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Detecting chaos and estimating the limit of prediction time in heavy-noise environments is an important
and challenging task in many areas of science and engineering. An important first step toward this goal is to
reduce noise in the signals. Two major types of methods for reducing noise in chaotic signals are chaos-based
approaches and wavelet shrinkage. When noise is strong, chaos-based approaches are not very effective, due to
failure to accurately approximate the local chaotic dynamics. Here, we propose a nonlinear adaptive algorithm to
recover continuous-time chaotic signals in heavy-noise environments. We show that it is more effective than both
chaos-based approaches and wavelet shrinkage. Furthermore, we apply our algorithm to study two important
issues in geophysics. One is whether chaos exists in river flow dynamics. The other is the limit of prediction time
for the Madden-Julian oscillation (MJO), which is one of the most dominant modes of low-frequency variability
in the tropical troposphere and affects a wide range of weather and climate systems. Using the adaptive filter,
we show that river flow dynamics can indeed be chaotic. We also show that the MJO is weakly chaotic with
the prediction time around 50 days, which is considerably longer than the prediction times determined by other
approaches.
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I. INTRODUCTION

Detecting chaos and understanding the limit of prediction
time based on experimental data analyses is an important
task in many areas of science and engineering. It is often
challenging, since experimental data can be very noisy. To
make the task amenable, an important step is to first reduce
noise in the signals. When the signals are linear, this is
a simple task since we have a variety of linear filters to
choose from to clean up the data. When the signals are
nonlinear, and especially chaotic, then the problem becomes
highly nontrivial since linear filters severely distort even
clean chaotic signals [1], let alone effectively reduce noise
from them. Thus, one must resort to either wavelet-based
denoising techniques [2–4] or chaos-based approaches for such
a purpose. Over the past two decades, there have been a number
of important algorithms developed along the latter line [5–10].
While details of those methods vary, they share a common
fundamental element: approximate the local chaotic dynamics
in a neighborhood (of size ε) of a reference point. When noise
is weak, ε can be chosen small, and the approximation to the
local dynamics can be quite accurate. When noise is strong,
however, ε has to be large and the local chaotic dynamics
cannot be accurately estimated. Consequentially, noise cannot
be effectively removed. To better detect chaos in heavy-noise
environments, one has to go beyond chaos-based approaches
for reducing noise. In this work, we propose a nonlinear
adaptive denoising algorithm and show that it recovers chaotic
signals in heavy-noise environments better than chaos-based
and wavelet-based approaches.

In the remainder of the paper, we first describe our adaptive
denoising algorithm, then compare its effectiveness in reduc-
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ing noise with wavelet- and chaos-based approaches, using the
chaotic Lorenz data superimposed by strong Gaussian noise
as an example. We then apply our algorithm to detect chaos in
river flow dynamics and the Madden-Julian oscillation (MJO),
which is one of the most dominant modes of low-frequency
variability in the tropical troposphere and affects a wide range
of weather and climate systems.

II. ADAPTIVE DENOISING ALGORITHM

Our nonlinear adaptive denoising algorithm works as
follows. First, it partitions a time series into segments (or
windows) of length w = 2n + 1 points, where neighboring
segments overlap by n + 1 points. Thus, the time scale
introduced by the algorithm is n + 1 sample points. For each
segment, we fit a best polynomial of order K . Note that K = 0
and 1 correspond to the piecewise constant and linear fitting,
respectively. The fitted polynomials for the ith and (i + 1)th
segments are denoted by yi(l1), yi+1(l2), respectively, where
l1,l2 = 1, . . . ,2n + 1. Note the length of the last segment may
be smaller than 2n + 1. We define the fitting for the overlapped
region as

y(c)(l) =w1y
i(l + n) + w2y

i+1(l), l = 1,2, . . . ,n + 1 (1)

where w1 = [1 − (l − 1)/n], and w2 = (l − 1)/n can be
written as (1 − dj/n), j = 1,2, where dj denotes the distances
between the point and the centers of yi and yi+1, respectively.
This means the weights decrease linearly with the distance
between the point and the center of the segment. Such a
weighting ensures symmetry and effectively eliminates any
jumps or discontinuities around the boundaries of neighboring
segments. In fact, the scheme ensures that the fitting is
continuous everywhere, is smooth at the nonboundary points,
and has the right (left) derivatives at the boundary points.
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To implement the algorithm, let us consider a curve
defined by (xi,yi),i = 1, . . . ,w = 2n + 1. Let its least-squares
polynomial fit be (xi,gi),i = 1, . . . ,w, where the polynomial
is

g(x) = b0 + b1x + b2x
2 + · · · + bKxK, (2)

where K is the polynomial order. Assuming a constant
sampling interval δx, then we can write each xi as

xi = iδx + α.

