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ABSTRACT
Motivation: The evolution of protein sequences is constrained
by complex interactions between amino acid residues.
Because harmful substitutions may be compensated for by
other substitutions at neighboring sites, residues can coevolve.
We describe a Bayesian phylogenetic approach to the detec-
tion of coevolving residues in protein families. This method,
Bayesian mutational mapping (BMM), assigns mutations to the
branches of the evolutionary tree stochastically, and then test
statistics are calculated to determine whether a coevolution-
ary signal exists in the mapping. Posterior predictive P -values
provide an estimate of significance, and specificity is main-
tained by integrating over uncertainty in the estimation of the
tree topology, branch lengths and substitution rates. A coevolu-
tionary Markov model for codon substitution is also described,
and this model is used as the basis of several test statistics.
Results: Results on simulated coevolutionary data indicate
that the BMM method can successfully detect nearly all coe-
volving sites when the model has been correctly specified, and
that non-parametric statistics such as mutual information are
generally less powerful than parametric statistics. On a data-
set of eukaryotic proteins from the phosphoglycerate kinase
(PGK) family, interdomain site contacts yield a significantly
greater coevolutionary signal than interdomain non-contacts,
an indication that the method provides information about inter-
acting sites. Failure to account for the heterogeneity in rates
across sites in PGK resulted in a less discriminating test, yield-
ing a marked increase in the number of reported positives at
both contact and non-contact sites.
Contact: matt@dimmic.net
Supplementary information: http://www.dimmic.net/
supplement/

INTRODUCTION
The primary unit of phenotypic expression for a protein-
coding gene is the amino acid site, and each site’s evolution

∗To whom correspondence should be addressed at Divergence, Inc., St. Louis,
MO 63141, USA.

is constrained by a myriad of factors which contribute to the
protein’s function. For example, the residue at the site must
pack correctly against other residues in the folded protein,
it may catalyze a reaction in the active site, and it may be
involved in binding or recognition of amino acid sites on other
proteins. Because each amino acid’s constraints are depend-
ent on interactions with other residues, a mutation at nearby
sites can change these constraints. In analogy with classical
genetics, if each site is considered to be a single locus with
20 possible alleles, and the fitness of each amino acid ‘allele’
depends on the amino acids with which it interacts, then a
substitution will alter the fitness landscape at the interacting
sites. Changes to this landscape can in turn change the rate of
evolution at the affected sites (Fitch and Markowitz, 1970),
leading to concerted evolution and correlated substitutions.

Detection of coevolving sites has the potential to greatly
aid fields such as protein threading, structure recognition and
binding site detection; and there is a keen interest in develop-
ing methods for correlated mutational analysis (Gobelet al.,
1994; Shindyalovet al., 1994; Pazoset al., 1997; Pollocket al.,
1999; Atchleyet al., 2000; Pritchardet al., 2001; Hamilton
et al., 2004). One general conclusion of these studies is that,
although some coevolution does occur among neighboring
residues, the signal from extant sequences is weak. One plaus-
ible explanation is that the detection methods are powerful
enough but that coevolution is rare: many mutations are likely
to be too deleterious, and thus there will be no opportunity for
a further compensatory mutation (Govindarajanet al., 2003).
Proteins also have other compensatory mechanisms which
would confound simple pairwise relationships; for example,
a mutation at a variety of distant sites in proteins could subtly
shift whole secondary structures, relieving the steric strain of
an unfavorable mutation (Pollocket al., 1999). Even if this is
the case, where coevolution does occur it is likely that current
methods have not yet reached the limit of detection. Previ-
ous studies have found that alignment-based methods can be
biased because they do not account for spurious correlations
due to the evolutionary history of the sequences (Pollock and
Taylor, 1997; Atchleyet al., 2000; Tillier and Lui, 2003). The
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false positive (FP) rate can be reduced by explicitly accounting
for the phylogenetic tree topology (Pollocket al., 1999;
Fukami-Kobayashiet al., 2002) and power can be increased
by modeling ‘nuisance parameters’ such as branch length, tree
topology, and evolutionary rate (Tufféry and Darlu, 2000).

Bayesian phylogenetic methods can deal effectively with
these types of concerns by integrating over nuisance para-
meters to focus on parameters of interest (Huelsenbecket al.,
2001). Such methods have been applied to a variety of evol-
utionary problems, for example to detect sites undergoing
adaptive evolution (Huelsenbeck and Dyer, 2004), to infer
particular branches of the evolutionary tree where adaptive
evolution may have occurred (Guindonet al., 2004), and
to determine the rooting of evolutionary trees (Huelsenbeck
et al., 2002).

