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ABSTRACT

Motivation: The evolution of protein sequences is constrained
by complex interactions between amino acid residues.
Because harmful substitutions may be compensated for by
other substitutions at neighboring sites, residues can coevolve.
We describe a Bayesian phylogenetic approach to the detec-
tion of coevolving residues in protein families. This method,
Bayesian mutational mapping (BMM), assigns mutations to the
branches of the evolutionary tree stochastically, and then test
statistics are calculated to determine whether a coevolution-
ary signal exists in the mapping. Posterior predictive P-values
provide an estimate of significance, and specificity is main-
tained by integrating over uncertainty in the estimation of the
tree topology, branch lengths and substitution rates. A coevolu-
tionary Markov model for codon substitution is also described,
and this model is used as the basis of several test statistics.
Results: Results on simulated coevolutionary data indicate
that the BMM method can successfully detect nearly all coe-
volving sites when the model has been correctly specified, and
that non-parametric statistics such as mutual information are
generally less powerful than parametric statistics. On a data-
set of eukaryotic proteins from the phosphoglycerate kinase
(PGK) family, interdomain site contacts yield a significantly
greater coevolutionary signal than interdomain non-contacts,
an indication that the method provides information about inter-
acting sites. Failure to account for the heterogeneity in rates
across sites in PGK resulted in a less discriminating test, yield-
ing a marked increase in the number of reported positives at
both contact and non-contact sites.
Contact: matt@dimmic.net
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INTRODUCTION

is constrained by a myriad of factors which contribute to the
protein’s function. For example, the residue at the site must
pack correctly against other residues in the folded protein,
it may catalyze a reaction in the active site, and it may be
involved in binding or recognition of amino acid sites on other
proteins. Because each amino acid’s constraints are depend-
ent on interactions with other residues, a mutation at nearby
sites can change these constraints. In analogy with classical
genetics, if each site is considered to be a single locus with
20 possible alleles, and the fithess of each amino acid ‘allele’
depends on the amino acids with which it interacts, then a
substitution will alter the fitness landscape at the interacting
sites. Changes to this landscape can in turn change the rate of
evolution at the affected sites (Fitch and Markowitz, 1970),
leading to concerted evolution and correlated substitutions.
Detection of coevolving sites has the potential to greatly
aid fields such as protein threading, structure recognition and
binding site detection; and there is a keen interest in develop-
ing methods for correlated mutational analysis (Gabel.,
1994; Shindyaloetal., 1994; Pazosgtal., 1997; Pollocletal .,
1999; Atchleyet al., 2000; Pritchardet al., 2001; Hamilton
et al., 2004). One general conclusion of these studies is that,
although some coevolution does occur among neighboring
residues, the signal from extant sequences is weak. One plaus-
ible explanation is that the detection methods are powerful
enough but that coevolution is rare: many mutations are likely
to be too deleterious, and thus there will be no opportunity for
a further compensatory mutation (Govindaraghal., 2003).
Proteins also have other compensatory mechanisms which
would confound simple pairwise relationships; for example,
a mutation at a variety of distant sites in proteins could subtly
shift whole secondary structures, relieving the steric strain of
an unfavorable mutation (Pollo&kal., 1999). Even if this is
the case, where coevolution does occur itis likely that current

coding gene is the amino acid site, and each site’s evolutiofUS Studies have found that alignment-based methods can be

biased because they do not account for spurious correlations

*Towhom correspondence should be addressed at Divergence, Inc., St. LoudU€ to0 the evolutionary history of the sequences (Pollock and
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Taylor, 1997; Atchleyet al., 2000; Tillier and Lui, 2003). The
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false positive (FP) rate can be reduced by explicitly accounting (2) Test statistics to identify site pairs where the mutations
for the phylogenetic tree topology (Pollock al., 1999; support the coevolutionary hypothesis and
Fukami-Kobayashet al., 2002) and power can be increased (3) A method for assessing the significance of each
by modeling ‘nuisance parameters’ such as branch length, tree test statistic relative to the null hypothesis of no
topology, and evolutionary rate (Tufféry and Darlu, 2000). coevolution.

