
Detecting common scientific workflow fragments using
templates and execution provenance

Daniel Garijo
Ontology Engineering Group
Depto. Inteligencia Artificial

Facultad de Informática
Universidad Politécnica de

Madrid
dgarijo@fi.upm.es

Oscar Corcho
Ontology Engineering Group
Depto. Inteligencia Artificial

Facultad de Informática
Universidad Politécnica de

Madrid
ocorcho@fi.upm.es

Yolanda Gil
Information Sciences Institute
and Department of Computer

Science
University of Southern

California
gil@isi.edu

ABSTRACT
Provenance plays a major role when understanding and re-
using the methods applied in a scientific experiment, as it
provides a record of inputs, the processes carried out and
the use and generation of intermediate and final results. In
the specific case of in-silico scientific experiments, a large
variety of scientific workflow systems (e.g., Wings, Taverna,
Galaxy, Vistrails) have been created to support scientists.
All of these systems produce some sort of provenance about
the executions of the workflows that encode scientific ex-
periments. However, provenance is normally recorded at a
very low level of detail, which complicates the understanding
of what happened during execution. In this paper we pro-
pose an approach to automatically obtain abstractions from
low-level provenance data by finding common workflow frag-
ments on workflow execution provenance and relating them
to templates. We have tested our approach with a dataset
of workflows published by the Wings workflow system. Our
results show that by using these kinds of abstractions we
can highlight the most common abstract methods used in
the executions of a repository, relating different runs and
workflow templates with each other.

Categories and Subject Descriptors
I.2.6 [Learning]; I.2 [Artificial Intelligence]

General Terms
EXPERIMENTATION

Keywords
Scientific workflow, provenance, abstraction, Wings

1. INTRODUCTION
A scientific workflow can be seen as a digital instrument

that allows scientists to encode a scientific experiment in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
K-CAP ’13, June 23-26, 2013, Banff, Canada.
Copyright 2013 ACM 978-1-45-03-2102-0/13/06 ...$15.00.

form of a set of computational or data manipulation steps.
Scientific workflows play an important role in the repro-
ducibility and replicability of scientific experiments, as well
as in repurposing and reusing results from previous experi-
ments [13]. Given their importance in the research lifecycle,
scientific workflows are beginning to be included in scientific
publications, together with datasets and other elements used
in the context of an experiment. At the same time, reposi-
tories of workflows like myExperiment [24], Crowdlabs [19]
or Galaxy [10] facilitate workflow publication, exchange and
reuse. These repositories currently store thousands1 2 of
workflows (referred to as workflow templates), which have
been uploaded by scientists in many different domains (rang-
ing from life sciences to text analytics or astronomy [8]).

Given that support for reproducibility and justification
of the obtained results are some of the main roles of scien-
tific workflows, recording the provenance of workflow exe-
cutions has become crucial to gain insight about what hap-
pened when executing a certain workflow, and consequently
to explain what happened in a scientific experiment. Hence
workflow systems like Wings [11], Taverna [20], Vistrails [5]
or Kepler [18] allow recording and exporting the provenance
of workflow executions (according to different provenance
models) along with their workflow templates.

These workflow templates and the provenance associated
to their executions are used for different purposes: detection
of the source of an error in a particular execution, determin-
ing workflow similarity among workflows [12] [1], automatic
workflow mining for helping in workflow design [17], etc.

However, execution provenance traces are often provided
at a too low granularity, what makes the execution difficult
to understand (especially for users that were not involved
in the workflow development process). As a first step to
address this issue, we have previously built a catalog of typ-
ical abstractions that generalize the computational steps fol-
lowed by the workflow (called workflow motifs3 [8]). Sample
workflow motifs that we manually identified in our catalog
include data preparation, data cleaning, data moving, data
retrieval and workflow overloading. Similarly to earlier work
in problem solving methods [22], workflow motifs add a layer
of abstraction that generalizes the functionality of each step
or set of steps, helping scientists to understand the main
functionality of the workflow. Motifs also help relating a

1http://www.myexperiment.org/workflows
2http://www.crowdlabs.org/vistrails/workflows/
3http://purl.org/net/wf-motifs

workflow to other workflows, for instance those in a reposi-
tory.