Here we apply the method of Bayesian mutational map-
ping (BMM) to the detection of coevolving sites in proteins,
via a novel parametric Markov model to describe coevolving
site pairs. In spirit, BMM resembles a method described
by Fukami-Kobayashiet al. (2002), where the mutations
at a pair of sites are mapped onto the branches of the
tree, and coevolution is inferred when the mutations at the
site pair tend to co-occur in evolutionary time. However,
BMM differs from this method (and others like it) in several
important respects. First, the mutational maps are informed
by a model of evolution, allowing explicit assumptions to
be tested using well-developed likelihood hypothesis testing
techniques. Second, BMM does not require specification of
a single tree topology or a small set of mutational maps, but
instead uses Markov Chain Monte Carlo (MCMC) integra-
tion to account for uncertainty in the phylogeny and branch
lengths, as well as variance in the estimates of the mutation
times, model parameters, and evolutionary rates. In this paper
a model of coevolution is developed, and the performance of
the model is compared to other test statistics on simulated
datasets and on the phosphoglycerate kinase (PGK) protein
family.

METHODS
The application of BMM to the detection of correlated sub-
stitutions is motivated by this coevolutionary hypothesis: if
two amino acid residues interact, their evolutionary fitness
landscapes will depend on the amino acid at the interacting
site. Therefore, a substitution at one site will potentially affect
the rate of substitution at the other site, and mutations at the
sites will tend to cluster together in evolutionary history. By
mapping the probable pattern of mutations onto the evolu-
tionary tree, we seek to detect the sites where these clusters
have occurred more often than they would by chance. Such a
technique requires:

(1) A method for mapping the mutations onto the evol-
utionary tree of the protein family (in this case,
BMM),

(2) Test statistics to identify site pairs where the mutations
support the coevolutionary hypothesis and

(3) A method for assessing the significance of each
test statistic relative to the null hypothesis of no
coevolution.

Bayesian Mutational Mapping (BMM)
The posterior distribution of mutational mappings is sampled
on the coding sequences of the protein, using the method
described in Nielsen (2002) and Huelsenbecket al. (2003),
with an addition to utilize rates across sites. Briefly, given an
alignment of protein-coding nucleotide sequences and a set of
paired columnsA,B in the alignment to compare:

(1) Using the MCMC technique, drawNgen samplesGn

from the posterior distribution of trees and branch
lengths{T , l}, nucleotide model parameters{R,π},
and rate parameterα, so thatGn = {T , l,R,π ,α}n.
The rate parameter controls the shape of the�-
distribution, which is discretized intoNr possible rate
categories (Yang, 1994). This step is performed using
the program MrBayes (Ronquist and Huelsenbeck,
2003).

(2) For each iterationn, where the posterior sample
is Gn:
(a) Sample a site-specific rate for each site from

the posterior distribution of rates across sites. In
each codon sites, each nucleotide positionsx
is assigned to a rate categoryr

(sz)
n stochastically

based on the posterior probability of categoryr at
that site. This yields a vector of rates at each codon,

r
(s)
n =

{
r
(s1)
n , r(s2)

n , r(s3)
n

}
.

(b) Sample mutational mapsM(A)
n ,M(B)

n from the pos-
terior distribution of mappings for each site in the
set of paired columns to be tested. The details of
sampling each map are identical to Nielsen (2002),
with the addition that the branch lengths at that site
are all scaled by the factorr(sz)

n calculated in the
previous step.

(c) Calculate the value of each test statisticTn for each
site pair{A,B}:

T (A,B)
n | Gn, {Mn, rn,D}(A) , {Mn, rn,D}(B)

(1)
This notation demonstrates that each calculation
of the test statisticTn is dependent upon the pos-
terior sample of the substitution parameters and
tree topologyGn, the posterior sample of muta-
tional mapsMn, the posterior sample of rates at
nucleotide positionsrn, and the dataD at that site.
These dependencies will be implied hereafter.

(3) Once Step 2 has been completed, calculate the expec-
ted value of each test statistic〈T 〉 by summing over all
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samples from the posterior distribution:

〈T 〉 =
Ngen∑
n

Tn (2)

In all cases in this study, MrBayes was allowed to proceed
for 1 100 000 iterations, with the first 100 000 iterations dis-
carded as burn-in and every 1000 iterations sampled thereafter.
Four rate categories were used in the approximation to the�-
distribution (one of them invariant), and the GTR model was
used to obtain the nucleotide substitution rates and stationary
frequencies, with the default priors specified.