Bayesian phylogenetic methods can deal effectively with
these types of concerns by integrating over nuisance parddayesian Mutational Mapping (BMM)
meters to focus on parameters of interest (Huelsenttealk ~ The posterior distribution of mutational mappings is sampled
2001). Such methods have been applied to a variety of evobn the coding sequences of the protein, using the method
utionary problems, for example to detect sites undergoinglescribed in Nielsen (2002) and Huelsenbetkl. (2003),
adaptive evolution (Huelsenbeck and Dyer, 2004), to inferwith an addition to utilize rates across sites. Briefly, given an
particular branches of the evolutionary tree where adaptivalignment of protein-coding nucleotide sequences and a set of
evolution may have occurred (Guindah al., 2004), and paired columnsi, B in the alignment to compare:

to determine the rooting of evolutionary trees (Huelsenbeck . .
et al 200I2) ng Vot y (Hu (1) Using the MCMC technique, drawgen SamplesG,,

from the posterior distribution of trees and branch
lengths{T,!}, nucleotide model parametef®, =},
and rate parameter, so thatG, = {T,[,R,m,a},.
The rate parameter controls the shape of the
distribution, which is discretized intd, possible rate
categories (Yang, 1994). This step is performed using

Here we apply the method of Bayesian mutational map-
ping (BMM) to the detection of coevolving sites in proteins,
via a novel parametric Markov model to describe coevolving
site pairs. In spirit, BMM resembles a method described
by Fukami-Kobayashgt al. (2002), where the mutations
at a pair of sites are mapped onto the branches of the :
tree, gnd coevolution is infgreed when the mutations at the the program MrBayes (Ronquist and Huelsenbeck,
site pair tend to co-occur in evolutionary time. However, 2003).

BMM differs from this method (and others like it) in several ~ (2) For each iteratiom, where the posterior sample

important respects. First, the mutational maps are informed is Gy:

by a model of evolution, allowing explicit assumptions to (@) Sample a site-specific rate for each site from

be tested using well-developed likelihood hypothesis testing the posterior distribution of rates across sites. In

techniques. Second, BMM does not require specification of each codon site, each nucleotide positios,

a single tree topology or a small set of mutational maps, but is assigned to a rate categor,&?“ stochastically

instead uses Markov Chain Monte Carlo (MCMC) integra- based on the posterior probability of categerst

tion to account for uncertainty in the phylogeny and branch that site. This yields a vector of rates at each codon,

lengths, as well as variance in the estimates of the mutation P = {r,?l),r,?z),r,iﬁ)}.

times, model parameters, and evolutionary rates. In this paper

a model of coevolution is developed, and the performance of (b) Sample mutational mapg,*, M®’ from the pos-

the model is compared to other test statistics on simulated terior distribution of mappings for each site in the

datasets and on the phosphoglycerate kinase (PGK) protein set of paired columns to be tested. The details of

family. sampling each map are identical to Nielsen (2002),
with the addition that the branch lengths at that site

METHODS are all scaled by the fact@yﬁ”) calculated in the

The application of BMM to the detection of correlated sub- previous step.

stitutions is motivated by this coevolutionary hypothesis: if (c) Calculate the value of each test statigfidor each
two amino acid residues interact, their evolutionary fitness site pair{A, B}:

Ia_mdscapes will depen(_j on the amino aC|_d at the _mteractlng Tn(A,B) | Gy My, 1y DY (M, 7y, DYP
site. Therefore, a substitution at one site will potentially affect 1)

the rate of substitution at the other site, and mutations at the
sites will tend to cluster together in evolutionary history. By
mapping the probable pattern of mutations onto the evolu-
tionary tree, we seek to detect the sites where these clusters
have occurred more often than they would by chance. Such a
technique requires:

This notation demonstrates that each calculation
of the test statistid;, is dependent upon the pos-
terior sample of the substitution parameters and
tree topologyG,, the posterior sample of muta-
tional mapsM,,, the posterior sample of rates at
nucleotide positions,, and the dat® at that site.

utionary tree of the protein family (in this case, (3) Once Step 2 has been completed, calculate the expec-
BMM), ted value of each test statistif) by summing over all
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samples from the posterior distribution: increases, the rate of an unfavorable change will decrease.
Once an unfavorable mutation is accepted, the site-pair enters
anew regimep,, x w for any change to another unfavorable
(1) = Z T, (2)  pairing, but nowQ,,  w Z for a change to a favorable state.