We can always choose α to make i = −n, − n +
1, . . . ,0,1,2, . . . ,n. Then, expanding xj , j = 1, . . . ,K , and
rearranging the terms, we can rewrite the polynomial as

g(i) = a0 + a1i + a2i
2 + · · · + aKiK. (3)

So, the problem becomes to determine the vector (a0, . . . ,aK )
such that

n∑
i=−n

[g(i) − yi]
2

is minimized. The solution is given by [11]

(AT A)a = AT Y or a = (AT A)−1(AT Y ), (4)

where A is the Vandermonde matrix with elements

Aij = ij , i = −n, − n + 1, . . . ,0,1,2, . . . ,n,
(5)

j = 0, . . . ,K, Y = (y1, . . . ,yw)T .

To summarize, we can first calculate [(AT A)−1AT ] and save
it. Then, for each Y , we can easily get a using Eq. (4), and get
the desired polynomial g(i) using Eq. (3). In turn, when we
slide the window it gives yi+1 and yi used in Eq. (1). Applying
Eq. (1), we then obtain the overall trend.

Three comments are in order. (i) The method contains two
free parameters, K , the order of the polynomial, and w =
2n + 1, the segment (or window) length. By properly choosing
K and making w small enough, the fitting can be perfect, in the
sense that the difference between the data and the fitting (which
may be called the residual data) can be exactly zero. This
property ensures that clean chaotic signals may not be distorted
at all when the adaptive filter with appropriate parameters is
applied. (ii) The smoothness of the method dictates that it
may not be used to process data generated by discrete maps.
On the other hand, it implies that it becomes more effective
when the sampling rate increases. The latter property is quite
advantageous, since the sampling rate is often chosen much
higher than the Nyquist rate. In fact, after denoising one may
downsample to save space, if file size is an issue. (iii) When
the overall fitted curve is treated as the desired signal, then
the filter is lowpass. When the residual data is treated as the
desired signal while the overall fitted curve is the background
or trend signal, then the filter is highpass. If one chooses two
window sizes w1 < w2, and treats the difference between the
two overall fitted curves as the desired signal, then the adaptive
filter is bandpass.

How do we choose the parameters K and w when denoising
an experimental time series, where a true clean signal is
unknown? One key is to realize that w cannot be greater
than 1/2 of a local period of the variation of the signal,

if one does want to trace out the detailed variations of the
signal. Another important observation is that when the signal
is highly nonlinear, then K � 2. However, a large K may not
be recommended since polynomials may not be well defined
when w is small. After realizing these observations, one can
use the following rule to determine K and w. First, fix K to be
2, then check how the variance of the residual data varies with
w. A generic pattern of the variation would be that variance
(i) increases with w when w is small, (ii) flattens out when w

keeps increasing, and (iii) increases sharply again when w is
further increased. Behavior (i) corresponds to almost perfect
fitting, and thus little denoising. Behavior (iii) indicates that
the window size is too big such that local variations of the
signal have been largely removed. Therefore, the desired w

should be in the range of w corresponding to behavior (ii).
Such an analysis can be repeated when K is gradually
increased. Further increasing K becomes unnecessary when
the variation of the variance of the residual data changes little.
Our experience is that usually K = 2 or K = 3 is already
sufficient. This procedure will be made more clear when
we discuss how to remove noise from the chaotic Lorenz
data.

