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Summary

Data sources with repeated measurements are an appealing resource to understand the relationship 

between changes in biological markers and risk of a clinical event. While longitudinal data present 

opportunities to observe changing risk over time, these analyses can be complicated if the 

measurement of clinical metrics is sparse and/or irregular, making typical statistical methods 

unsuitable. In this article, we use electronic health record (EHR) data as an example to present an 

analytic procedure to both create an analytic sample and analyze the data to detect clinically 

meaningful markers of acute myocardial infarction (MI). Using an EHR from a large national 

dialysis organization we abstracted the records of 64,318 individuals and identified 4769 people 

that had an MI during the study period. We describe a nested case-control design to sample 

appropriate controls and an analytic approach using regression splines. Fitting a mixed-model with 

truncated power splines we perform a series of goodness-of-fit tests to determine whether any of 

11 regularly collected laboratory markers are useful clinical predictors. We test the clinical utility 

of each marker using an independent test set. The results suggest that EHR data can be easily used 

to detect markers of clinically acute events. Special software or analytic tools are not needed, even 

with irregular EHR data.
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1. Introduction

Electronic health records (EHRs) constitute a relatively new data source that are being used 

to understand and predict near-term clinical events (Goldstein et al., 2014). They are 

characterized by having dense, serial information on patients receiving clinical care, 
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allowing for a granular view of a patient’s evolving health status. A National Heart Lung 

and Blood Institute working group recently prioritized the assessment of near term risk of 

acute cardiac events (Eagle et al., 2010). Specifically the group focused on the use of 

biomarkers to make such assessments.

Before developing predictive models, it is first necessary to detect potentially useful 

markers. If the biomarker were measured once, a typical approach to detect such markers 

would be to perform a logistic regression, regressing the probability of an event onto the 

marker and other covariates, such as:

(1)

where β1 would be the parameter of interest, representing whether changes in the marker 

change the probability of the event of interest. Of course, one of the key advantages of EHR 

data is that markers are measured over time. While this allows for a more sophisticated view 

of changes it also makes the analysis more challenging. The analysis can be simplified by 

averaging or summarizing laboratory values across time but this may result in a loss of 

information. Instead we ideally want to consider variation in the marker over time. We can 

reform model (1) as:

(2)

where now we are integrating over multiple time points, t. To fit such a model we can 

consider discretizing time, however, depending on the number of time points, this may result 

in a very high dimensional model. Complicating matters further is that EHR measures are 

taken irregularly and sometimes sporadically, meaning patients generally do not have 

laboratory measures at comparable time points and frequencies. This makes standard 

analytic techniques, which often require well-aligned measurements, challenging.

The difficulty of estimating model (2) is reflected in the complex theoretical work and 

software that others have developed to fit it (James, 2002; Yao et al., 2005; Gertheiss et al., 

2013). James used a two-stage errors in variable model with cubic splines to estimate 

individual curves where the dimension of the spline is larger than the observed observations. 

Gertheiss et al. took a modified imputation approach to get measurements on the same time 

scale. Yao et al. utilized functional PCA to estimate the curves. Furthermore, while analyses 

of the form of model (2) have appeal from a predictive standpoint, they do not necessarily 

address the specific question of interest: namely is a given measure a clinically useful 

biomarker of an impending event. Another way of phrasing the question is: does a given 

laboratory measure show different and detectable patterns among those that experience an 

event? Moreover, we may ask, can the biomarker history, through a given time point, 

stratify risk in clinically meaningful ways?

With these questions in mind, we suggest a relatively straightforward solution to detecting 

clinically useful biomarkers. The model we propose is flexible enough to not only answer a 

series of questions about the utility of a laboratory measure to serve as a predictive marker, 

but also to allow for the detection of these relationships using established statistical 
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methods. We illustrate this approach using EHR data from patients with end stage renal 

disease (ESRD) undergoing hemodialysis (HD). Patients undergoing outpatient HD are at 

increased risk of cardiac events, particularly myocardial infarction (MI). Cardiac disease 

accounts for 43% of all cause mortality with approximately 20% due to MI (Herzog, 1999). 