This paper describes our work towards the automatic de-
tection of these types of motifs from the provenance traces
generated by the executions of a workflow or of a set of work-
flows in a repository. In particular, we are interested in find-
ing common workflow fragments within a workflow (Internal
Macro motif), as well as identifying the most common work-
flow fragments in a repository (Composite Workflow motif),
which are two of the motifs that we identified in previous
work [8].

Detecting these motifs has several benefits, which are strongly
related to the lifecycle of scientific research:

1. Workflow/experiment reuse and discovery, by making
explicit the overlapping parts of a workflow with other
workflows of the catalog. This is useful for scientists in-
terested in exploring workflows with overlapping frag-
ments of similar functionality.

2. Workflow/experiment understandability, by grouping
several specific workflow templates or executions within
a single abstract workflow fragment, which describes
them in a more generic way. This is useful for scien-
tists to find out the different ways of performing an
abstract method.

3. Workflow/experiment design: by proposing as new work-
flow templates the most popular fragments obtained
from workflow templates or workflow execution prove-
nance traces. This is particularly useful in repositories
of complex workflow execution provenance traces with
barely any workflow templates to relate them.

A distinctive feature of our approach is that we use seman-
tic representations to infer generalizations of the same tem-
plate or execution from different workflows. This is achieved
by exploiting taxonomies of workflow components used for
designing the workflow. We have tested our method with
workflow templates and provenance traces of their execu-
tions in a text analytics domain [15]. These workflows have
been developed and executed with the Wings workflow sys-
tem [11], and the templates and provenance traces are ex-
posed as Linked Data4, using the Open Provenance Model
for Workflows (OPMW) [9], a model that captures prove-
nance and plans of scientific workflows, aligned with the
W3C standard for Provenance5 (PROV).

This paper is structured as follows. Section 2 introduces
the main terminology used in the document, along with the
descriptions of the main abstractions we aim to identify in
the workflows. Section 3 describes the approach that we
follow to detect commonalities between workflows, and how
we have used inference in this process. Section 4 discusses
the results of our approach, comparing them to a manual
detection approach. Section 5 describes the related work on
pattern recognition and workflow discovery, and in Section
6 we discuss our planned lines of work in order to improve
the current results.

2. WORKFLOW ABSTRACTIONS
This section introduces relevant distinctions about work-

flows. Section 2.1 introduces the terminology used in our

4http://www.opmw.org/sparql
5http://www.w3.org/TR/prov-o/

work, using examples from abstractions in a text analytics
domain described in [15]. Section 2.2 explains the different
types of abstractions we aim to identify based on our work
on workflow motifs [8].

2.1 Terminology
A workflow template connects the steps of the workflow

together, its inputs, intermediate results and expected out-
puts, and defines their types and dependencies. There are
two types of workflow templates, as illustrated in Figure 1:

1. Abstract workflow template: Template where some steps
of the workflow are not bound to a specific component
(i.e., a particular implementation of an algorithm, web
service, etc.). The abstract workflow template aims to
capture the scientific method used in an experiment,
independently from a specific tool or service. For ex-
ample, Figure 1 shows an abstract template on the
left, where the ”Stemmer” and ”TermWeighting” com-
ponents are methods that can be specialized with dif-
ferent algorithms shown in the component taxonomy
of the right of the figure.

2. Specialized workflow template: Template in which all
the steps are bound to a specific service, tool or code.
It is more specific than the abstract workflow tem-
plate. In Figure 1, two specialized workflow templates
are shown in the middle: every step specializes a step
of the same abstract template (left) according to the
taxonomy of components (on the right of the figure).

A workflow execution provenance trace is a structured log
of the workflow execution results. It contains details on
how every intermediate result and output was generated by
each of the steps and their dependencies (i.e., the complete
provenance of the execution).

We assume for this work that both workflow templates
and execution provenance traces can be represented as di-
rected acyclic graphs (DAGs), which is the most common
representation in data-oriented scientific workflows. There-
fore templates with conditionals and loops are out of the
scope of this paper.