To illustrate the use of the adaptive filter, we consider the
Lorenz system

dx/dt = −σ (x − y),

dy/dt = −xz + γ x − y, (6)

dz/dt = xy − bz,

with σ = 10, γ = 28, and b = 8/3. The system is solved
using a fourth-order Runge-Kutta method. The x component
is recorded with a sampling time of 0.01. To facilitate
computation of invariant measures, including the Lyapunov
exponent and fractal dimension, we have recorded a time series
of length 6 × 104 points. Gaussian white noise of zero mean
is added to the data such that the signal-to-noise ratio (SNR)
of the resulting data is 13.89 dB, where SNR is defined as ten
times the logarithm of the ratio of the signal and noise variance,
SNR = 10 log10 σ 2

x /σ 2
n . The phase diagrams of the clean and

noisy data are plotted in Figs. 1(a) and 1(b), respectively.
Obviously, noise is very strong.

We have denoised the data using the adaptive filter.
Following the general rule for determining the parameters K

and w, we have computed the variance of the residual data
versus the window size w with K = 2, 3, and 4. The results
are shown in Fig. 2 where, for convenience, the variance
of the residual data is normalized by the variance of the
original noisy data. For K = 2 and 3, we indeed observe the
three behaviors of variation discussed earlier. In particular,
we observe that behavior (ii) is better defined with K = 3.
When K is increased to 4, behavior (ii) is no longer improved,
while behavior (i) is degraded. Therefore, we have chosen
K = 3. It turns out that a range of w, from 25 to 35, all yield
good denoising results, in fact, this is the underlying reason
that dyadic wavelet decomposition can effectively remove
noise, as we will see shortly. The phase diagram with K = 3,
w = 33 is shown in Fig. 1(e). Clearly, noise has been removed
significantly.

To appreciate the effectiveness and limitations of the
adaptive algorithm, we first compare its denoising performance
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FIG. 1. Phase diagrams (with L = 12) for (a) the clean Lorenz signal, (b) the noisy Lorenz signal, (c) the signal filtered by wavelet
denoising, (d) the signal processed by chaos-based projective filtering, and (e) the signal filtered by the proposed adaptive algorithm. The
sampling time is 0.01.

with chaos-based approaches. It is generally thought that
most chaos-based denoising algorithms perform similarly
[5]. Here, we compare our adaptive denoising with the fast
nonlinear projective filtering developed by Schreiber and
Richter [12], as it has some additional features that are not
shared by other chaos-based algorithms, such as real-time
filtering of a data stream, causality, and capability of dealing
with nonstationarity. It works as follows. Given a time series
x(1),x(2), . . ., one first constructs vectors

Xi = {x(i),x(i + L),...,x[i + (m − 1)L]}, (7)

where m and L are the embedding dimension and the delay
time, respectively. Then, for an arbitrary vector Xn in the
reconstructed phase space, one finds all the past points Xn′

that are within a distance ε of Xn and are observed no longer
than �n time steps ago. These are denoted by

Un
�n = (Xn′ : n − �n � n′ < n,‖Xn′ − Xn‖ < ε). (8)

The second major step of the algorithm is to estimate the
local structure of the dynamics around Xn by local principal
components. In the third step, one projects Xn − X

n
, where

X
n

is basically the center of mass of Un
�n with some

correction, onto the reconstructed Q-dimensional manifold
and obtains the project vector X̂n, and then extracts the desired
component.

Using the code in the Tisean software package [13], we
have denoised the noisy Lorenz data by projective filtering.
The resulting phase diagram is shown in Fig. 1(d). While
some noise has indeed been filtered out, it is clear that
most of the noise has remained. The reason is, as we have
pointed out, the noise is so strong that the neighborhood size
has to be chosen very big. Consequentially, most of noise
remains.

Next, we compare our algorithm with wavelet shrinkage.
The basic idea is to take the wavelet transform of the noisy data,
threshold the resulting wavelet coefficients, and, finally, take
the inverse wavelet transform to obtain an estimation of the
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FIG. 2. (Color online) Normalized variance of residual data vs.
window size w for different polynomial order K for the noisy Lorenz
data.

signal. For details, we refer to [2–4,14]. In particular, three
wavelet thresholding algorithms of [3] are examined here.
For convenience, they are denoted wavelet-1, wavelet-2, and
wavelet-3, respectively. We have found that the three wavelet
thresholding algorithms barely differ when removing noise
from the Lorenz data (illustrated in Fig. 3 below). The resulting
phase diagram is shown in Fig. 1(c). We observe that it is
much better than chaos-based projective filtering, as shown in
Fig. 1(d). This may explain why wavelet denoising has been so
widely used. Nevertheless, the phase diagram resulting from
adaptive filtering shown in Fig. 1(e) is better than Fig. 1(c),
indicating that the adaptive algorithm is even more effective
than the wavelet-based approaches.