Moreover, patients receiving outpatient HD typically have routine and regularly scheduled 

monitoring of several laboratory values for months or years at a time. Therefore, patients 

undergoing HD represent an ideal population to study the role of repeated laboratory 

measures in the detection of an impending MI.

The rest of the article is arranged as follows: in Section 2 we describe the available data. 

Since one of the challenges in working with EHR data is appropriately selecting an analytic 

cohort, we also describe a generally useful sampling design. In Section 3, we walk through 

our proposed analysis, which consists of a series of goodness-of-fit tests. In Section 4, we 

present the analytic results and conclude in Section 5.

2. Data Description & Sample Selection

Working with EHR data presents unique opportunities and challenges. We first note that 

EHR data are inherently observational, implying all of the caveats and limitations of non-

experimental data. The primary strength and challenge of EHR data are its longitudinal 

nature, with individuals having multiple measurements over time. While presenting the 

opportunity to observe changes over time—the primary aspect of the present analysis—this 

can become complicated since measurements are often taken irregularly. In some EHRs—

though not the current one—the presence of a measure may serve as a risk indicator itself, 

for example, a patient feeling ill and visiting a doctor, producing a measurement in the EHR.

The first challenge is how to appropriately sample an analytic cohort from the EHR. In the 

present study, we are interested in identifying potential markers of acute MI. This lends 

itself well to a retrospective analysis: identify those people with an MI and observe how 

different markers change before the event. The subtler question is who is the comparative 

group (i.e., controls) and at what point in time should they be analyzed. Below we describe 

the data available, how we define the cases and more importantly how we sample the 

controls.

2.1. Data Source

We used two data sources in the analysis: the United States Renal Data System (USRDS) 

and the EHR from DaVita, Inc. The USRDS is a national registry that includes almost all 

persons with ESRD (USRDS, 2013). It is created from medical claims submitted to 

Medicare, which is mandated by law to pay for the healthcare of the majority of patients 

with ESRD, regardless of the age of patients at the start of their HD treatments. DaVita Inc. 

is the second largest chain of outpatient dialysis centers in the country. Their EHR contains 

detailed session level information on patient dialysis session, laboratory values, 

hemodynamic metrics, and more. We used an anonymous crosswalk provided by the 

USRDS Coordinating Center to link the two datasets. This was conducted under a Data use 

Agreement between the National Institute of Diabetes and Digestive and Kidney Diseases 

and one of the authors (WCW).
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2.2. Selecting the Sample

One can consider an EHR as analogous to a large prospective cohort where only a small 

fraction of the cohort will experience an event, each at different time points. With this in 

mind, we describe a sampling approach motivated from nested case-control designs to 

sample appropriate controls along with eligible cases (Wacholder et al., 1992). We illustrate 

this process in Figure 1.

2.2.1. Eligible sample—Any individual who initiated HD between January 1, 1995 and 

December 31st, 2008 and was a patient at a DaVita, Inc., dialysis facility between January 

1st, 2004 and December 31st, 2008 was eligible for study. Using the USRDS payer history 

file, we retained only those patients who were aged ≥ 67 at the initiation of dialysis and had 

at least 2 years of uninterrupted fee-for-service Medicare coverage before their reported first 

dialysis (first service date). Selecting this subset of individuals has two advantages. First we 

can observe the health-care claims and associated diagnoses and procedures before the onset 

of ESRD. This provides us with increased confidence that we are detecting an incident MI 

and not a claim related to a previous MI. Second, we can be near-certain that all health 

claims are recorded at the time of initiation of dialysis, without having to apply an eligibility 

window. We excluded all individuals with a history of an MI, defined through the presence 

of any of the following ICD-9 codes: 410.** and 412. To be as sensitive as possible, patients 

with any inpatient code or outpatient codes were removed from analysis.

2.2.2. Cases—Cases were subjects who developed incident MI between 2004 and 2008 

while receiving ongoing dialysis treatment at DaVita, Inc. We defined a case as “active” if a 

laboratory measurement was recorded within 14 days of the qualifying event. Events were 

identified from either (a) the presence of an ICD-9 code of 410.** during a hospitalization 

(positive predictive value 96.9% (Petersen et al., 1999)) or (b) a primary cause of death 

being reported as due to MI (Code 2 or 23) on the death notification record to Medicare.

