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SUMMARY Multi-attributed graphs, in which each node is character-
ized by multiple types of attributes, are ubiquitous in the real world. Detec-
tion and characterization of communities of nodes could have a significant
impact on various applications. Although previous studies have attempted
to tackle this task, it is still challenging due to difficulties in the integra-
tion of graph structures with multiple attributes and the presence of noises
in the graphs. Therefore, in this study, we have focused on clusters of at-
tribute values and strong correlations between communities and attribute-
value clusters. The graph clustering methodology adopted in the proposed
study involves Community detection, Attribute-value clustering, and deriv-
ing Relationships between communities and attribute-value clusters (CAR
for short). Based on these concepts, the proposed multi-attributed graph
clustering is modeled as CAR-clustering. To achieve CAR-clustering, a
novel algorithm named CARNMF is developed based on non-negative ma-
trix factorization (NMF) that can detect CAR in a cooperative manner. Re-
sults obtained from experiments using real-world datasets show that the
CARNMF can detect communities and attribute-value clusters more ac-
curately than existing comparable methods. Furthermore, clustering re-
sults obtained using the CARNMF indicate that CARNMF can success-
fully detect informative communities with meaningful semantic descrip-
tions through correlations between communities and attribute-value clus-
ters.
key words: clustering, community detection, non-negative matrix factor-
ization

1. Introduction

Community detection is a task to detect densely connected
subgraphs as communities. Nodes in a community tend to
share same or similar properties, such phenomenon is called
homophily effect [1], [2], meaning that nodes having sim-
ilar properties tend to link together. Because diverse ap-
plications are derived from the nature of real communities,
community detection is important in graph/network analy-
ses. Examples include node property estimations [3]–[5],
community-wise information recommendations [6], and se-
mantic reasoning for nodes/edges [7].
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Moreover, using the attributes in a graph is advanta-
geous to realize high-quality community detection as well
as to understand the characteristics of communities. Multi-
attributed graphs are reasonable models of real-world net-
works such as social networks, co-author networks, protein-
protein interaction networks, etc. In fact, several works have
proposed algorithms that employ attribute information (i.e.,
shared interests or functional behaviors of each community)
to detect not only communities but also their semantic mean-
ings [8]–[11].

However, community detection and extraction of se-
mantics in multi-attributed graphs remain challenging due
to difficulties on integrating graph structures and multiple
attributes of different types. Community detection and ex-
traction of semantics involve multiple steps. First, useful
information from each attribute must be extracted because
certain node attributes describe different aspects. Second,
all extracted information must be exploited to enhance com-
munity detection by effectively integrating heterogeneous
information. Notice that the previous works [8]–[11] do not
differentiate multiple attributes, that is, they consider multi-
ple attributes equally. Moreover, real-world graphs are of-
ten incomplete and noisy. That is, some edges or nodes may
be missing or attribute values may contain incorrect values,
leading to inappropriate results.

To overcome these difficulties, we propose a novel
clustering scheme based on the following two assumptions:
(1) Relevant attribute values form clusters by attribute type.
This is based on the observation that an attribute reflects a
node’s interests in a network. Hence, an attribute tends to
be associated to a specific group of values related to an in-
terest. For example, in a co-author network where the nodes
correspond to the authors (researchers), each author typi-
cally has specific research interests (e.g., AI, data mining,
and database). Thus, attributes (e.g., paper title and confer-
ence) present biased values according to interests. Conse-
quently, it is possible to identify clusters of attributes values
(attribute-value clusters) reflecting a node’s interests.
(2) Communities are strongly correlated with attribute-
value clusters. This is related to the previous assump-
tion. Consider the example above. The nodes in a com-
munity share similar interests (e.g., research interests) and
consequently, similar attribute-value clusters (e.g., research
topics, and conferences). Conversely, if some nodes (re-
searchers) have similar attribute values, they should share
similar interests and can be grouped in the same commu-
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nity.
Exploiting the correlation between communities and

multiple attributes should improve the quality of community
detection as well as attribute-value clustering. Using the in-
formation from different sources (attributes) to alleviate the
effect of noise (e.g., missing values and errors), we simulta-
neously implement community detection and attribute-value
clustering.

Based on the aforementioned ideas, we study a novel
clustering scheme for multi-attributed graphs, called CAR-
clustering. CAR includes Community detection, Attribute-
value clustering, and deriving Relationships between com-
munities and attribute-value clusters for multi-attributed
graphs. Additionally, we develop a novel clustering algo-
rithm called CARNMF, which employs a non-negative ma-
trix factorization (NMF).