n This results in a transitory increase in the mean substitution

In all cases in this study, MrBayes was allowed to proceedate at both sites until the favorable pairing is restored, and
for 1100000 iterations W,ith the first 100000 iterations dis-SuPstitutions at the sites will be correlated in time. Practically

carded as burn-inand every 1000 iterations sampled thereaft?rpeﬂ(mg’ th.'s .mtiartlsttrlatl a S'tet'hn a fa\(tcj rgble pa|fr|ng Wt')lll
Four rate categories were used in the approximation td'the endtoremain in that state longer than a Site in an untavorable

distribution (one of them invariant), and the GTR model Waspairing, and the stationary frequency of each codon pair can

used to obtain the nucleotide substitution rates and stationattgfe calculated analytically (not shown).
frequencies, with the default priors specified. Test statistics

Ngen

M ar kov model of coevolving protein sites Once the distribution of mutational maps has been deter-

To test the power of the method and the various test statistics ined, a test StatI.StIC' Is required to evalu'at.e the. hypothesis
; . : of correlated substitution. Several test statistics will be evalu-
sequence alignments were simulated using a novel Markov

model of coevolving protein sites. The model is similar to theated here, divided into two broad categories: parametric and

codon model of Nielsen and Yang (1998) (the NY model) butnon-parametric tests. A parametric test is defined here as a

it instead describes the rate of a codon substituiion v at test which involves a parameterized Markov model of evolu-

a protein sited, which is correlated with sit&. If the codon tion. The non-parametric test statistics do not use an explicit

change is non-synonymous then the amino acid substitutioﬁvomtlonary model for their calculation, but instead rely on

. . L . ) . entropic measures or descriptive measures of correlation.
is ana — j substitution. The current amino acid at sRes b P

. . I ; With the exception of the mutual information-based test
b, and simultaneous nucleotide substitutions are disallowed., .. .. o ;
A statistic Ml (see below), all the test statistics require the spe-
The rate of codon substitution is:

cification of a 20x 20 interaction matrix\. If a matrix entry
0 if u, v differ at> 1 position ¥ (a,b) > 0, an interaction between those amino acids at two
sites in the protein is considered to be favorable, while if

A) HRuy ?f “ _) v IS synonymous V¥ (a, b) < 0the interaction is unfavorable. In this study, the
Quv’ = | KRuw®s ity (j.b)=y(a.b) () values are set with the assumption that the following interac-
URuwwaZap i Y (j,b)>¥(a,b) tions are favorable: hydrophobic residue pairs, polar pairs, and
;LRuva)AZXé if ¥(j,b) <y (a,b) charged amino acid pairs (as long as the charge is of opposite

sign). All other interactions such as polar—hydrophobic are
Hereu is a scaling factor that determines the overall rate ofunfavorable.
substitution, and?,, is the base rate of the single-nucleotide Each test statisti¢7') is calculated as an expectation over
mutation that yields a — v codon mutation, which can be the samples from the posterior distributi@éh, and muta-
specified using a model such as the GTR or HKY (Hasegawé&ional mappingsM,, as given in Equation (2). Each of the
et al., 1985) models. The next termuy,, is the rate scalar calculations shown below is for a single iterationbut the
for all non-synonymous changes at siteindependent of the  subscripts’s are removed for ease of reading.

type of substitution. It is typically<1, indicating purifying

selection. These elements of the model are exactly equivaleff @1d Z (likelihood ratio test and correlation parameter)
to the NY model. The likelihood ratio tests the strength of support for an altern-

The coevolutionary rate parameter in the modelisg, ative hyppthesisHl againgt the null hypothes_iHo. In this
the strength of the coevolutionary effect. It is based on thé:f"‘se’Hl is the hypothesis that the supsﬂtuﬂgn raj[e at one
20 x 20 interaction matrix,¥. If the substitutiona — j is site is dependent upon the current amino acid at its partner

favorable in the context of the amino adidit the coevolving ~ Site: While the null hypothesillp is that the sites evolve inde-
site,/ (j, b) — ¥ (a, b) > 0 and the substitution rate increases !oendently. The likelihood ratio is calculated using the model

by an amountZ 5. Unfavorable substitutions, those where introduced above, wherd : Z =1 (fixed) andHy : Z > 1.