Markov model of coevolving protein sites
To test the power of the method and the various test statistics,
sequence alignments were simulated using a novel Markov
model of coevolving protein sites. The model is similar to the
codon model of Nielsen and Yang (1998) (the NY model), but
it instead describes the rate of a codon substitutionu → v at
a protein siteA, which is correlated with siteB. If the codon
change is non-synonymous then the amino acid substitution
is ana → j substitution. The current amino acid at siteB is
b, and simultaneous nucleotide substitutions are disallowed.
The rate of codon substitution is:

Q(A)
uv =




0 if u,v differ at> 1 position

µRuv if u → v is synonymous

µRuvωA if ψ(j ,b) = ψ(a,b)

µRuvωAZAB if ψ(j ,b) > ψ(a,b)

µRuvωAZ−1
AB if ψ(j ,b) < ψ(a,b)

(3)

Hereµ is a scaling factor that determines the overall rate of
substitution, andRuv is the base rate of the single-nucleotide
mutation that yields au → v codon mutation, which can be
specified using a model such as the GTR or HKY (Hasegawa
et al., 1985) models. The next term,ωA, is the rate scalar
for all non-synonymous changes at siteA, independent of the
type of substitution. It is typically<1, indicating purifying
selection. These elements of the model are exactly equivalent
to the NY model.

The coevolutionary rate parameter in the model isZAB ,
the strength of the coevolutionary effect. It is based on the
20× 20 interaction matrix,�. If the substitutiona → j is
favorable in the context of the amino acidb at the coevolving
site,ψ(j ,b) − ψ(a,b) > 0 and the substitution rate increases
by an amountZAB . Unfavorable substitutions, those where
ψ(j ,b) − ψ(a,b) < 0, have a decrease in rate by a multiple
of Z−1

AB . Note,Z is always positive.
Each site-pair therefore exists in one of two evolutionary

regimes. When thea,b amino acid interaction is favorable,
there are two possible substitution rates:Quv ∝ ω (the basal
NY rate) for any change to another favorable pairing, and
Quv ∝ ω Z−1 for a change to an unfavorable pairing. AsZ

increases, the rate of an unfavorable change will decrease.
Once an unfavorable mutation is accepted, the site-pair enters
a new regime:Quv ∝ ω for any change to another unfavorable
pairing, but nowQuv ∝ ω Z for a change to a favorable state.
This results in a transitory increase in the mean substitution
rate at both sites until the favorable pairing is restored, and
substitutions at the sites will be correlated in time. Practically
speaking, this means that a site in a favorable pairing will
tend to remain in that state longer than a site in an unfavorable
pairing, and the stationary frequency of each codon pair can
be calculated analytically (not shown).

Test statistics
Once the distribution of mutational maps has been deter-
mined, a test statistic is required to evaluate the hypothesis
of correlated substitution. Several test statistics will be evalu-
ated here, divided into two broad categories: parametric and
non-parametric tests. A parametric test is defined here as a
test which involves a parameterized Markov model of evolu-
tion. The non-parametric test statistics do not use an explicit
evolutionary model for their calculation, but instead rely on
entropic measures or descriptive measures of correlation.1

With the exception of the mutual information-based test
statistic MI (see below), all the test statistics require the spe-
cification of a 20× 20 interaction matrix,�. If a matrix entry
ψ(a,b) > 0, an interaction between those amino acids at two
sites in the protein is considered to be favorable, while if
ψ(a,b) < 0 the interaction is unfavorable. In this study, the�

values are set with the assumption that the following interac-
tions are favorable: hydrophobic residue pairs, polar pairs, and
charged amino acid pairs (as long as the charge is of opposite
sign). All other interactions such as polar–hydrophobic are
unfavorable.

Each test statistic〈T 〉 is calculated as an expectation over
the samples from the posterior distributionGn and muta-
tional mappingsMn as given in Equation (2). Each of the
calculations shown below is for a single iterationn, but the
subscript-n’s are removed for ease of reading.

LR and Ẑ (likelihood ratio test and correlation parameter)
The likelihood ratio tests the strength of support for an altern-
ative hypothesisH1 against the null hypothesisH0. In this
case,H1 is the hypothesis that the substitution rate at one
site is dependent upon the current amino acid at its partner
site, while the null hypothesisH0 is that the sites evolve inde-
pendently. The likelihood ratio is calculated using the model
introduced above, whereH0 : Z = 1 (fixed) andH1 : Z ≥ 1.
By making the simplifying assumption that the interaction
matrix � has only two possible valuesψab = ± 1

2, the
log-likelihood ratio for a single mutational mapping can be

1While the non-parametric tests do not model coevolution as a parameterized
process, all tests utilize the same site-independent Markov model to sample
mutational mappings and to calculateP -values.
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calculated analytically as:

LR = Nnon log

(
µ̂ωcorr

µ̂ωo

)
+ Nd log

(
Ẑ

)
(4)

whereNnon is the total number of non-synonymous mutations
at the pair of sites,Nd = N+ −N−, the difference between the
number of favorable and unfavorable mutations at the pair of
sites given�, and