2.2 Types of workflow abstractions
Catalogs of patterns (or of problem solving methods) rel-

evant for the creation of complex methods have been exten-
sively studied in the literature for a large number of scientific
and non-scientific domains [25, 8, 22]. Given a set of work-
flow templates and/or provenance execution traces we aim
to detect the following two types of patterns:

1. Internal Macros: This kind of abstraction refers to
groups of steps in a workflow that correspond to repet-
itive patterns of combined tasks. An example can be
seen in Figure 2, showing a workflow for document
classification. Part of the branches of the workflow per-
form the same tasks (StopWords, SmallWords, Stem-
mer, TF IDF, Multi2Single, FormatArff), so we can
consider them as an internal macro. Although this
pattern might be easy to spot manually in simpler tem-
plates, it gets increasingly hard to detect when work-
flows grow in size.

2. Composite workflows: Abstraction referring to a work-
flow composed by one or more sub-workflows. In this

Figure 1: Example of an abstract workflow template (left), two different specialized workflow templates (cen-
ter) and the taxonomy of workflow components (right). Computational steps are represented in rectangles,
while inputs, intermediate results and outputs are represented with ovals.

work we have expanded the original definition in [8],
considering under this category those workflows with
overlapping fragments. Figure 3 shows an example of
a composite workflow, where a template for stemming
a document appears in another template for feature
selection. Note that the Stemmer step is specialized in
the larger workflow, so it is not an exact match.

3. AUTOMATIC DETECTION AND GENER-
ALIZATION OF WORKFLOW ABSTRAC-
TIONS

Given a dataset that contains both workflow templates
and workflow execution provenance traces, our goal is to
detect Internal Macros and Composite Workflows. We face
two major challenges in our work:

1. Detection of common workflow fragments in the work-
flow dataset. It is important to note that we are not
interested in retrieving just the largest common sub-
workflows, but also the most frequent smaller work-
flows.

2. Generalization of workflow fragments to derive abstract
workflow templates. For instance, two different work-
flow templates may be in fact specializations of the
same abstract workflow template. By noting explicitly
their common abstract workflow fragments, we make
them comparable and easier to understand (both are
alternative implementations of the same method).

We describe next how we have approached each of these
of challenges.

3.1 Common workflow fragment detection
If we consider a workflow as a dataflow graph, we can

use graph algorithms to detect common fragments as com-
mon subgraphs. We represent the workflow templates and
the workflow execution provenance traces as labeled graphs.

Nodes are labeled with the types of the workflow compo-
nents of the taxonomy (e.g., TF or LovinsStemmer in Fig-
ure 1) and the types of the data being used and produced
in the workflow (e.g., Dataset in Figure 1); while the edges
are labeled with the dependencies of the workflow (usage
when a computational process consumes an input and gener-
ation when a computational step produces an output). Our
goal is finding the maximum overlapping subgraphs between
N different graphs, where N corresponds to the number of
workflows or execution provenance traces available in the
dataset. Since this problem can be reduced to the subgraph
isomorphism problem between two graphs, its complexity is
NP-Complete [7].

Trying to make a naive comparison of workflows in a
repository (e.g., by comparing them in an all-against-all
manner) would lead to inefficient and limited solutions for
the problem that we are trying to solve, given its complexity.
To address this, we use the SUBDUE algorithm [16], which
allows learning the most relevant context-free grammar from
a set of labeled graphs. This grammar highlights the most
frequent structures found in the graph and evaluates each
candidate structure according to the way it compresses the
overall collection graph. SUBDUE proposes to use two dif-
ferent metrics for compressing the graph with the production
rules of the grammar:

1. The Minimum Description Length (MDL), where the
best structure is the one that minimizes the description
length of the entire data set (i.e., the bits needed for
its encoding) [6].

2. The size of the graph, which aims at finding the struc-
ture that best reduces the size of the overall collection
graph.

We apply SUBDUE independently for each of the work-
flows to capture Internal Macros, and taking as input the
whole collection to detect Composite Workflows. A filtering
step is then applied to the results of SUBDUE in order to
remove the non complex and repeated structures.

Figure 2: Example of an internal macro within a
workflow for feature selection. Two branches have
the same sequence of steps.