¥ (j.b) — ¥ (a,b) <0, have a decrease in rate by a multiple By making the simplifying assumption that the interaction

of Z+1. Note, Z is always positive matrix W has only two possible valueg,, = + 3, the
EE;CBh site-pair therefore exists in one of two evoIutionaryk)g'likelihoOd ratio for a single mutational mapping can be

regimes. When the, b amino acid interaction is favorable,

there are two possible substitution rates;, «« (the basal 1While the non-parametric tests do not model coevolution as a parameterized

NY rate) for any change to another favorable pairing, andyocess, all tests utilize the same site-independent Markov model to sample
Q. xw Z~1 for a change to an unfavorable pairing. Zs  mutational mappings and to calculatevalues.
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calculated analytically as: The ¢; terms are identical to the those in the calculation of
e LR. Briefly, if an amino acid pair is in a favorable state of
LR = Nnonlog (Mi‘icorr) + Ny log (2) (4)  interaction, then it will spend a long time ‘waiting’ to mutate

p) to unfavorable interaction states, measured as a high value

. . f c2. Conversely, when the resi ir is not physicochem-
whereNpon is the total number of non-synonymous mutations’. <2 Conversely, when the residue pair is not physicoche

; . ) ically favorable, the rate of mutation to favorable states will
at the pair of sitesV; = N, — N_, the difference between the cally favorable, the rate of mutation to favorable states

: .~ _be higher than in the null case and the waiting time spent in
number of favorable and unfavorable mutations at the pair o . .
. . hose states will be short, measured as a low valug.dfhis
sites giveny, and

test is parametric in the sense that it relies on values drawn
directly from the Bayesian posterior distributions, but it does

¢oNa + /2N + derca (N3 — N3)

5_ 5) not rely on a particular model of coevolution (other than the
N 2¢1 (Nnon — Ng) specification of the interaction matrix).
CoNnon — \/C§N§+401c2 (N2, — N?) St (differ_ence i.n _timg spent in each state) This non-
ADeorr = (6) parametric statistic, identical to the expected frequency of

2 g
¢ — 4c1c2 association used by Huelsenbegtlal. (2003), measures the
_ Nnon difference in the time spent in favorable states versus the

H@o= co+ci+cr (7) expected time spent in favorable states:
Thec; terms use draws from the posterior distribution of the S, = Z tap — tatp, foralla,b, wherey,, >0  (9)
GTR model and mutational partitions on the tree. These terms ab

are related to the amount of time spentin each amino acid state, ] ) ) i .
weighted by the basal transition rate out of that state; due t¥§/Nerefs is the total time spent in a favorable amino acid state
space constraints their derivation cannot be shown here but Rl andz, andz, are the total time spent in those states at
provided in the Supplementary Material at the authors’ welSit€SA and B, independent of the other site. It is similar in
site. Z is the maximum likelihood estimate of the strength SPirit to the W, statistic, although it does not adjust for the
of correlated evolution between the sites, and can itself béifferential expectation of mutations due to the genetic code

used as a test statistic. The LR was set to 0 (no support fgi"d the nucleotide substitution rates Vés does.

the alternative hypothesis) in the following limiting cases: | and MI . (mutual information in alignment) MI is an
Nrnon= 0 at either sited or B, Ny = Nnon, andZ < 1. alignment-based measure; it does not use any information
The LR test here differs from the common approachfrom the tree (Atchleyet al., 2000). This statistic calculates

in phylogenetic likelihood calculations, which is t0 use the mutual information contained in correlated substitutions
a pruning algorithm to sum over all possible ancestralyhich appear in the alignment:

states (Felsenstein, 1981; Pollogtkal., 1999). Instead, the
ML estimates of the model parametersin Equations (5)—(7) are _ Dab

> . AN MI_ZpabIogz< )
conditional on a single sample from the posterior distribution - DPadqb
of ancestral states, and therefore so is the LR in Equation (4). ¢
The test statistic’s valu€lLR), is then obtained by averaging where p, andg; are the fraction of sequences with amino
over many such samples. The advantage to using the BMMcidsa andb at sitesA and B, respectively, whilep,,, is the
approach over a pruning algorithm is that the maximum like-fraction of sequences with bothat A andb at B. Ml only
lihood estimates of the model parameters can be calculatezbunts the mutual information contained in site pairs where
analytically, without requiring numerical optimization. the amino acid pair interaction is favorable.

(10)

W, (weighted differencein escapetimes) The coevolution- Posterior predictive P-values
ary hypothesis implies that an amino acid in an unfavorablggsterior predictiveP-values are used to determine whether
paired state will be more likely to be substituted with a favor-the pyI| hypothesis of no coevolution at a pair of sites can
able paired state, and the waiting time in unfavorable statege reliaply rejected for each test statistic. They represent the
is expected to be low. Because this waiting time can also bgyopability of a test statistic’s value, given data simulated
affected by the structure and degeneracy of the genetic codgpger the null hypothesis of no coevolution, and are similar in
it may be important to correct for this on the codon level. Thespirit to the parametric bootstrap typically used in likelihood
W, statistic utilizes the waiting times spent in each codonca|cylations (Polloclet al., 1999). The difference is that the
weighted by the expected rate of the observed substitutiongyotstrap evaluates the expected distribution of the statistics
under a model of no coevolution: at a single estimate of model and tree parameters, whereas
co— 1 the posterior predictivé-values average this expected distri-

W (8)  bution over the posterior distribution of unknown parameters.