Ẑ =
coNd +

√
c2
oN

2
d + 4c1c2

(
N2

non − N2
d

)
2c1 (Nnon − Nd)

(5)

µ̂ωcorr =
coNnon −

√
c2
oN

2
d + 4c1c2

(
N2

non − N2
d

)
c2
o − 4c1c2

(6)

µ̂ωo = Nnon

c0 + c1 + c2
(7)

Theci terms use draws from the posterior distribution of the
GTR model and mutational partitions on the tree. These terms
are related to the amount of time spent in each amino acid state,
weighted by the basal transition rate out of that state; due to
space constraints their derivation cannot be shown here but is
provided in the Supplementary Material at the authors’ web
site. Ẑ is the maximum likelihood estimate of the strength
of correlated evolution between the sites, and can itself be
used as a test statistic. The LR was set to 0 (no support for
the alternative hypothesis) in the following limiting cases:
Nnon= 0 at either siteA or B, Nd = Nnon, andẐ < 1.

The LR test here differs from the common approach
in phylogenetic likelihood calculations, which is to use
a pruning algorithm to sum over all possible ancestral
states (Felsenstein, 1981; Pollocket al., 1999). Instead, the
ML estimates of the model parameters in Equations (5)–(7) are
conditional on a single sample from the posterior distribution
of ancestral states, and therefore so is the LR in Equation (4).
The test statistic’s value,〈LR〉, is then obtained by averaging
over many such samples. The advantage to using the BMM
approach over a pruning algorithm is that the maximum like-
lihood estimates of the model parameters can be calculated
analytically, without requiring numerical optimization.

W+ (weighted difference in escape times) The coevolution-
ary hypothesis implies that an amino acid in an unfavorable
paired state will be more likely to be substituted with a favor-
able paired state, and the waiting time in unfavorable states
is expected to be low. Because this waiting time can also be
affected by the structure and degeneracy of the genetic code,
it may be important to correct for this on the codon level. The
W+ statistic utilizes the waiting times spent in each codon,
weighted by the expected rate of the observed substitutions
under a model of no coevolution:

W+ = c2 − c1

c0 + c1 + c2 + c3
(8)

The ci terms are identical to the those in the calculation of
LR. Briefly, if an amino acid pair is in a favorable state of
interaction, then it will spend a long time ‘waiting’ to mutate
to unfavorable interaction states, measured as a high value
of c2. Conversely, when the residue pair is not physicochem-
ically favorable, the rate of mutation to favorable states will
be higher than in the null case and the waiting time spent in
those states will be short, measured as a low value ofc1. This
test is parametric in the sense that it relies on values drawn
directly from the Bayesian posterior distributions, but it does
not rely on a particular model of coevolution (other than the
specification of the interaction matrix).

S+ (difference in time spent in each state) This non-
parametric statistic, identical to the expected frequency of
association used by Huelsenbecket al. (2003), measures the
difference in the time spent in favorable states versus the
expected time spent in favorable states:

S+ =
∑
a,b

tab − tatb for all a,b, whereψab > 0 (9)

wheretab is the total time spent in a favorable amino acid state
pair, andta and tb are the total time spent in those states at
sitesA andB, independent of the other site. It is similar in
spirit to theW+ statistic, although it does not adjust for the
differential expectation of mutations due to the genetic code
and the nucleotide substitution rates, asW+ does.

MI and MI+ (mutual information in alignment) MI is an
alignment-based measure; it does not use any information
from the tree (Atchleyet al., 2000). This statistic calculates
the mutual information contained in correlated substitutions
which appear in the alignment:

MI =
∑
a,b

pab log2

(
pab

paqb

)
(10)

wherepa andqb are the fraction of sequences with amino
acidsa andb at sitesA andB, respectively, whilepab is the
fraction of sequences with botha atA andb atB. MI+ only
counts the mutual information contained in site pairs where
the amino acid pair interaction is favorable.

Posterior predictive P -values
Posterior predictiveP -values are used to determine whether
the null hypothesis of no coevolution at a pair of sites can
be reliably rejected for each test statistic. They represent the
probability of a test statistic’s value, given data simulated
under the null hypothesis of no coevolution, and are similar in
spirit to the parametric bootstrap typically used in likelihood
calculations (Pollocket al., 1999). The difference is that the
bootstrap evaluates the expected distribution of the statistics
at a single estimate of model and tree parameters, whereas
the posterior predictiveP -values average this expected distri-
bution over the posterior distribution of unknown parameters.
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TheseP -values are calculated using the method described in
Nielsen (2002), with an addition to utilize rates across sites.
Iterating over posterior samplesGi :

(1) For each sampleGi , record the set of ordered rates
r
(s)
i = {

r(s1), r(s2), r(s3)
}
i

assigned to each codon pair
to be tested in Step 2a. For example, if there are 4
rate categories, the rate categories at nucleotide posi-
tions 1, 2, and 3 of the codon at siteA for iterationi

might ber
(A)
i = {1, 1, 3}, and those at siteB might be

r
(B)
i = {2, 1, 4}.