2.2.3. Controls—Sampling of controls is the primary challenge in designing retrospective, 

longitudinal analyses. For this analysis we suggest a nested case-control design (see below 

for other design considerations). For nested case-control designs, we want to sample a 

control whenever someone becomes a case, referred to as incident density sampling. To 

avoid potential bias, controls are sampled with-replacement meaning that it is possible for a 

control to be sampled more than once, or serve as both a case and control (Lubin and Gail, 

1984; Robins, Gail, and Lubin, 1986). For example, a patient who was diagnosed with 

ESRD on 7/1/2006 and had an incident MI on 5/1/2008, would be eligible to serve as a 

control during the period preceding the MI.

In the EHR setting, there are two potential time domains upon which to sample: calendar 

time and clinical time, that is, the time since start of maintenance/chronic dialysis treatment 

for ESRD (also called “vintage”). We decided to sample controls based on calendar time and 

adjust for vintage. For all cases during a calendar month, an equal number of controls were 

sampled, creating an index date. While it is typical in nested case-control design to sample 

matched controls we chose not to perform such matching to avoid the additional 

complications (Cai and Zheng, 2012), but instead simply adjusted for covariates.
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2.2.4. Sample split—To assess the proposed procedure, we divided the sample into a 

discovery set consisting of incident events and corresponding controls between 2004 and 

2007 and an independent validation set consisting of incident events and controls within 

2008.

2.3. Selecting Variables

2.3.1. Predictors of interest—Through the DaVita EHR, data were abstracted on 11 

regularly collected laboratory measures: albumin, calcium, CO2, creatinine, ferritin, 

hemoglobin, iron saturation, phosphorous, platelet count, potassium, and white blood cell 

count. It is important to note that these laboratory measures are collected per-protocol and 

not based on a patient’s clinical characteristics. Table 1 lists the predetermined acceptable 

ranges and approximate frequency of collection. Any laboratory measures that fell outside 

these ranges were removed.

In order to analyze changes in laboratory measures over time, laboratory values for up to 

180 days preceding the index data were abstracted. Patients were not required to have a 

minimal number of laboratory measures.

2.3.2. Covariates—Since we are not interested in estimating the direct association of the 

given laboratory measure but simply its utility as a biomarker, a minimal number of 

covariates were included in the analysis. Specifically, analyses were adjusted for patients 

age at time of ESRD, gender, race (Caucasian, African American, Hispanic, Asian, and 

other), and vintage (time since ESRD).

3. Analytic Approach

3.1. The Statistical Model

The goal of this study is to present a means of detecting clinically relevant laboratory 

markers of an impending clinical event. Therefore, in contrast to model (2) we are not 

interested in estimating the probability of MI given a sequence of laboratory measures, but 

instead modeling how the sequence of laboratory measures may differ between cases and 

controls. We consider that person i has ni measurements of a given laboratory measure, at 

times ti1, ti2, …, tini. We can fit a general model of the form:

(3)

The outcome variable is the laboratory measure, measured at multiple time points t. 1MI is 

an indicator for whether the person has an MI with 11−MI the complement (i.e., case or 

control). f represents a general function to flexibly estimate changes in laboratory measures 

over time. Therefore, cases and controls are allowed to have different patterns over time. 

Finally, additional covariates (potentially time varying) are represented by W.

The primary analytic question is how to represent the function, f. Following the work of 

others we use regression splines, using a q-dimensional vector of basis functions s(t), and 

hence f(t) = s(t)′ γ. In our representation s(t) is specified using k = q − 1 knots. s(t) would be 

evaluated ni times, filling the rows of a ni × q basis matrix, where ni is the number of 
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observed laboratory measurements as above. These are produced for each person, and 

combined into an overall spline model matrix. To fit the model we estimate the parameter 

vector γ, a q-dimensional coefficient vector. Different spline formulations can be used, we 

consider truncated cubic power splines with basis functions:

evaluated at each knot, ξk. We note the lack of intercept. While natural splines are more 

commonly used over truncated power splines, the truncated power spline basis has the 

advantage of being linear to the left of the leftmost boundary knot while non-linear to the 

right. This is a feature we illustrate and exploit below. We placed K = 5 knots at, 150, 90, 