+:—
co+c1+c2+c3
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TheseP-values are calculated using the method described in the site pair(T)(A, B) to determine the posterior
Nielsen (2002), with an addition to utilize rates across sites. predictive P-value.

Iterating over posterior samplés:
It is important to note that, by using the rate information to
(1) For each sampl€;, record the set of ordered rates generate data replicates, each site pairB} is compared
rl.(s) = {r6D, 62, r<“'3)}i assigned to each codon pair only with replicate sites that have evolved at the same rate.
to be tested in Step 2a. For example, if there are 4~or example, if a pair of sites has many mutations, there will
rate categories, the rate categories at nucleotide posbe many co-occurring mutations by chance. This would cause
tions 1, 2, and 3 of the codon at sitefor iterationi the value of T') on the real data to be high even when the sites
might berl.(A) = {1, 1, 3, and those at sit8 mightbe  were not truly coevolving, potentially yielding a high FP rate.
r®=21,4. By generating the distribution @f")™) using the observed
(B) . . . rate distribution for the site pair, these FPs are minimized,
. , simulate a replicate align- o5 se fast-evolving sites will also yield a higtig
ment columnD{®™ (r) under the hypothesis that the |eading to higher (less significan®-values.
nucleotide sites are uncorrelated. This is done by sim-

ulating the evolution of three nucleotide sites (one forSimulated datasets

each codon position) using the model, branch lengthsyhe test statistics were evaluated on sequence datasets which
and tree in the sampl6; using the techniques from \yere generated using the Markov model of coevolution
Nielsen (2002), with the branches at each nucleotidgjescribed above. Sequence evolution was simulated on a 32-
site scaled by the appropriate factorirTherefore, if 3500 symmetric balanced tree with equal branch lengths. 800
there areN, rate categories, there will potentially be codons were simulated for each dataset. The first 600 sites
2N} replicate alignment columns simulated per itera-yepresent 300 codon pairs which were coevolving, with the
tion 2 although i_n pr_actice it may be fewer if some ra_te coevolutionary rate paramet&gim set toZsim = €-/2 for mod-
category combinations are not found among the sitegrate coevolution andsim = €* for strong coevolution. On the
to be tested. _ null (non-coevolving) datasets, the first 300 codon pairs were
(3) Once areplicate datastS'm) has been simulated for simulated withZgim = 1 . wsim Was set to 0.6 at these sites, so
each iteration, proceed as if that dataset were the trueon the moderate coevolutionary datasetsi,, ~ 1 (which
data, just as in Step 2 of the procedure described imeans a compensatory non-synonymous mutation occurs at
section . In other words, for each replicate paff“) the rate of synonymous change) and on the strong coevolu-
andeB), iterate over the draws from the posteriay, tionary datasetZsin ~ 1.6, which puts the site-pair in an

where this inner loop is denoted by the index adaptational regime for compensatory changes.
(a) Generate a ‘null’ mutational mag® andm® The remaining 200 codons in each dataset were included

in in ! i i
using the posterior sampié, and the posterior t(_) reprgsent th_e fac_t that in r(_eal datasets, t_he coevolving
: (A (B) sites will be mixed in among independent sites. In these
rate sample for that pair of 5|te§‘, andr;”’. " : N
P codon position<sjm =1 (no coevolution) and was mixed:

(b) Calculate the valu_e o(fmﬁ?ch test stat!stlc U_”derwsimzo,O.S,Oﬁ, 1,1.3 for 20, 60, 70, 30 and 20 codons,
the null hypothesis,7;, ™", for that site pair respectively. At all codon sites, the rate of each nucleotide
{A, B} using the mutational maps, rates, tree top0-ransition was set to twice the rate of transversion, all nucle-
logy, and substitution parameters drawn from theotide frequencies were equal, and the initial frequency of each
posterior. codon at the root was calculated from the model parameters.