(2) For eachr
(A)
i and r

(B)
i , simulate a replicate align-

ment columnD(sim)
i (r) under the hypothesis that the

nucleotide sites are uncorrelated. This is done by sim-
ulating the evolution of three nucleotide sites (one for
each codon position) using the model, branch lengths,
and tree in the sampleGi using the techniques from
Nielsen (2002), with the branches at each nucleotide
site scaled by the appropriate factor inr. Therefore, if
there areNr rate categories, there will potentially be
2N3

r replicate alignment columns simulated per itera-
tion,2 although in practice it may be fewer if some rate
category combinations are not found among the sites
to be tested.

(3) Once a replicate datasetD
(sim)
i has been simulated for

each iterationi, proceed as if that dataset were the true
data, just as in Step 2 of the procedure described in
section . In other words, for each replicate pairD

(A)
i

andD
(B)
i , iterate over the draws from the posteriorGn,

where this inner loop is denoted by the indexn:
(a) Generate a ‘null’ mutational mapM(A)

in andM
(B)
in ,

using the posterior sampleGn and the posterior
rate sample for that pair of sites,r

(A)
i andr

(B)
i .

(b) Calculate the value of each test statistic under
the null hypothesis,T (null)

in , for that site pair
{A,B} using the mutational maps, rates, tree topo-
logy, and substitution parameters drawn from the
posterior.

(4) Calculate the mean null value of each test statistic
T

(null)
i (A,B) for each site pair in each simulated

dataseti:

〈T 〉(null)
i =

∑
n

T
(null)
in (11)

(5) Once〈T 〉(null)
i (A,B) has been calculated for each test

statistic on each simulated dataset, rank them against
the value of the test statistic on the actual data for

2Since sitesA andB are generated with an identical model, it might seem that
only N3

r columns need to be simulated. This causes problems when two sites

for comparison have the samer, as theirD(sim)
m columns would be identical,

leading to a false inference of coevolution between the pair.

the site pair〈T 〉(A,B) to determine the posterior
predictiveP -value.

It is important to note that, by using the rate information to
generate data replicates, each site pair{A,B} is compared
only with replicate sites that have evolved at the same rate.
For example, if a pair of sites has many mutations, there will
be many co-occurring mutations by chance. This would cause
the value of〈T 〉 on the real data to be high even when the sites
were not truly coevolving, potentially yielding a high FP rate.
By generating the distribution of〈T 〉(null) using the observed
rate distribution for the site pair, these FPs are minimized,
because fast-evolving sites will also yield a higher〈T 〉(null)

leading to higher (less significant)P -values.

Simulated datasets
The test statistics were evaluated on sequence datasets which
were generated using the Markov model of coevolution
described above. Sequence evolution was simulated on a 32-
taxon symmetric balanced tree with equal branch lengths. 800
codons were simulated for each dataset. The first 600 sites
represent 300 codon pairs which were coevolving, with the
coevolutionary rate parameterZsim set toZsim = e1/2 for mod-
erate coevolution andZsim = e1 for strong coevolution. On the
null (non-coevolving) datasets, the first 300 codon pairs were
simulated withZsim = 1 .ωsim was set to 0.6 at these sites, so
on the moderate coevolutionary datasetωZsim ≈ 1 (which
means a compensatory non-synonymous mutation occurs at
the rate of synonymous change) and on the strong coevolu-
tionary datasetωZsim ≈ 1.6, which puts the site-pair in an
adaptational regime for compensatory changes.

The remaining 200 codons in each dataset were included
to represent the fact that in real datasets, the coevolving
sites will be mixed in among independent sites. In these
codon positionsZsim = 1 (no coevolution) andω was mixed:
ωsim = 0, 0.3, 0.6, 1, 1.3 for 20, 60, 70, 30 and 20 codons,
respectively. At all codon sites, the rate of each nucleotide
transition was set to twice the rate of transversion, all nucle-
otide frequencies were equal, and the initial frequency of each
codon at the root was calculated from the model parameters.