The contributions of this paper are summarized as fol-
lows:

• We propose a novel clustering scheme CAR-clustering
to address two technical questions. (i) Given a multi-
attributed graph, how can community detection and
attribute-value clustering be performed for different
types of attributes in a cooperative manner? (ii) How
should reasonable relationships be determined between
communities and attribute-value clusters for each type
of attribute?

• We develop a novel algorithm CARNMF, which
achieves CAR-clustering. Specifically, a dedicated loss
function is designed to perform multiple NMFs simul-
taneously.

• We conduct experiments using real-world datasets
(DBLP computer science bibliography and arXiv
physics bibliography). The accuracy of CARNMF with
respect to community detection and attribute-value
clustering and a comparison to other methods are ex-
amined. Relative to comparative methods, CARNMF
achieves a better accuracy of up to 11% for community
detection and up to 22% for attribute-value clustering.
Furthermore, CARNMF detects informative communi-
ties and their rich semantic descriptions by correlating
multiple types of attribute-value clusters.

A preliminary version of this paper appeared in [12].
More surveys, detailed explanation of proposed method and
experiments are included in the journal version. The rest
of the paper is organized as follows: In Sect. 2, we sum-
marize the related works. We provide formal deffinitions
of input graph model and our research objectives in Sect. 3.
We propose our method CARNMF in Sect. 4. We examine
CARNMF in several experiments in Sect. 5 and conclude
the article in Sect. 6.

2. Related Work

Community detection in graphs is a current topic of interest
in graph analysis and AI research. Existing works for non-
attributed graphs can be categorized according to the tech-

niques used: graph separation [4], [13], probabilistic gener-
ative model [14], and matrix factorization [5], [15], [16]. [4]
defined modularity, which indicates how separated a com-
munity is from other nodes. More comprehensive surveys
can be found in [17], [18].

Recently, several works have addressed the problem of
detecting communities and their semantic descriptions on
node-attributed graphs. [10] proposed CESNA, where com-
munities and their attributes are simultaneously detected in
an efficient manner. [8] proposed SCI to detect communi-
ties and their semantics using NMF. [9] proposed a prob-
abilistic generative model called the author-topic model to
model communities and related topics. [19] proposed CO-
MODO to detect communities with shared properties using
subgroup discovery techniques. [20] proposed a method for
detecting communities and their descriptions from an at-
tributed graph where detection of communities and induc-
tion of description are alternated. [21] proposed a joint com-
munity profiling and detection model which characterizes
communities with user published contents and user diffu-
sion links. Likewise, [11] proposed LCTA, where commu-
nities and their topics are modeled separately, and then their
relationships are modeled using a probabilistic generative
model. A comprehensive survey over these works can be
found in [22].

The aforementioned works only consider single textual
attributes or uniformly handle multiple attributes without
any distinction. In reality, each attribute represents different
aspects of the nodes. In our research, we deal with heteroge-
neous attributes individually. In addition to community de-
tection, we perform clustering over attribute values for each
attribute, which, in turn, can be used to improve the quality
of communities detected.

Some works have investigated clustering over networks
containing different types of nodes and/or edges. [23] stud-
ied community detection with characterization from multi-
dimensional networks, which is defined as a graph consist-
ing of a set of nodes and multiple types of edges. [24] stud-
ied subgraph detection from multi-layer graphs with edge
labels. In contrast, we assume a different model where each
node is characterized by multiple attributes. As we shall
see later, we model multiple attributes using different types
of nodes, and community detection as well as attribute-
value clusterings can be described on such a graph consist-
ing of different types of nodes (nodes and multiple types
of attribute values), and try to detect communities over the
nodes as well as the clusters over other types of attribute
values. [25] proposed a scheme of ranking-based cluster-
ing for multi-typed heterogeneous networks, where two or
more types of nodes are included. Similarly, [26] proposed
an NMF-based method for such networks. These methods
differ from ours in that they define a cluster consisting of all
types of nodes. In other words, these methods cannot handle
each attribute in a unique way. In contrast, our work deals
with different attributes individually, but solves community
detection and attribute-value clustering in a unified manner.
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3. Problem Statement

In this work, we deal with multi-attributed graphs, where
each node is characterized by two or more attributes. Given
such a graph, CAR-clustering is used to solve the following
three sub-problems: community detection, attribute-value
clustering, and derivation of relationships between commu-
nities and attribute-value clusters, which have been indepen-
dently studied. Below, we provide the formal definitions
which are necessary to define the clustering scheme.

3.1 Multi-Attributed Graph

Multi-attributed graph G is defined by extending weighted
graphG′ with several attributed graphsGt for attribute t ∈ T.
The following are formal definitions.