3.2 Workflow template and workflow execu-
tion provenance trace generalization

A key feature of our approach is that we can general-
ize workflow templates and workflow execution provenance
traces in order to derive abstract workflow fragments. The
set of abstract workflow fragments is based on a taxonomy
of components that can be associated to a catalog of work-
flow components. An example of this type of abstraction
can be seen in Figure 1, where starting from any of the spe-
cialized templates in the center plus the taxonomy shown
at the right of the figure we can generalize the specialized
templates to the abstract template on the left.

This generalization requires an additional step of the in-
put graphs before executing the SUBDUE algorithm. The
generalization step replaces the types of the nodes of a given

Figure 3: Example of a composite workflow. An ab-
stract workflow template used for stemming (right)
is part of another that performs a feature selection
of the input data (left).

workflow template or workflow execution provenance trace
with their appropriate superclass in the taxonomy of com-
ponents. We abstract all the workflow steps to the most
generic class in the taxonomy of workflow components, en-
suring that maximum abstraction is provided. The level of
abstraction can be changed by modifying the taxonomy (for
example, by removing a class if considered too generic).

4. RESULTS
This section presents the results of our analysis, which

aim at answering whether the application of our approach
allows obtaining the same type of fragments that would be
obtained by manual inspection or not. The experiment setup
is presented in Section 4.1, while the individual analysis for
each type of abstraction is done in Section 4.2 for Internal
Macros and Section 4.3 for Composite Workflows.

4.1 Workflow datasets

Table 1: Results for detecting Internal Macros. The analysis is performed on execution provenance traces
and templates without applying generalization (no gener) and applying it (gener)

Executions Templates Manual Analysis
No gener Gener No Gener Gener

Fragments found
MDL 22 39 15 24
size 22 35 15 24 3

Irreducible fragments
MDL 17 31 11 15
size 17 26 11 15 3

Multi-step fragments
MDL 8 8 9 9
size 8 8 9 9 3

Filtered multi-step fragments
MDL 2 2 3 3
size 2 2 3 3 3

Table 2: Results for detecting Composite Workflows. The analysis is performed on execution provenance
traces and templates without applying generalization (no gener) and applying it (gener)

Executions Templates Manual Analysis
No gener Gener No Gener Gener

Fragments found
MDL 11 13 18 18
size 30 22 27 26 9

Irreducible fragments
MDL 8 10 10 14
size 21 15 19 19 7

Multi-step fragments
MDL 5 6 7 7
size 7 10 6 7 4

Filtered multi-step fragments
MDL 5 6 7 7
size 7 10 6 7 4

Fragments found automatically and manually
MDL 3 4 7 5
size 3 4 7 5 9

Occurrences of all fragments
MDL 43 42 59 49
size 111 78 92 84 22

Occurrences of multi-step fragments
MDL 24 33 27 25
size 28 45 25 30 17

Occurrences of filtered multi-step fragments
MDL 24 33 27 25
size 28 45 25 30 17

We have selected a dataset that contains 22 workflow tem-
plates specified using the Wings workflow system6 [11]. We
also use a dataset of 30 workflow execution provenance traces
obtained from the executions of the 22 workflow templates
and annotated according to the Open Provenance Model for
Workflows (OPMW) [9]. Both datasets are in the domain
of text analytics.

This specific domain and datasets have been selected for
our experiment for four reasons:

• They contain abstract and specific templates in the same
domain, which gives many alternatives for abstractions
of executions.

• They contain several workflow executions that corre-
spond to the same template, allowing to detect different
common fragments between workflow templates and
workflow execution provenance traces.

• They contain workflow execution provenance traces that
had execution errors when running the workflow, which
provides the means to test our capabilities to deal with
incomplete provenance graphs.

• They have been manually analyzed (as described in [8]),
so as to identify the Internal Macros and Composite

6http://www.wings-workflows.org/

Components in it. These annotations are used in our
evaluation to assess the applicability and goodness of
our approach in this domain.