To better quantify the difference between the three types of
filtering techniques, we have computed the root-mean-square
error (RMSE) defined by

RMSE =
√√√√ 1

N

N∑
i=1

[s(i) − ŝ(i)]2, (9)
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FIG. 3. (Color online) RMSE vs. SNR curves for the three
types of filters examined here. In particular, three types of wavelet
thresholding [3] have been examined.
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where s(i) and ŝ(i) are the clean and denoised data, respec-
tively. The variations of the RMSE with SNR for these methods
are shown in Fig. 3. Clearly, the adaptive algorithm is the best.

While the RMSE is a convenient metric to quantify the qual-
ity of denoising, for a chaotic signal it is important to examine
how much chaotic signatures, including fractal dimension and
Lyapunov exponents, are recovered after denoising. We first
examine the fractal dimension of the Lorenz signal. It is a
geometrical quantity characterizing the minimal number of
variables that are needed to fully describe the dynamics of a
motion. It is often estimated by the correlation dimension D2

using the Grassberger-Procaccia’s algorithm [15]

C(ε) ∼ 1

N ′2

N ′∑
i,j=1

θ (ε − ‖Xi − Xj‖) ∼ εD2 , (10)

where C(ε) is called the correlation integral, θ is the Heaviside
step function, Xi and Xj are reconstructed vectors, N ′ =
N − (m − 1)L is the number of points in the reconstructed
phase space, and ε is a prescribed small distance. Figure 4(a)
shows the variation of D2(ε) ln ε for the clean, noisy, and
filtered Lorenz data. We observe that for the clean data there
is a plateau with a value consistent with the correlation
dimension of 2.02. For the noisy data, a plateau is hardly
detectable. Projective filtering, while slightly recovering the
plateau, is not very effective. The wavelet approach does
better, however, it is still less effective than the adaptive
algorithm.

Next, we consider the Lyapunov exponent (LE). It is often
denoted by λ1 and is a dynamical quantity. It characterizes
the exponential growth of an infinitesimal line segment ε0

(i.e., εt ∼ ε0e
λ1t ,ε0 → 0). While the classical Wolf et al.’s

algorithm [16] does a good job in estimating LE from clean,
low-dimensional, chaotic signals, estimation of LE from noisy
chaotic data is a different story: it even returns a positive
value for random noise, thus interpreting random noise as
chaos [17,18]. To better characterize dynamics of various
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FIG. 5. Time series of (a) raw Southern Oscillation Index (SOI)
and filtered data using (b) moving average, (c) low-pass filter. For the
details of these linear filters, see Kawamura et al. [25].

kinds we have developed a multiscale complexity measure,
the scale-dependent Lyapunov exponent (SDLE) [14,19–21].
It is defined in a phase space through consideration of an
ensemble of trajectories. The initial distance between two
nearby trajectories is denoted by ε0, and their average distances
at time t and t + �t are denoted, respectively, by εt and εt+�t ,
where �t is small. The SDLE λ(εt ) is defined by

εt+�t = εte
λ(εt )�t or λ(εt ) = ln εt+�t − ln εt

�t
(11)
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FIG. 6. A segment of the Umpqua River streamflow data.

or, equivalently, by

dεt

dt
= λ(εt )εt or

d ln εt

dt
= λ(εt ). (12)

For computational details of the SDLE, we refer to Refs. [14,
19–21]. Note that for clean chaotic signals [14,19,20], λ(ε) ∼
λ1 on small scales. Such plateaulike behavior is evident in
Fig. 4(b). When there is noise, the plateau shrinks, and on
the smallest scales λ(ε) ∼ −γ ln ε, where γ > 0 quantifies
the speed of loss of information. From Fig. 4(b) we observe
that the plateaus in Fig. 4(b) correspond to those in Fig. 4(a)
very well, and the plateau is better recovered by the adaptive
algorithm than by the chaos-based projective filtering or
wavelet shrinkage.

