataset of 10 ground truth
views, from 3 different locations, where we manually annotated the regions in the
novel query views, which do not appear in the closest reference view. Ideally this
term should be determined in a data driven way as the confidence in semantic
segmentation can vary dramatically for different query views.

4.2 Pairwise Term

In our case we choose simple data driven prior based on color differences. The
joint prior or the smoothness term, is approximated by pairwise potentials as

φsmooth(si, sj) = exp
(

∑

(i,j)∈E

g(i, j)
)

, (4)

where the pairwise affinity function g is defined as

g(i, j) =

{

1− e, iff li = lj

δ + e, otherwise,
(5)

with e = exp(−‖ci − cj‖
2/2σ2), where ci and cj are 3-element vectors of mean

colors expressed in the Lab color space for i-th and j-th superpixel, respectively,
and σ is a parameter set to 0.1. The set E contains all neighboring superpixel
pairs. The smoothness term is a combination of the Potts model penalizing
different pairwise labels by the parameter δ and a color similarity based term.
The aim is on one side to keep the same labels for neighboring superpixels, and
on the other, to penalize same labels if they have different color. The scalars λs

and δ weigh the importance of the terms (set to 1 and 0.2 in our experiments).
We perform the inference in the MRF by efficient and fast publicly available

max-sum solver [29] based on linear programming relaxation and its Lagrangian
dual. Figure 6 shows some examples of the proposed change detection algorithm.
We achieved 73.5% average accuracy of the change detection, averaged over 3
different locations.

There are two sources of inaccuracies in our method. As mentioned at the
beginning we rely on a coarse 3D reconstruction, where correspondences are
established using optical flow techniques. While the small baseline makes the
problem of establishing correspondences easier there are still errors in the areas
of uniform intensities and occlusions. These errors are further propagated to the
reconstruction stage. Due to the fact that we use simple linear triangulation with-
out additional regularization stage, 3D coordinates of superpixels have errors.
These errors are propagated to novel views causing incorrect confidences in the
appearance change. Some of these issues can be tackled by more robust motion
estimation methods which explicitly model occlusion phenomena [30] or more
advanced stereo reconstruction techniques. Availability of accurate 3D model
would improve the accuracy of the reprojection stage [6]. Note also that we do
not explicitly handle dynamically moving objects in the query view pair. In case



Detecting Changes in Images of Street Scenes 599

(a) (b) (c) (d) (e)

Fig. 6. Examples results of the change detection. The top row are the new query views;
middle row are the closest views from the reference databased taken at earlier period
of time and bottom row are the results of the change detection algorithm. Columns
(d) and (e) show mistakes of the algorithm, which are due to differences in semantic
labeling shown in 4.

the extent of moving objects and their motion is small their effect on pose esti-
mation and 3D reconstruction is negligent. Additional challenge comes from the
fidelity of the semantic segmentation. While the proposed method is comparable
with the state of the art methods, it often produces incorrect labels. These unre-
liable label distributions are further propagated to the final optimization stage.
More advanced methods for semantic segmentation would further improve the
estimated label confidences.

5 Conclusions

We have presented a novel algorithm for change detection which combines geo-
metric, appearance and semantic information. Street View images are acquired
by a moving vehicle and densely sampled making the viewpoint changes between
the new and old views constrained. This makes the use of patch based descrip-
tors and their invariance properties feasible. In order to tackle the difficult ap-
pearance variations due to illumination changes, reflections and inter-reflections
we use the hypotheses generated by semantic segmentation algorithm. This al-
gorithm uses over-segmentation in to larger superpixels and exploits statistics
(features) computed over larger spatial regions. In the current approach the ev-
idence is integrated in a single global MRF inference. Further improvements
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can be achieved by using more advanced 3D reconstruction methods as well
better semantic segmentation strategies which exploit geometry and temporal
continuity.
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