It is important to note that, as aforementioned, all work-
flow execution provenance traces and workflow templates
are annotated with OPMW, which is a model for represent-
ing scientific processes and their execution provenance. The
repository from which the datasets have been used is avail-
able online7 following Linked Data principles [2]. OPMW
extends the Open Provenance Model (OPM) [21] and the
recent W3C Standard for Provenance PROV8 in order to
be interoperable with other representations of provenance.
In OPMW, all the inputs, intermediate results and out-
puts of a given execution are WorkflowExecutionArtifacts,
while each step executed in the workflow is a Workflow-
ExecutionProcess. WorkflowExecutionArtifacts are gener-
ated by WorkflowExecutionProcesses and WorkflowExecu-
tionProcesses use other WorkflowExecutionArtifacts. This
way the basic provenance for each execution is captured
and preserved, being stored as a DAG. A similar approach
is provided to link the data dependencies of the workflow
templates.

4.2 Internal macro results
7http://www.opmw.org/sparql
8http://www.w3.org/TR/prov-o/

Table 1 shows a summary and comparison of the work-
flow fragments found by our automated approach with re-
spect to those found by the manual annotation. The analysis
was performed on workflow execution provenance traces and
workflow templates independently using both of the metrics
described in Section 3.1 (MDL and Size). Generalization
was applied to the workflows, so as to determine whether
more fragments could be found. For each type of analysis,
we show several intermediate results: total number of frag-
ments found, the irreducible fragments (i.e., fragments that
are not composed of simpler fragments) and the number of
multi-step fragments (i.e., fragments that combine at least
two of either processing steps or irreducible fragments with
a processing step). The number of filtered multi-step frag-
ments (i.e., multi-step fragments that already include other
smaller fragments with the same number of occurrences as
the larger fragment) is highlighted in Table 1 because it rep-
resents the final workflow fragments found.

Our goal is to maximize the number of filtered multi-step
fragments, since regular multi-step fragments may be dis-
carded. For example, Figure 2 shows a multi-step fragment
composed of six steps (StopWords, SmallWords, Stemmer,
TF IDF, Multi2Single and FormatArff) and also a smaller
multi-step fragment with just SmallWords and StopWords
(included in the larger fragment). The filtering step discards
the smaller fragment and keeps the larger one because they
appear with the same frequency in the workflow (twice). If
the workflow had a third branch with a StopWords step and
a SmallWords step, the number of occurrences of the frag-
ment would be three instead of two and therefore it would
be considered a filtered multi-step fragment.

The total number of multi-step fragments is higher than
the filtered multi-step fragments due to the way the algo-
rithm operates. SUBDUE takes the input graph and ex-
pands each of the nodes in every iteration, returning the
best fragment compressing the graph according to the met-
rics described in Section 3.1. Therefore the most general
fragment is returned in the latest iterations of the algorithm,
using the fragments detected previously. In contrast, in the
manual annotation only the most general fragment is con-
sidered.

The best results are obtained when running the algorithm
to find multi-step fragments and filtering them. These re-
sults match almost perfectly the ones found with the manual
analysis. Most of the multi-step fragments of the manual
analysis have been found with the application of our ap-
proach (2 out of 3 filtered multi-step fragments in the work-
flow execution provenance traces, 3 out of 3 filtered multi-
step fragments in the workflow templates). The number of
internal macros detected in the workflow execution prove-
nance traces is lower because some executions had failed,
and hence the provenance graph corresponding to that part
of the workflow was missing in the execution provenance
traces.

Another interesting fact is the high number of fragments
that are discarded from those obtained by SUBDUE (i.e.,
not filtered multi-step fragments), with a maximum of 31
out of 39 in executions with generalization. These fragments
usually contain a single processing step, so they are not rel-
evant for our results. Their presence is motivated in the
executions by the instantiation of collections. An example
can be seen in Figure 2, where the Multi2Single step pro-

duces a collection of Single1 results that are consumed in
parallel by a collection of FormatArff steps. In templates,
the number of occurrences of discarded fragments is high
when a single component is shared among many templates
(with different specializations of the same abstract method).

4.3 Composite Workflow Results
Regarding the Composite Workflow detection, Table 2

shows the results obtained after the execution of the algo-
rithm. The first four rows of the Table measure the number
of fragments found, the irreducible fragments, the multi-step
fragments and the filtered multi-step fragments (as in Ta-
ble 1). It also shows the fragments found automatically and
manually (i.e., number of fragments that are equal to any
of the fragments identified in the manual annotation). The
rest of the rows measure the occurrences of the detected frag-
ments (in order to know how many times has the detected
fragments been found in the workflow dataset), the occur-
rences of the multi-step fragments and the occurrences of
filtered multi-step fragments in the workflow dataset. As
we did with the previous analysis, the algorithm was run
with different metrics (MDL and Size) and with generalized
and non-generalized workflows. The filtered multi-step frag-
ments are highlighted in Table 2.