60, 30, 14 days prior to the index date. By placing more knots closer to the index date we are 

able to capture more subtle changes directly prior to that date. Therefore, the final model is:

(4)

Here, we have indexed by person i for record j. Each individual has multiple observations so 

we include a random intercept, αi. Since 1MIi is an indicator function, the spline basis for the 

controls is represented by S′ (tij)γ and the basis for the cases S′(tij)γ + S′(tij)γ*, allowing for 

two separate functional representations for cases and controls. Model (4) is easily estimated 

as a linear regression with a random intercept, a spline basis for the timing of the laboratory 

measurements, and an interaction term between the spline basis and case-control status.

3.2. Criterion for Clinically Meaningful Differences

Using model (4) as a general form, we conduct a series of goodness of fit tests to assess a set 

of clinical questions. To motivate these criterion we consider the prospective scenario where 

one is tracking a patient’s laboratory measure over time and wants to determine whether the 

pattern indicates a risk of MI. Therefore, the goal of the analysis is to detect those laboratory 

measures that can be so used.

The first question is whether the trajectory of laboratory values differs between cases and 

controls. For this assessment the primary parameter of interest is the vector γ*, which 

represents the difference between the curves for those that experience an MI compared to 

those that do not. To formally test whether the two curves are different we perform a 

likelihood ratio test comparing the full model to a nested model that does not contain γ*, 

that is, a model where the only difference in laboratory measures between those that 

experience an MI and those that do not is represented as a shift through β1. A rejection of the 

null hypothesis that the fits are equivalent, indicates that the laboratory measures differ over 

time between cases and controls.

A second consideration is the trajectory of a marker over time. Specifically, for a measure to 

have clinical utility, we would expect that those not experiencing an event (controls) should 

present predictable and stable patterns. Conversely, the values among those about to 

experience an event (cases) should show a deviation from this stable pattern. While we 

could hypothesize various “stable” patterns, for simplicity we consider linearity to imply 
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stability. Therefore, the laboratory measures for controls should be linear and for cases non-

linear (i.e., curved). To assess this, we can fit model (4) among cases and controls 

separately. Therefore, β1 and γ* are removed from the model and the parameter of interest is 

the spline vector γ:

(5)

This fit is compared to a reduced model that only includes a linear term for time. To call a 

laboratory measure a potentially good marker we want to reject the null hypothesis among 

the cases and fail to reject the null hypothesis among the controls, that is, cases should be 

non-linear and controls should be linear.

This establishes three criterion to declare a laboratory marker clinically useful:

1. The patterns over time should be different between cases and controls

2. Cases should show non-linearity over time

3. Controls should be linear over time

For each of the laboratory tests we considered a p-value less than 0.05 to indicate 

significance and performed a Bonferroni correction across the set of three tests. This was 

repeated separately for each of the 11 markers.

Among the laboratory measures that passed these criterion, a second question of interest is: 

how long before an event can changes be detected? We note that truncated power splines are 

linear to the left of the left-most (earliest in time) knot. We illustrate this concept using 

simulated toy data in Figure 2. We are fitting a non-linear function (in black) placing 

successive knots along the x-axis. We note, that to the left of the first knot (indicated by a 

dashed line) the estimated fit is linear.

Using this property, we can consider the optimal placement of the first knot to be the point 

at which the laboratory measures are linear before, that is, do not change over time. This can 

give us an indication as to when a laboratory measure for those that will experience an event 

begins to change.

To assess this, we fit a series of models of the form of model (5) among those that 

experience the event. We started with a simple linear model. Next we added a knot at 14 

days before the event. Then we fit a third model adding a knot at 14 and 28 day before the 

event, etc. until we had a model with 12 knots up to 168 days. While we could have used a 

likelihood ratio tests to pick the optimal fit we ultimately did not view this as a specific 

hypothesis test and instead chose the model with the minimal AIC as the one with the best 

fit.