To facilitate discussions below, we note that the SDLE can
detect chaos in high-dimensional systems such as the Lorenz
model with a dimension around 27 [22], and intermittent chaos
[23]. Moreover, 1/λ(ε) is closely related to the error doubling
time [22,24], and

εt = ε0e
∫ t

0 λ(εt )dt

is the very error growth curve most commonly calculated
in ensemble forecasting [22]. In particular, when εt reaches
a steady state, we may say that the system is no longer

FIG. 7. (a) ln ε vs. time and (b) λ(ε) vs. ε for the filtered data.
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FIG. 8. Original and filtered MJO index data.

predictable. In other words, the time for εt to reach saturation
is the prediction time.

III. GEOPHYSICAL APPLICATIONS

Geophysical data often are highly nonlinear and noisy.
To determine whether geophysical processes are chaotic or
not, considerable efforts have been made to reduce noise
in observational geophysical data so that data are amenable
for analysis using chaos theory. It is now generally thought
(see, e.g., Refs. [25,26]) that linear filters remove significant

parts of the nonlinear systems. Two examples are shown in
Figs. 5(b) and 5(c). This, of course, is consistent with the
fundamental observation that linear filters are not suitable
for chaotic signals [1]. Chaos-based nonlinear filtering does
not work either, as it generates many physically implausible
straight-line segments [25,26]. In the following, we shall only
focus on reducing noise from geophysical data using the
proposed nonlinear adaptive filter and not take linear filters
or other filters into consideration.

A. Detecting chaos in river flow dynamics

River flow dynamics are highly complicated, having heavy-
tailed distributions [27], multifractal properties [28], and
strong seasonal cycles. As an example, Fig. 6 (dashed line)
shows the streamflow data of the Umpqua river, which is on
the Pacific coast of Oregon in the United States. We observe
that while the annual cycle is easily detectable, there are higher
frequency variations.

So far, it has been debated whether river flow dynamics can
be chaotic or not [29,30]. There have been efforts to reduce
noise in hydrological time series using chaos-based noise
reduction techniques [26]. However, the results are far from
being acceptable [26]. We have tried our adaptive algorithm to
reduce noise in the data shown in Fig. 6 using a second-order
polynomial with a window size of 17 days. The filtered data
is shown in the figure as the solid line. We then calculate
error growth curves and the SDLE. The results are shown in
Figs. 7(a) and 7(b), respectively. Clearly, we observe that for
a considerable amount of time the error ε grows with time
exponentially [Fig. 7(a)]. Consequently, a fairly large plateau
region in the SDLE results, as is evident in Fig. 7(b). This
suggests that river flow dynamics can indeed be chaotic.

B. Prediction time for the Madden-Julian Oscillation

As the second application, we consider the Madden-Julian
oscillation [31], which is one of the dominant modes of
low-frequency variability in the tropical troposphere [31,32].
The MJO affects a wide range of tropical weather and climate
[33–37] as well as extratropical circulation [38–40]. Determin-
ing the limit of prediction of the MJO is not only important for
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FIG. 9. (Color online) Power spectral density (PSD) for the original and filtered MJO index data.

046210-6



DETECTING CHAOS IN HEAVY-NOISE ENVIRONMENTS PHYSICAL REVIEW E 83, 046210 (2011)

FIG. 10. Longitude-time plots for the original (top) and filtered (bottom) MJO index data showing propagation of wave motions.

the development of suitable models for the MJO but also may
help understand many other weather and climate systems.

Recent estimates of the MJO predictability are ∼15 − 20
and ∼25 − 30 days, by statistical and dynamical models,
respectively [41]. To better determine the limit of predictability
of the MJO, there have been strong advocates for standardized

observation-based diagnostics to evaluate objectively modeled
simulations of the MJO [42]. Moreover, several empirical-
orthogonal function-based (EOF-based) MJO indices have
been developed for both operational and research purposes
[43–46]. In particular, the NOAA CPC MJO indices [46],
which are five-day mean indices based on the first extended
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FIG. 11. (Color online) Phase diagram for the bandpassed MJO
index data (denoted as x ′) at 80◦E of the Equator.

EOF of 200-hPa velocity potential anomalies from equator-
ward of 30◦N and have ten components around the tropical
belt, have been used for real-time monitoring of the MJO.
Those MJO index data are chosen for the present study for the
purpose of determining the prediction time of the MJO.