The fragments found automatically often overlap with the
ones identified manually (with a minimum of 3 and a max-
imum of 7 overlapping fragments over executions and tem-
plates). The occurrences of the filtered multi-step fragments
obtained by the automatic results are higher than the num-
ber of fragments identified manually (ranging from 25 to a
maximum of 45 versus 17). This indicates that the frag-
ments found automatically highlight better the most frequent
subworkflows and provide better coverage of the dataset than
those detected manually.

Manual and automatic analyses show different results be-
cause their scope is slightly different. On one hand, the
manual analysis identifies the subworkflow relationships be-
tween different workflows in the dataset, detecting whether
a workflow is included in other workflows or not. On the
other hand, the automatic analysis aims at finding the most
common fragments between the workflows of the dataset,
including subworkflows.

Although most of the results obtained by the algorithm
share the main core of common workflow fragments, the best
results are found in the workflow execution provenance traces
with generalization and using the size metric (up to 10 multi-
step fragments with 45 occurrences in the workflow dataset).
The explanation of this result is related to the number of ex-
ecutions that specialize abstract workflow templates in dif-
ferent ways: when applying generalization, the fragments
found are likely to be grouped around the abstract template
with most executions. In contrast, generalization does not
improve significantly the number of multi-step fragments in
templates, as the amount of specialized templates available
in the dataset is not high (in most cases just the abstract
templates are available). Similarly to what happened in the
Internal Macro analysis, the results of the executions differ
from those obtained by the templates because of collections
and incomplete executions. Therefore, the workflow frag-
ments detected in the executions represent the most com-
mon portions of workflows executed successfully.

A limitation of our approach is regarding the selection
of overlapping candidate fragments. An example can be

seen in Figure 4. Two different workflows, the one in the
left side of Figure 4 (1) and the one in the right side of
the Figure (2), overlap partially within another workflow
represented in the center. The fragment that better reduces
its graph is (1), but reducing the graph with it leads to avoid
the full detection of (2) (instead, the fragment will be just
the ”C” and ”output” resources). This is not ideal, since it
reduces the number of filtered multi-step fragments we are
looking for (by avoiding the full detection of (2), we may be
discarding a valid fragment).

Figure 4: Example of 2 conflicting candidate frag-
ments in three different workflows. The fragment
that best compresses the overall graph is (1), lead-
ing to (2) not being detected properly.

All the input, results and logs obtained from the execution
of our approach can be found online9.

5. RELATED WORK
Finding commonalities among fragments of workflows is

related to the workflow discovery and graph-based compar-
isons problems. Goderis and colleagues [12] apply sub-graph
isomorphism techniques combined with semantic technolo-
gies for creating a ranking to find the similarities between a
repository of workflow and an input workflow. Similarly, in
[1], Bergmann and Gil use graph matching techniques and
semantic annotations to find similarities between a template
and a repository of existing workflows. Our work is different
from these approaches in that we are not interested on the
relation of singular templates with other templates of the
repository, but common fragments among all of them.

Other work approaches this problem from data mining or
case-based reasoning perspectives. Leake and Kendall-Mor-
wick [17] propose to use case-based reasoning over prove-
nance execution traces in order to help users with sugges-
tions for the creation of new workflows. The suggestions
are created detecting similarities of the new workflow with
previous existing ones, which is another form of sub-graph
isomorphism. Yaman et al [26] also propose to mine ex-
isting provenance executions, combining the control flow
and dataflow of existing workflows in order to approximate

9http://www.oeg-upm.net/files/dgarijo/kcap2013Eval

to a target workflow. This work is integrated within the
POIROT framework [4], used to learn complex hierarchical
task models from user-generated traces. The main difference
with respect to our work is that we aim at making explicit
the relation among the workflows in the dataset rather than
learn or suggest similar workflows to a given one. However,
while our purpose is not to learn the main method derived
from the workflow dataset, the workflow fragments that we
detect could be suggested as new templates for users.