Finally, we visually inspected the fits from model (4) for each laboratory measure. We 

calculated and plotted predicted values for laboratory measures over time with pointwise 

95% confidence bands.
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3.3. Additional Design & Analytic Considerations

The proposed design and analysis is essentially a retrospective analysis. We also could have 

sampled the data prospectively. This would consist of analyzing all available patients (a full 

cohort) or sampling controls in a case-cohort design. The advantage of a full cohort 

approach is that we utilize all available data, potentially improving efficiency. Given the 

relative rarity of the outcome, the efficiency gain may not be noticed, and a case-cohort 

design could be preferable. In this sampling design, one needs to use proper sample weights, 

but there is improved efficiency over nested case-control designs (Barlow et al., 2014). 

Since these sampling strategies would involve prospectively following changes, either 

design would be most appropriate for analyses of the form of model (2), a prospective 

analysis where we are modeling disease status as a function of labs. As discussed in the 

outset, such a model may prove undesirable. Moreover, in addition to the analytic 

challenges, there is also a sampling challenge. These approaches require as designation of 

time 0, which would naturally be date of ESRD. However, one of the complications of EHR 

data is that people move in-and-out of the EHR, leading to the potential for high rates of 

missing data. In the present design we have tried to account for that by requiring patients to 

have been an “active” patient but additional care would be needed for such prospective 

analyses.

Within the nested case-control framework, one potential for concern is the lack of 

independence among observations. Even though the cases and controls are frequency 

matched (as opposed to pair matched) they may exhibit correlation—particularly if there are 

strong secular trends. Additionally, an individual may serve as both a case and control or a 

control more than once—particularly if the ratio of controls to cases is low. To account for 

this we added an additional random effect terms into model (4). The results were unchanged, 

likely due both to the minimal correlation between observations and the nature of the 

likelihood ratio test, so we provide the more basic models.

An additional concern is skewness in the data. The above models, model the mean 

laboratory level. Many markers can be highly skewed, making it more appropriate to log-

transform the values. In our present data, while there were relatively long tails, the degree of 

skewness was quite low and we report the untransformed results.

3.4. Assessment

After detecting biomarkers, one typically desires to use them to develop a predictor. To 

validate the proposed method, we assessed how well the “discovered” markers predicted MI. 

As discussed, modifications to model (2) have been proposed to directly estimate the 

probability of an event given a vector of time varying measures. However, few have been 

implemented in regularly available software. We fit the procedure of Goldsmith et al. (2009) 

as applied in the refund package in R. Using the independent confirmatory set (data from 

2008), we calculated the probability of MI for each individual based on the 11 separate 

laboratory measures. We assessed the improvement in prediction by comparing the 

misclassification rate (via McNemar’s test) and area under the ROC curve (c-statistic). We 

considered the marker to be “validated” if there was a significant improvement (p <0.05) 

upon inclusion of the laboratory measure to a model containing only demographic factors.
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All analyses were performed in R 3.0.1 using the lme4 packages to calculate the mixed 

models (R Core Team 2012), and our own function to calculate the truncated power spline 

basis (see Appendix).

4. Results

A total of 64,318 people were available for study between 2004 and 2008. After removal of 

individuals with a history of MI, we abstracted 3677 individuals with an incident MI 

between 2004 and 2007 and an additional 1092 individuals with an incident MI in 2008 to 

serve as a validation set. An equal number of controls were selected during the same time 

period. Of the 4769 cases, 516 (11%) had served as a control at an earlier point in time. 

Additionally, 491 (10%) controls were randomly selected to serve as controls more than 

once. There were similarities between those experiencing events in age and gender but 

meaningful differences in regards to race (Table 2). Those experiencing an event tended to 

have spent less time on dialysis.

Using model (4) described above we estimated the differences in trends of laboratory 

measures among those that experienced an MI and those that did not. A likelihood ratio test 

with a Bonferroni correction was performed to test whether the two curves differed (Table 

3). Overall, 7 of the 11 tests showed significant differences between those that experienced 

an MI and those that did not. In our second analysis, we assessed whether the 11 markers 

were linear over time among those that ultimately have an MI and those that do not. Using 

model (5) we again performed a likelihood ratio test comparing nested models. This resulted 

in six laboratory measures that were clinically useful based on our predefined criterion of 

significance.

Among the six laboratory measures that met all three of the above criteria we examined the 

point at which the laboratory measures for those experiencing an MI began to depart from 

linearity. A series of models were fit, with each one adding an additional knot over time. 