PGK dataset
Thirty four eukaryotic nucleotide sequences of PGK were
assembled as follows: SWISSPROT identifiers were taken
from Pfam entry PF00162 (Batemanet al., 2004), the Gen-
Bank sequence identifiers were then taken from each SWISS-
PROT entry, and the nucleotide sequences were downloaded
from GenBank and assembled. For alignment, the codon
sequences were translated into amino acids and aligned to
the structural alignment of the closed-form crystal structure
of bacterial PGK (1VPE) and the open-form yeast struc-
ture 1QPG (Bermanet al., 2000). Supporting scripts were
written in Python with the aid of the Biopython package
(www.biopython.org).
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Table 1. Summary of test statistics using BMM

Test Mean〈T 〉 % Pairs detected
statistics Strong Moderate None Strong Moderate None

LR 6.93 2.94 0.32 99.0 59.7 3.3
Ẑ 2.05 1.52 1.03 97.7 54.3 2.7
W+ 0.16 0.10 0.00 84.3 31.7 1.0
S+ 0.14 0.10 0.00 50.7 28.3 2.0
MI+ 1.63 1.41 0.99 58.7 30.3 1.7
MI 1.88 1.95 1.97 1.3 1.0 2.3

All results are based on simulated datasets as described under the Simulation section,
with 1 expected nucleotide mutation per codon per branch andZsim = 2.72, 1.65 and 1
for strong, moderate and no correlation between interacting site pairs respectively.

Sites were chosen for testing based on their proximity in
the closed-form crystal structure 1VPE. Site-pairs were con-
sidered in contact if the minimum inter-residue distance of
all pairs of heavy atoms was≤8 Å. This is a liberal cutoff
(not all residues will be assured of making contact), but it
accommodates transient contacts due to flexibility in the pro-
tein structure. Site-pairs in the non-contact set had a minimum
distance of≥16 Å. To account for any systematic bias due to
non-coevolutionary reasons, each non-contact pair consisted
of one site from the set of contact pairs and another site chosen
randomly that was at least 16 Å away. Only interdomain con-
tact and non-contact pairs were considered, where the domains
were defined as positions 1–187 and 188–399 in the reference
sequence. Once gapped and invariant sites were removed from
the dataset, there were 116 site pairs in the contact set and
670 site pairs in the non-contact set.

RESULTS
Comparison of test statistics
Simulated datasets were used to compare the power of the
various test statistics (Table 1), which are divided into para-
metric and non-parametric measures. The positive correlation
between LR andZsim indicates that, as the strength of the coe-
volution increases, the data’s support for the coevolutionary
model also increases. The mean value of theẐ parameter
estimate on the null dataset is close to the true value of
Zsim = 1, but the estimates of̂Z are biased toward lower val-
ues relative to the values used for simulation on the coevolving
datasets (Zsim = 2.72 and 1.65 for strong and moderate coe-
volution respectively). TheS+ test indicates that the time spent
in favorable site pairings is 10–14% greater than expected
under the null, with similar results found when the waiting
times are weighted by the expected nucleotide substitution
rates using theW+ statistic. Because the measured values of
the test statistics can be dependent on variables such as branch
length and tree topology, the posterior predictiveP -values
provide a more reliable estimate of the power of each statistic.
Among the 300 site-pairs simulated with strong coevolution,

the LR test could detect 297 of them at the 0.01 level, a 99%
true positive (TP) rate. In contrast, the best non-parametric
test, MI+, could detect 59% of the strongly coevolving sites.
When simulated with more modest coevolution, LR could
detect nearly 60% of the sites at the 0.01 level, and the TP rate
for MI+ dropped to 30%.

Table 1 also indicates that the FP rate is slightly elevated
from the expectation of 1%. In some situations a lower Type I
error rate is desired; Figure 1 illustrates the power of the most
sensitive parametric and non-parametric test statistics LR and
MI+ at critical values between<0.001 and 0.05. In general,
the parametric tests outperform the non-parametric tests, espe-
cially as the degree of coevolution becomes stronger. The
high sensitivity of the LR and̂Z tests could be attributable
to the fact that they are based on the same Markov model
used for simulation (although the values of the parameters are
not fixed at the true values but are maximum likelihood estim-
ates). Nevertheless, it is gratifying to find that, when the model
of coevolution resembles the true coevolutionary process, the
BMM method can accurately detect coevolving sites. It is also
an indication that the method is robust to its approximation of
the true null model, the use of a nucleotide site-independent
model to estimate the posterior predictiveP -values. Finally,
it is worth noting that another parametric test,W+, also gen-
erally performs better than the non-parametric tests, and it is
not based on the coevolutionary simulation model.

The results discussed above were measured on simulated
data, where one nucleotide substitution is expected per codon
per branch in the evolutionary tree (becauseωsim = 0.6, the
amino acid substitution rate is lower). Figure 2 examines
the effect of increasing sequence divergence on theP -values
for several statistics. Because the BMM method uses muta-
tional information as data, more mutations on the tree provide
more potential evidence for (or against) coevolution. For this
reason, even though the value of the estimate may change with
increasing evolutionary distance (not shown), power tends to
increase and is retained even when sequence divergence is
high. For example, when the branch length is 4, there are on
average 4 codon substitutions per site per branch (8 between
nearest sequence neighbors), yet LR can still detect nearly
every co-evolving site with a low FP rate (Fig. 2).