Finally, another area of related work is the automatic de-
tection of Problem Solving Methods (PSMs), which describe
the reasoning process to achieve the goal of a task in an
implementation and domain-independent manner. Gómez-
Pérez and Corcho [14] used graph matching techniques to
find specific PSMs in provenance logs. This is related to our
work since we also look for fragments in a workflow dataset,
but in our case the fragments are not defined beforehand, as
it is the case for that work. These common fragments could
be seen as automatically detected PSMs, since they encode
the common method shared among several workflows for
achieving a subgoal.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have described an approach for the au-

tomatic detection of the most common workflow fragments
among a scientific workflow dataset, using as input a repos-
itory of workflows that can be either workflow templates or
workflow execution provenance traces. We have focused on
two types of workflow fragments: those that occur within
a workflow (Internal Macros) and those that occur among
several workflows (Composite Workflows). We have shown
that our proposed approach is able to detect filtered com-
plex fragments successfully and generalize fragments from
workflows and provenance traces of their executions.

Our approach uses SUBDUE algorithm, which derives the
most relevant context-free grammar of a given graph. Our
results demonstrate that this approach finds the workflow
fragments with most occurrences, improving the results of
manual sub-workflow detection within the fragments of the
dataset.

We are currently pursuing different lines of work in or-
der to improve our approach. First, we are analyzing how
to detect other relevant abstractions regarding the relations
between workflows, like workflow overloading (i.e., detec-
tion of workflows with the same processing steps but dif-
ferent datatypes). Second, we are looking to extend our
approach by adding extra data preparation steps to sim-
plify the graph, or even transformations [3] for reducing the
search space. Some of these improvements could help to
overcome the overlapping limitation exposed in Section 4.
We are also planning to test our approach with traces and
templates from other systems with existing taxonomies of
components, such as GenePattern [23] or Galaxy [10]; and
from systems without them, such as Taverna [20] or Vis-
trails [5]. Finally, we plan to explore workflows with ad-
ditional constructs such as conditionals and iterations. We
have been using SUBDUE for DAGs, but the algorithm is
capable of discovering any fragment as long as it can be
encoded in a labeled graph (including cyclic graphs).

7. ACKNOWLEDGMENTS
This research was supported in part by the Wf4Ever Eu-

ropean project (FP7-270192), an FPU grant (Formación de
Profesorado Universitario) from the Spanish Science and In-
novation Ministry (MICINN), the MyBigData project from
the Spanish Science and Innovation Ministry (TIN2010-17060)
and the US Air Force Office of Scientific Research with grant
number FA9550-11-1-0104.

8. REFERENCES
[1] R. Bergmann and Y. Gil. Similarity assessment and

efficient retrieval of semantic workflows. To appear in
the Information Systems Journal, 2012.

[2] C. Bizer, T. Heath, and T. Berners-Lee. Linked data -
the story so far. International Journal on Semantic
Web and Information Systems, 5(3):1–22, 2009.

[3] S. C. Boulakia, C. Froidevaux, and J. Chen. Scientific
workflow rewriting while preserving provenance. In 8th
IEEE International Conference on eScience 2012,
pages 1–9, Chicago, 2012. IEEE Computer Society
Press, USA.

[4] M. H. Burstein, R. Laddaga, D. D. McDonald, M. T.
Cox, B. Benyo, P. Robertson, T. S. Hussain, M. Brinn,
and D. V. McDermott. Poirot - integrated learning of
web service procedures. In AAAI, pages 1274–1279,
2008.

[5] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger,
C. T. Silva, and H. T. Vo. Vistrails: Visualization
meets data management. In ACM SIGMOD, pages
745–747. ACM Press, 2006.

[6] D. J. Cook and L. B. Holder. Substructure discovery
using minimum description length and background
knowledge. Journal of Artificial Intelligence Research,
1:231–255, 1994.

[7] S. A. Cook. The complexity of theorem-proving
procedures. In Proceedings of the third annual ACM
symposium on Theory of computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

[8] D. Garijo, P. Alper, K. Belhajjame, O. Corcho, Y. Gil,
and C. Goble. Common motifs in scientific workflows:
An empirical analysis. In 8th IEEE International
Conference on eScience 2012, Chicago, 2012. IEEE
Computer Society Press, USA.