(4) Calculate the mean null value of each test statistic
7™V (A, B) for each site pair in each simulated PGK dataset

(2) For eachr'” andr

dataset: Thirty four eukaryotic nucleotide sequences of PGK were
()M ZT(nulD (11) assembled as follows: SWISSPROT identifiers were taken
' — from Pfam entry PF00162 (Batemanal., 2004), the Gen-

Bank sequence identifiers were then taken from each SWISS-

(5) Once(T}E”“")(A, B) has been calculated for each test PROT entry, and the nucleotide sequences were downloaded
statistic on each simulated dataset, rank them againgtom GenBank and assembled. For alignment, the codon
the value of the test statistic on the actual data forsequences were translated into amino acids and aligned to

the structural alignment of the closed-form crystal structure
2Since sitest andB are generated with an identical model,itmightseemthatOf bacterial PGK (1VPE) and the open—form y?aSt struc-
onIyN,3 columns need to be simulated. This causes problems when two sitddre 1QPG (B(:"rmamt al., 2000)- Supporting scripts were

for comparison have the samgas theirD®™ columns would be identical, ~Written 'in Python with the aid of the Biopython package
leading to a false inference of coevolution between the pair. (www.biopython.org).
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Table 1. Summary of test statistics using BMM the LR test could detect 297 of them at the 0.01 level, a 99%
true positive (TP) rate. In contrast, the best non-parametric
test, ML, could detect 59% of the strongly coevolving sites.

Test Mean(T) % Pairs detected - ) ;

statistics Strong Moderate  None Strong Moderate NoneWWhen simulated with more modest coevolution, LR could
detect nearly 60% of the sites at the 0.01 level, and the TP rate

LR 6.93 294 0.32 99.0  59.7 3.3 for Ml dropped to 30%.

Z 2.05 1.52 1.03 97.7 54.3 2.7 Table 1 also indicates that the FP rate is slightly elevated

W, 016  0.10 0.00 843 317 1.0 from the expectation of 1%. In some situations a lower Type |

Sy 014 0.10 0.00 507 283 20 errorrate is desired; Figure 1 illustrates the power of the most

MI 163 141 0.99 58.7 303 1.7 it tric and tric test statistics LR and

MI 188 195 197 13 10 o3  Sensitive parametric and non-parametric test statistics LR an

Ml at critical values betweern0.001 and 0.05. In general,

Al results are based on simulated datasets as described under the Simulation sectidRl€ parametric tests outperform the non-parametric tests, espe-
with 1 expected nucleotide mutation per codon per branchZapg=2.72, 1.65 and 1 cially as the degree of coevolution becomes stronger. The
for strong, moderate and no correlation between interacting site pairs respectively. high Sensitivity of the LR an(ﬁ tests could be attributable

to the fact that they are based on the same Markov model

Sites were chosen for testing based on their proximity inused for simulation (although the values of the parameters are
the closed-form crystal structure 1VPE. Site-pairs were conlOt fixed at the true values but are maximum likelihood estim-
sidered in contact if the minimum inter-residue distance of2t€s)- Nevertheless, itis gratifying to find that, when the model
all pairs of heavy atoms was8 A. This is a liberal cutoff of coevolution resembles the true coevolutionary process, the
(not all residues will be assured of making contact), but itBMM method can accurately detect coevolving sites. Itis also
accommodates transient contacts due to flexibility in the pro@n indication that the method is robust to its approximation of
tein structure. Site-pairs in the non-contact set had a minimurH€ true null model, the use of a nucleotide site-independent
distance of>16 A. To account for any systematic bias due toModel to estimate the posterior predictivevalues. Finally,
non-coevolutionary reasons, each non-contact pair consistddS Worth noting that another parametric test, , also gen-
of one site from the set of contact pairs and another site choséally performs better than the non-parametric tests, and it is
randomly that was at least 16 A away. Only interdomain con0t based on the coevolutionary simulation model.
tactand non-contact pairs were considered, where the domains! N results discussed above were measured on simulated
were defined as positions 1187 and 188—399 in the referend@ta, Where_one nucleot|_de substitution is expected per codon
sequence. Once gapped and invariant sites were removed frd#f" branch in the evolutionary tree (becausgn = 0.6, the
the dataset, there were 116 site pairs in the contact set aidnino acid substitution rate is lower). Figure 2 examines

670 site pairs in the non-contact set. the effect of increasing sequence divergence orPthalues
for several statistics. Because the BMM method uses muta-
tional information as data, more mutations on the tree provide
RESULTS ) _ . . X
) o more potential evidence for (or against) coevolution. For this
Comparison of test statistics reason, even though the value of the estimate may change with