With one exception, each of the statistics shown in Table 1
requires the specification of an interaction matrix, the set of
amino acid interactions which are favorable and unfavorable.
The exception is MI, which calculates the mutual infor-
mation in all amino acid substitutions at both sites, not only
those which are compensatory. When compared with MI+
(which utilizes only compensatory substitutions), MI shows
an increase in the mutual information but a dramatic loss in
power in the posterior predictiveP -values. Other tests showed
a similar loss of power when no interaction matrix is specified
(not shown). This reinforces the conclusions of previous stud-
ies (Tufféry and Darlu, 2000; Fukami-Kobayashiet al., 2002):
for a test statistic to maintain power, some hypothesis of the
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Fig. 1. Sensitivity (TP rate) of LR and MI+ at varying critical values on a simulated dataset. Simulation details are given in the Methods, and
Zsim = 2.72 and 1.65 for strongly and moderately coevolving sites respectively.
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Fig. 2. Power of selected test statistics for different levels of divergence, represented as the percentage of significant site pairs detected at a
critical P -value of 0.01. Simulation details are given in the Methods.
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Table 2. Mean and power of each test statistic on interdomain PGK contact pairs (<8 Å apart) versus non-contact pairs (>16 Å apart)

Test statistics With rate heterogeneity Without rate heterogeneity
Mean〈T 〉 % Pairs detected Mean〈T 〉 % Pairs detected

Contact Non-contact Contact Non-contact Contact Non-contact Contact Non-contact

LR 1.08 0.54 12.9 3.3 1.39 0.69 26.7 12.1
Ẑ 1.63 1.31 16.4 4.8 2.11 1.43 32.8 19.3
W+ 0.02 −0.01 2.6 1.2 0.03 0.00 22.4 15.7
S+ 0.00 0.00 0.0 1.2 0.00 0.00 0.0 0.9
MI+ 0.12 0.12 0.0 0.0 0.12 0.12 0.0 0.0
MI 0.24 0.24 0.9 0.1 0.24 0.24 0.0 0.0

Significance is measured at the 0.01 level, with 116 total pairs in the contact dataset and 670 total pairs in the non-contact dataset. On the left side, heterogeneous rates among sites
were used to create the mutational maps and calculate the posterior predictiveP -values.

physicochemical basis of coevolution is necessary. Also, the
fact that an increase in mutual information can still yield a
decrease in power demonstrates how the posterior predictive
P -values correct for the ‘noise’ of substitutions under the null.

Using BMM to detect interacting sites: PGK
PGK is an enzyme involved in the glycolytic pathway,
catalyzing the transfer of a phosphate from ATP to 3-
phosphoglycerate. Catalysis requires closure of the N- and
C-terminal domains of the protein, a hinge action which is
thought to involve significant relative motion between the
two domains (Chandraet al., 1998). Because interdomain
interaction is required for enzymatic function, the evolution
of the amino acids at this interface is likely to be con-
strained (Teichmann, 2002). This constraint is not expected
to be absolute, however; many of the interacting residues are
not completely conserved, indicating that there is some tol-
erance for amino acid substitutions at these positions. Since
such substitutions may alter the fitness environment for nearby
residues, this evolutionary regime of mild deleteriousness
may provide fertile ground for compensatory mutations to
occur. Coevolution between PGK domains has previously
been observed using tree similarity methods (Gohet al., 2000).

To test whether the BMM method and coevolutionary model
were capable of detecting coevolution in PGK, a dataset of
eukaryotic PGK sequences was assembled as described in
the Methods. The sites were paired into two sets accord-
ing to their proximity in the closed-form crystal structure:
interdomain contact pairs and interdomain non-contact pairs.
Table 2 (left side) shows the difference in coevolutionary sig-
nal between these sets for each of the test statistics. The mean
values of LR andẐ are higher on the set of contact pairs,
indicating greater support on average for the coevolutionary
model and a stronger coevolutionary rate ratio at proximal
residues. Several of the other test statistics also show a dif-
ference in their mean values, although the differences are less
pronounced.