[9] D. Garijo and Y. Gil. A new approach for publishing
workflows: Abstractions, standards, and linked data.
In Proceedings of the 6th Workshop on Workflows in
support of large-scale science, pages 47–56, Seattle,
2011. ACM.

[10] B. Giardine et al. Galaxy: A platform for interactive
large-scale genome analysis. Genome Research,
15(10):1451–1455, Oct 2005.

[11] Y. Gil, V. Ratnakar, J. Kim, P. A. González-Calero,
P. T. Groth, J. Moody, and E. Deelman. Wings:
Intelligent workflow-based design of computational
experiments. IEEE Intelligent Systems, 26(1):62–72,
2011.

[12] A. Goderis, P. Li, and C. A. Goble. Workflow
discovery: the problem, a case study from e-science
and a graph-based solution. In ICWS, pages 312–319,
2006.

[13] A. Goderis, U. Sattler, P. W. Lord, and C. A. Goble.
Seven bottlenecks to workflow reuse and repurposing.
In International Semantic Web Conference, pages
323–337. Springer, 2005.

[14] J. M. Gómez-Pérez and O. Corcho. Problem-solving
methods for understanding process executions.
Computing in Science and Engineering, 10(3):47–52,
May 2008.

[15] M. Hauder, Y. Gil, and Y. Liu. A framework for
efficient data analytics through automatic
configuration and customization of scientific
workflows. In Proceedings of the 2011 IEEE Seventh
International Conference on eScience, ESCIENCE ’11,
pages 379–386, Washington, DC, USA, 2011. IEEE
Computer Society.

[16] L. B. Holder, D. J. Cook, and S. Djoko. Substructure
Discovery in the SUBDUE System. AAAI Workshop
on Knowledge Discovery, pages 169–180, 1994.

[17] D. Leake and J. Kendall-Morwick. Towards case-based
support for e-science workflow generation by mining
provenance. In Proceedings of the 9th European
conference on Advances in Case-Based Reasoning,
ECCBR ’08, pages 269–283, Berlin, Heidelberg, 2008.
Springer-Verlag.

[18] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the kepler
system. Concurrency and Computation: Practice and
Experience, 18(10):1039–1065, 2006.

[19] P. Mates, E. Santos, J. Freire, and C. T. Silva.
Crowdlabs: Social analysis and visualization for the
sciences. In 23rd International Conference on
Scientific and Statistical Database Management
(SSDBM), pages 555–564. Springer, 2011.

[20] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan,
A. Nenadic, I. Dunlop, A. Williams, T. Oinn, and
C. Goble. Taverna, reloaded. In 22nd International
Conference on Scientific and Statistical Database
Management (SSDBM), Heidelberg, Germany, 2010.

[21] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil,
P. Groth, N. Kwasnikowska, S. Miles, P. Missier,
J. Myers, B. Plale, Y. Simmhan, E. Stephan, and
J. Van den Bussche. The Open Provenance Model core
specification (v1.1). Future Generation Computer
Systems, July 2010.

[22] A. G. Pérez and R. Benjamins. Applications of
ontologies and problem-solving methods. AI
Magazine, 20(1), 1999.

[23] M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo,
and J. P. Mesirov. Genepattern 2.0. Nature Genetics,
38:500 – 501, 2006.

[24] D. D. Roure, C. A. Goble, and R. Stevens. The design
and realisation of the myExperiment virtual research
environment for social sharing of workflows. Future
Generation Comp. Syst., 25(5):561–567, 2009.

[25] W. M. P. van der Aalst, A. H. M. ter Hofstede,
B. Kiepuszewski, and A. P. Barros. Workflow patterns.
Distributed and Parallel Databases, 14(1):5–51, 2003.

[26] F. Yaman, T. Oates, and M. Burstein. A context
driven approach for workflow mining. In Proceedings
of the 21st international jont conference on Artifical
intelligence, IJCAI’09, pages 1798–1803, San
Francisco, CA, USA, 2009. Morgan Kaufmann
Publishers Inc.