For illustration purposes, Fig. 8(a) shows the MJO index
data at longitude 80◦E. Its power-spectral density (PSD) is
shown in Fig. 9(a). We observe a broad frequency peak with its
center slightly smaller than 0.02 (one per day). This translates
to a period of about 60 days. This is the defining feature
of the MJO. To further illustrate the propagation behavior
of the MJO, Fig. 10(a) shows the time-longitude plot. We
observe that the time interval between the major stripes is
about 60 days, consistent with the frequency (or period) shown
in Fig. 9(a). Figure 10(a) however, also shows many faster
variations. They are caused by convective events in the tropical
troposphere and are not part of the MJO. To determine the
intrinsic predictability of the MJO, those features should be
removed. Furthermore, seasonal effects may also incur bias in
the estimation of the MJO prediction time, and thus should also
be removed. These considerations motivate us to bandpass the
index data with our adaptive filter parameters corresponding to
27.5–82.5 days and K = 2. The trend signals corresponding
to 27.5 days and 82.5 days are shown in Figs. 8(b) and 8(c),
respectively. The final bandpassed signal is thus the difference
between them. Its PSD is shown in Fig. 9(b). We observe
that now the spectral peaks become sharper. Moreover, we
observe a number of harmonics of the basic MJO period of
about 60 days. Such nice periodicities are also reflected as
the circular structure in the phase diagram shown in Fig. 11.
The time-longitude plot based on the bandpassed index data is
shown in Fig. 10(b). Now we observe very well-behaved wave
propagation phenomenon.
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FIG. 12. (Color online) (a),(b) λ(ε) vs. ε and ln ε vs. time curves
for the MJO index data; (c), (d) λ(ε) vs. ε and ln ε vs. time curves for
the bandpass filtered MJO index data.

We are now ready to estimate the prediction time of the
MJO. Figure 12(a) shows the SDLE for the raw MJO index
data. Its integration, as pointed out earlier, is equivalent to the
error growth curve [22] and is shown in Fig. 12(b). We only
observe λ(ε) ∼ −γ ln ε in Fig. 12(a). We also observe that
the error growth curve saturates around t ∼ 20 days. This is
the limit of prediction time for the raw MJO index data, fully
consistent with the 20-day prediction time found by model
simulations [41]. After we bandpass the data, the SDLE curve
[Fig. 12(c)] totally changes—the λ(ε) ∼ −γ ln ε scaling has
become clearer with a smaller γ , and, more importantly, a
narrow plateau emerges with the value close to 0.01 per day
(or, equivalently, 0.5 per cycle of the MJO). Correspondingly,
we observe two types of behavior in the error growth curve
in Fig. 12(d)—an initial rapid loss of predictability regime,
with a time scale close to 20 days, followed by a weak chaos
regime characterized by a well-defined exponential growth in
the error curve with a time scale about 30 days. Note that
Figs. 12(c) and 12(d) vary little along the Equator, indicating
that the MJO is a very coherent event. We thus conclude that
the MJO is weakly chaotic with a prediction time around
50 days.

Note that a similar effort of determining the predictability
of the MJO has been made by Ding et al. [47], where
the best linear filter, the 30–80-day bandpass Lanczos filter,
is used to preprocess the data. The predictability reported
there is about 35 days, considerably shorter than that found
here.

IV. CONCLUDING DISCUSSIONS

To better detect chaos in heavy-noise environments and
more accurately estimate the prediction time of dynamical
systems, we have proposed a nonlinear adaptive denoising
algorithm for preprocessing noisy data. Using heavily con-
taminated Lorenz data, we have shown that it is more effective
in removing noise than chaos-based projective filtering and
wavelet shrinkage. We have further applied the nonlinear
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adaptive filter to study whether river flow dynamics can be
chaotic, and the predictability of the MJO, one of the most
important phenomena in atmospheric science. We have found
that river flow dynamics can indeed be chaotic, and that
the MJO is weakly chaotic with a prediction time close to
50 days, which is much longer than that found by other
approaches.

Finally, we emphasize that although we considered the
Lorenz data contaminated by Gaussian noise as an example,
the adaptive filter does not need to assume noise to be Gaussian.

This has been made evident by the effectiveness of our method
in detecting chaos in river flow dynamics and determining the
prediction time of the MJO—the noises there are obviously
not simply Gaussian.
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