The differences in the posterior predictiveP -values are
more clear. At the 0.01 level of significance, 12.9% of the

contact pairs returned a significant value of LR, versus 3.3%
of the noncontact pairs. The difference forẐ is even more
dramatic (16.4% versus 4.8%), although the positive rate on
the non-contact pairs is slightly elevated. None of the non-
parametric tests find a significant signal on the interacting
sites. When the significant contact pairs under the LR test
are mapped onto the crystal structure of PGK, several of the
pairs are located near the terminus of the hinge helix involved
in domain closure. Since domain closure is thought to be
effected by tightening or loosening of the winding in this
helix (Chandraet al., 1998), the coevolutionary signal in these
pairs may reveal functional importance. To test the import-
ance of using site rates to inform theP -value calculations
and mutational mapping steps, the analysis was repeated with
homogeneous rates, and the results are shown on the right
side of Table 2. (The�-distribution of rates was still used to
inform the phylogeny during Step 1, when sampling trees and
substitution parameters; it was not used in generating muta-
tional maps or posterior predictiveP -values.) Although, the
differences are more pronounced in some tests and relatively
more contact sites were found to be significant, in most cases
more non-contact sites were significant as well. For example,
although the number of significant pairs in the contact set
with LR doubled to 27%, the number of significant pairs in
the non-contact set also increased to 12%.

While it is possible that there is some true coevolution occur-
ring in a few non-interacting site pairs, it is more likely that
most of this increase is due to a spurious signal, which is
dampened by the use of rate information in the posterior pre-
dictive P -values (Tufféry and Darlu, 2000). In addition, the
number of truly coevolving site pairs among those in con-
tact is unknown, but other studies have found that only a
fraction of interacting sites in proteins seem to exhibit a coe-
volutionary signal. Nevertheless, it should be noted that the
no-rates BMM method is computationally much faster than
the method which uses rate information. Also, the significant
sites detected using rate information are a complete subset of
the sites detected without rates, indicating that the no-rates
BMM method might be useful as a fast initial screening step
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in determining which sites in a protein to test with the more
discriminate method.

DISCUSSION
In cases where correlated evolution has previously been
examined, it has sometimes been observed that the coevolu-
tionary signal is weak, if it exists at all. It is certainly possible
that correlated substitutions are rare events in protein evolu-
tion, but these results indicate that we are not yet at the limit of
detection. In most simulated regimes, the model-based tests
introduced here have more power than the non-parametric
tests. While the superior performance of the parametric tests
on simulations is due in part to the fact that the simulations
were conducted using the same model structure, it is important
to note that the BMM method is capable of detecting nearly
all the coevolving site pairs when the model has been cor-
rectly specified. In addition, the fact that the model-based
tests detect more correlated substitutions in PGK’s contact
residues is evidence that the model does provide a practical
approximation to the evolution of interacting sites.

The key to the power of any coevolutionary detection
method is that it accounts for the phylogenetic history of
the proteins in some fashion, whether to inform a paramet-
ric model (Pollocket al., 1999), to reconstruct ancestral
states (Fukami-Kobayashiet al., 2002), or to test for signi-
ficance (Atchleyet al., 2000). The BMM method and coe-
volutionary model described here utilize all these approaches,
with the additional benefit that explicit knowledge of the true
tree and its branch lengths are not required. This is less import-
ant when the true tree is well-known, such as in the case of the
simulated datasets, which used a balanced tree that could be
inferred without difficulty using neighbor-joining. But in the
34-sequence PGK dataset used here, there were 157 trees in
the credible posterior set. While many of these trees involve
small shifts in the topology, the Bayesian method accounts
for this uncertainty by integrating over these trees. BMM also
integrates over the substitution rates at each site, leading to a
marked decrease in the rate of detection among non-contact
residues.

When mapping the mutations and calculatingP -values, one
simplifying assumption is that of nucleotide independence.
This is done both for convenience (current Bayesian soft-
ware does not integrate over the coevolutionary model) and
for speed (the computational cost of the simulation and muta-
tional mapping steps increase dramatically with a large state
space). As a result, the model used to simulate the sequences
when calculating theP -values is not the true null model in the
likelihood ratio, although it is still a site-independent model.
The results on simulated datasets show that the method is
relatively robust to these assumptions under the conditions
tested, but it may be feasible to increase the method’s power
by incorporating the coevolutionary model into the integration
and significance testing framework.

Future developments may also focus on improvements to the
likelihood model or development of other test statistics. The
significant improvement in the FP rate gained by including rate
heterogeneity demonstrates how specificity can increase with
a more accurate evolutionary model. The slight increase in the
P -values for LR and̂Z on non-contact sites above the expect-
ation of 1% indicates that there is still room for improvement.
For example, the requirement for a binary interaction matrix is
not an essential one for the model, only for the analytical solu-
tion to the maximum likelihood. It may be possible to derive
an approximate maximum likelihood for the case of a con-
tinuum matrix, thereby allowing more elaborate interactions
to be described. The model analyzed in this study assumes a
constant ‘background’ mutational pressure—selection due to
interaction with other sites not being tested—but the model
can be extended to accommodate heterogeneity in this para-
meter. Once a new statistic is devised it should be relatively
straightforward to test using BMM, since the BMM frame-
work is quite flexible and can utilize a variety of tests which
are informed by the changes on the tree.
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