Simulated datasets were used to compare the power of thecreasing evolutionary distance (not shown), power tends to
various test statistics (Table 1), which are divided into paraincrease and is retained even when sequence divergence is
metric and non-parametric measures. The positive correlationigh. For example, when the branch length is 4, there are on
between LR andsj, indicates that, as the strength of the coe-average 4 codon substitutions per site per branch (8 between
volution increases, the data’s support for the coevolutionaryearest sequence neighbors), yet LR can still detect nearly
model also increases. The mean value of thearameter every co-evolving site with a low FP rate (Fig. 2).

estimate on the null dataset is close to the true value of With one exception, each of the statistics shown in Table 1
Zsim= 1, but the estimates of are biased toward lower val- requires the specification of an interaction matrix, the set of
ues relative to the values used for simulation on the coevolvingmino acid interactions which are favorable and unfavorable.
datasetsZsim = 2.72 and 1.65 for strong and moderate coe-The exception is MI, which calculates the mutual infor-
volution respectively). Thé, testindicates thatthe time spent mation in all amino acid substitutions at both sites, not only
in favorable site pairings is 10-14% greater than expectethose which are compensatory. When compared with Ml
under the null, with similar results found when the waiting (which utilizes only compensatory substitutions), MI shows
times are weighted by the expected nucleotide substitutioan increase in the mutual information but a dramatic loss in
rates using théVv, statistic. Because the measured values opower in the posterior predictive-values. Other tests showed
the test statistics can be dependent on variables such as brareckimilar loss of power when no interaction matrix is specified
length and tree topology, the posterior predictRevalues  (not shown). This reinforces the conclusions of previous stud-
provide a more reliable estimate of the power of each statistides (Tufféry and Darlu, 2000; Fukami-Kobayashal., 2002):
Among the 300 site-pairs simulated with strong coevolutionfor a test statistic to maintain power, some hypothesis of the
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Fig. 1. Sensitivity (TP rate) of LR and M! at varying critical values on a simulated dataset. Simulation details are given in the Methods, and
Zsim=2.72 and 1.65 for strongly and moderately coevolving sites respectively.
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Fig. 2. Power of selected test statistics for different levels of divergence, represented as the percentage of significant site pairs detected at a
critical P-value of 0.01. Simulation details are given in the Methods.
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Table2. Mean and power of each test statistic on interdomain PGK contact psré @part) versus non-contact pairsi6 A apart)

Test statistics With rate heterogeneity Without rate heterogeneity

Mean(T) % Pairs detected Meaft) % Pairs detected

Contact Non-contact Contact Non-contact Contact Non-contact Contact Non-contact

LR 1.08 0.54 12.9 3.3 1.39 0.69 26.7 12.1
Z 1.63 1.31 16.4 4.8 2.11 1.43 32.8 19.3
W 0.02 -0.01 2.6 1.2 0.03 0.00 22.4 15.7
Sy 0.00 0.00 0.0 1.2 0.00 0.00 0.0 0.9
MI 4 0.12 0.12 0.0 0.0 0.12 0.12 0.0 0.0
Mi 0.24 0.24 0.9 0.1 0.24 0.24 0.0 0.0

Significance is measured at the 0.01 level, with 116 total pairs in the contact dataset and 670 total pairs in the non-contact dataset. On the left side, heterogeneous rates among sites
were used to create the mutational maps and calculate the posterior predictihees.