The model with the minimal AIC was chosen as the best fit. Table 3 also shows the optimal 

fit for each of the six laboratory measures. Albumin, hemoglobin, phosphorous, and platelet-

count showed optimal departure within 4 weeks of the event, suggesting that changes could 

be detected 1-month before an event occurs.

We visually inspected the patterns of change for each of the 11 markers (Figure 3a–k). 

Using the estimates from model (4) we predicted the laboratory measure for a dialysis 

patient about to experience an MI and a similar control, with 95% point-wise prediction 

intervals. Visual inspection confirms the analytic results. Of the laboratory measures that 

were not identified as useful markers, all but ferritin, did not visually show differences 

between those about to experience and MI and those who did not. Most of the successful 

laboratory markers showed departures from linearity immediately preceding the MI, as 

suggested by analysis 3. The one exception was iron saturation which visually appears to 

have it’s greatest departure at about 14 days but analytically was identified at 168 days.

Finally, we assessed the predictive performance of each measure among an independent 

validation set of events. Table 3 contains the misclassification rate and c-statistic for each of 
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the 11 laboratory measures. Using only the baseline covariates of age, sex, race, and vintage, 

the misclassification rate was 0.470 and the c-statistic was 0.541—suggesting minimal 

predictive value based off these baseline characteristics alone. Of the six laboratory 

measures that met the suggested criteria, four had a significant (p <0.05) improvement in 

their predictive performance, with albumin, hemoglobin and white blood cell showing the 

most predictive improvement. Conversely, of the five measurements that did not meet our 

criteria none yielded a significant improvement in misclassification or discrimination. Using 

a model with all six variables yielded a misclassification rate of 0.411 and c-statistic of 

0.620, suggesting that in combination the markers do not provide additional information.

5. Discussion

In this article, we suggest a straightforward procedure to detecting clinically meaningful 

markers of an impending clinical event within an EHR. The irregular and longitudinal nature 

of the data can make analyzing EHRs challenging. While some theoretical work has been 

developed to address these challenges, these methods are not all readily accessible. Instead, 

we suggest an approach that utilizes regular statistical methods and software. While we have 

focused here on outpatient HD, we note that there are many other comparable scenarios 

within typical hospital settings where patients get serial measurements, such as inpatient 

Intensive Care Units, monitoring during surgery, and cancer treatment where this approach 

should also prove useful. Moreover, these methods extend beyond EHRs, but to any 

longitudinal dataset with biomarkers serially collected at different time points.

The two steps in such an analysis are to first appropriately select a study sample from the 

EHR and second to analyze the data. To select the sample, we utilized a nested case-control 

study. Others have used nested case-control designs noting both their suitability and 

advantages for prediction with EHR data (Irizarry et al., 2012; Wu, Roy, and Stewart, 2010). 

While such designs are common in epidemiological studies, they are less common in 

traditional statistical analyses. However, they provide a useful means to sample complex 

longitudinal data.

Using the proposed mixed model with spline basis functions we illustrate a variety of 

analytic questions one can ask to asses the clinical utility of a laboratory measure. These 

include: Do those that experience the event show a different pattern over time? Are the 

laboratory measures linear over time among the controls and non-linear among the cases? 

How far out can we detect non-linearity in the cases? Undoubtedly, given a specific clinical 

question one could imagine that different comparisons could be drawn. We consider this 

flexibility to be one of the strengths of the proposed procedure. For example, we easily 

could have constrained the controls to show constant laboratory values over time, or if it 

were known that a laboratory measure changed via circadian rhythms (e.g., blood pressure) 

and was continuously measured over a single day, stability for controls could be proposed to 

have a sinusoidal pattern.

We assessed this approach using data from an EHR system of patients undergoing 

hemodialysis. We identified 4769 people with an incident MI and abstracted 11 regular 

laboratory measures over a 6 month period before the event. Of the 11 measure, 6 met our 
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criteria. We evaluated the results both qualitatively via visualization and quantitatively 

through fitting a prediction model on an independent set of data. Four of the measurements 

showed strong utility as a predictor, with the three most promising measures for assessing 

risk of MI were a drop in albumin and hemoglobin and a rise in white blood cell count. Not 

surprisingly these markers have previously been associated with risk of MI (Friedman, 

Klatsky, and Siegelaub, 1974; Ensrud and Grimm 1992; Djousse et al., 2002; Bassand et al., 

2010).