physicochemical basis of coevolution is necessary. Also, theontact pairs returned a significant value of LR, versus 3.3%
fact that an increase in mutual information can still yield aof the noncontact pairs. The difference foris even more
decrease in power demonstrates how the posterior predictivdramatic (16.4% versus 4.8%), although the positive rate on
P-values correct for the ‘noise’ of substitutions under the null.the non-contact pairs is slightly elevated. None of the non-
] ] ) ) parametric tests find a significant signal on the interacting
Using BMM to detect interacting sites: PGK sites. When the significant contact pairs under the LR test
PGK is an enzyme involved in the glycolytic pathway, are mapped onto the crystal structure of PGK, several of the
catalyzing the transfer of a phosphate from ATP to 3-pairs are located near the terminus of the hinge helix involved
phosphoglycerate. Catalysis requires closure of the N- anih domain closure. Since domain closure is thought to be
C-terminal domains of the protein, a hinge action which iseffected by tightening or loosening of the winding in this
thought to involve significant relative motion between thehelix (Chandrat al., 1998), the coevolutionary signal in these
two domains (Chandrat al., 1998). Because interdomain pairs may reveal functional importance. To test the import-
interaction is required for enzymatic function, the evolutionance of using site rates to inform thevalue calculations
of the amino acids at this interface is likely to be con-and mutational mapping steps, the analysis was repeated with
strained (Teichmann, 2002). This constraint is not expectelomogeneous rates, and the results are shown on the right
to be absolute, however; many of the interacting residues argide of Table 2. (Thé& -distribution of rates was still used to
not completely conserved, indicating that there is some tolinform the phylogeny during Step 1, when sampling trees and
erance for amino acid substitutions at these positions. Sincgubstitution parameters; it was not used in generating muta-
such substitutions may alter the fitness environment for nearbijonal maps or posterior predictiv-values.) Although, the
residues, this evolutionary regime of mild deleteriousnesslifferences are more pronounced in some tests and relatively
may provide fertile ground for compensatory mutations tomore contact sites were found to be significant, in most cases
occur. Coevolution between PGK domains has previouslynore non-contact sites were significant as well. For example,
been observed using tree similarity methods (&ah, 2000).  although the number of significant pairs in the contact set
To testwhether the BMM method and coevolutionary modelwith LR doubled to 27%, the number of significant pairs in
were capable of detecting coevolution in PGK, a dataset ofthe non-contact set also increased to 12%.
eukaryotic PGK sequences was assembled as described inWhileitis possible thatthere is some true coevolution occur-
the Methods. The sites were paired into two sets accordrdng in a few non-interacting site pairs, it is more likely that
ing to their proximity in the closed-form crystal structure: most of this increase is due to a spurious signal, which is
interdomain contact pairs and interdomain non-contact pairddlampened by the use of rate information in the posterior pre-
Table 2 (left side) shows the difference in coevolutionary sig-dictive P-values (Tufféry and Darlu, 2000). In addition, the
nal between these sets for each of the test statistics. The meaamber of truly coevolving site pairs among those in con-
values of LR andZ are higher on the set of contact pairs, tact is unknown, but other studies have found that only a
indicating greater support on average for the coevolutionaryraction of interacting sites in proteins seem to exhibit a coe-
model and a stronger coevolutionary rate ratio at proximavolutionary signal. Nevertheless, it should be noted that the
residues. Several of the other test statistics also show a difito-rates BMM method is computationally much faster than
ference in their mean values, although the differences are les$se method which uses rate information. Also, the significant
pronounced. sites detected using rate information are a complete subset of
The differences in the posterior predictivevalues are the sites detected without rates, indicating that the no-rates
more clear. At the 0.01 level of significance, 12.9% of theBMM method might be useful as a fast initial screening step
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in determining which sites in a protein to test with the more Future developments may also focus onimprovementstothe
discriminate method. likelihood model or development of other test statistics. The
significantimprovementin the FP rate gained by including rate
heterogeneity demonstrates how specificity can increase with
DISCUSSION a more accurate evolutionary model. The slightincrease in the
In cases where correlated evolution has previously beet-values for LR andZ on non-contact sites above the expect-
examined, it has sometimes been observed that the coevolation of 1% indicates that there is still room for improvement.
tionary signal is weak, if it exists at all. It is certainly possible For example, the requirement for a binary interaction matrix is
that correlated substitutions are rare events in protein evoluiot an essential one for the model, only for the analytical solu-
tion, but these results indicate that we are not yet at the limit ofion to the maximum likelihood. It may be possible to derive
detection. In most simulated regimes, the model-based tests approximate maximum likelihood for the case of a con-
introduced here have more power than the non-parametritnuum matrix, thereby allowing more elaborate interactions
tests. While the superior performance of the parametric test® be described. The model analyzed in this study assumes a
on simulations is due in part to the fact that the simulationsonstant ‘background’ mutational pressure—selection due to
were conducted using the same model structure, itis importanteraction with other sites not being tested—but the model
to note that the BMM method is capable of detecting nearlycan be extended to accommodate heterogeneity in this para-
all the coevolving site pairs when the model has been cormeter. Once a new statistic is devised it should be relatively
rectly specified. In addition, the fact that the model-basedstraightforward to test using BMM, since the BMM frame-
tests detect more correlated substitutions in PGK’s contaatork is quite flexible and can utilize a variety of tests which
residues is evidence that the model does provide a practicale informed by the changes on the tree.
approximation to the evolution of interacting sites.
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