There are areas of future work that can be considered. In our assessment we heuristically 

identified where the curve departs from linearity, suggesting when a biomarker can be used 

to detect an event. One can imagine setting that time point as an estimable parameter, 

through which one can draw proper inference. Additional work can also consider the 

situation where the collection of a biomarker is informative, for example, a blood test when 

a patient is not feeling well. This is essentially a missing data problem, where the lack of 

missing data is itself informative. In our setting, since labs are taken per-protocol we 

implicitly assume that any data is missing completely at random. Finally, more work is 

needed that estimate the prospective model (2), particularly with multiple markers. While 

our approach presents a heuristic for detecting markers, the gold-standard definition of 

clinical utility is through clinical metrics such as risk-difference (Wentzensen and 

Wacholder, 2013).

Overall, we consider this a useful screening procedure to select markers to track either 

quantitatively through algorithms embedded in the EHR predicting the probability of an 

event or more qualitatively through clinical observation. The appeal of this procedure is its 

simplicity and intuitiveness and the use of standard statistical methodology and theory. We 

believe this approach is easily transferable to analyzing other types of serially collected EHR 

data that may be changing over time.
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Appendix

The following is R code for calculating a truncated power spline basis:

tps <- function(X, knots){

     k <- length(knots)

     b <- matrix(NA, nrow = length(X), ncol = k + 1)

     b[,1] <- X ###Add X to basis; no intercept

     for(i in 1:k){

                tp <- (X - knots[i])^3 ###Cubic polynomial

                tp <- ifelse(tp > 0, tp, 0) ###Truncate

                b[,(i+1)] <- tp

         }

     return(b)

}
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Figure 1. 
Illustration of Nested Case-Control sampling design. Patients start dialysis at different time 

points. Whenever a case develops, an active control is sampled. Data are abstracted back up 

to 6 months. In the future these controls may become cases or serve as controls again.
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Figure 2. 
Truncated power splines with different knot placements. The dashed line corresponds to the 

placement of the first (left-most) knot for the same colored line. We note that to the left of 

the first knot, the fit is linear. The black line shows the true function, with the dots the 

realized data. We note that adding the 4th knot at −2 does not change the functional fit. 

“This figure appears in color in the electronic version of this article.”
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Figure 3. 
Trajectory of laboratory measures preceding an MI.

**Six of the 11 markers (albumin [a], hemoglobin [f], iron saturation [g], iron saturation [h], 

platelet-count [i], and white blood cell count [k]) show clinically meaningful changes before 

an MI. “This figure appears in color in the electronic version of this article.”
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Table 1

Frequency of collection and acceptable ranges for laboratory tests assessed

Laboratory test
Frequency

collected
Acceptable

range

Albumin ~30 days 0.1–6 g/dL

Calcium ~7 days 5–20 mg/dL

CO2 ~30 days 2–50 meq/L

Creatinine ~30 days 0.1–30 mg/dL

Ferritin ~90 days 0–10,000 ng/mL

Hemoglobin ~7 days 2–20 g/dL

Iron transferring saturation ~30 days 0–100%

Phosphorous ~7 days 0.5–20 mg/dL

Platelet count ~30 days 0–5000 1000/µL

Potassium ~30 days 1–9 meq/L

White blood cell count ~30 days 0–100 1000/µL
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Table 2

Demographics of sampled data

MI No MI P-value

Sample size 4769 4769

Age at start of dialysis 75 (71, 80) 75 (71,79) <0.001

Gender (male) 2319 (50%) 2380 (50%) 0.22

Race 0.022

  Caucasian 3414 (72%) 3311 (69%)

  African American 1152 (24%) 1285 (27%)

  Hispanic 136 (3%) 115 (2%)

  Asian 50 (1%) 41 (1%)

  Other/unknown 17 (<1%) 17 (<1%)

Days on dialysis 533 (188, 1088) 553 (245, 1081) <0.001
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