Definition 1 (Weighted graph): Weighted graph G′ is de-
fined by a triplet, 〈V,E,W〉, where V is a set of nodes,
E(⊆ V × V) is a set of edges, and W : E → R+ is a map
of edge weights. �

Definition 2 (Attributed graph): Attributed graph Gt =

〈V ∪ Xt,Et,Wt〉 of attribute t ∈ T is a bipartite graph con-
sisting of set V of nodes, set Xt of attribute-values, a set of
edges Et ⊆ V × Xt, and Wt : Et → R+ is a map of edge
weights. �

Definition 3 (Multi-attributed graph): Given weighted graph
G
′ = 〈V,E,W〉 and a set of attributed graphs {Gt}t∈T where
Gt = 〈V ∪ Xt,Et,Wt〉, multi-attributed graph
G = 〈G′, {Gt}t∈T〉 is a union of these graphs. �

3.2 CAR-Clustering

Given a multi-attributed graph, information can be extracted
from different perspectives. In this work, we extract commu-
nities, attribute-value clusters, and the relationship between
them.

Community. For a multi-attributed graph, a set of
nodes with the following properties is regarded as a com-
munity. (1) Nodes in a community are densely connected
with each other and sparsely connected with other nodes.
(2) Nodes in a community tend to share common values in
distinct attributes. This study assumes that communities can
overlap. That is, each node belongs to more than one com-
munity. This assumption is reasonable for real applications.
Formally, given the number of communities �, node n ∈ V
belonging to community c ∈ C is described by probability
distribution p(n | c), where |C| = �.

Attribute-value cluster. For attribute t ∈ T in a multi-
attributed graph, similar or highly correlated attribute val-
ues can be grouped into attribute-value clusters. Herein, we
assume overlapping clusters. That is, each attribute-value
belongs to more than one cluster. Formally, given the num-
ber of clusters kt of attribute t ∈ T, cluster member x ∈ Xt

for attribute-value cluster st ∈ St is described by probability

distribution p(x | st), where |St | = kt.
Relationship between a community and an

attribute-value cluster. Nodes in a community often share
common attribute-value clusters. Detecting such relation-
ship is useful in many applications. Given community c ∈ C
and attribute-value cluster st ∈ St of attribute t ∈ T, the
probability that c is related to st is described as the relation-
ship between c and st. In this work, a community may be
related to more than one attribute-value cluster. Formally,
this is described by probability distribution p(st | c).

CAR-clustering. CAR-clustering is formally defined
by Definition 4.

Definition 4 (CAR-clustering): Given a multi-attributed
graph G, CAR-clustering is to perform community detec-
tion, attribute-value clustering, and detection of the relation-
ship between the communities and the attribute-value clus-
ters simultaneously. �

Solving these sub-problems simultaneously is more
beneficial than evaluating each one independently because,
in many cases, communities and attribute-value clusters are
mutually correlated. Solving the problems simultaneously
exploits this correlation, leading to improved results.

4. CARNMF – Algorithm for CAR-Clustering

In this section, we propose an NMF (non-negative matrix
factorization)-based algorithm, called CARNMF, for CAR-
clustering. CARNMF models communities and attribute-
value clusters. Additionally, we introduce an auxiliary ma-
trix to maintain the relationship between the communities
and the attribute-value clusters. A unified loss function is
used to solve the different NMFs in a unified manner. It is
assumed that the user gives the number � of communities
and the number kt of clusters for each attribute t ∈ T.

4.1 Matrix Representation

We represent a multi-attributed graph by two sorts of matri-
ces: an adjacency matrix A ∈ R|V|×|V| and attribute matrices
X(t) ∈ R|V|×|Xt | for t ∈ T. An element Au,v of A corresponds
to an edge eu,v = (u, v) ∈ E. Au,v = W(eu,v)/

∑
ei, j∈E W(ei, j),

indicating the joint probability for the presence of edge eu,v.
Similarly, for t ∈ T, an element X(t)

u,x in X(t) corresponds to an
edge e(t)

u,x ∈ Et. X(t)
u,x = Wt(e

(t)
u,x)/
∑
v,y∈Et

Wt(e
(t)
v,y), indicating

the joint probability of the presence of edge e(t)
u,x.

4.2 Loss Function

We achieve CAR-clustering in terms of several NMFs,
which correspond to the aforementioned sub-problems. To
achieve CAR-clustering, we introduce loss functions for the
sub-problems followed by a unified loss function.

Loss function for community detection. In
CARNMF, communities C are denoted by a matrix U∗ ∈
R
|V|×�, where each row and column correspond to a node
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u ∈ V and a community c ∈ C, respectively. A cell U∗u,c rep-
resents joint probability of node u and community c p(u, c).
In probability p(u, v, c), u and v are connected through com-
munity c, and is represented by U∗u,cU∗v,c. Moreover, joint
probability p(u, v), or the existence of edge eu,v ∈ E, is ex-
pressed as

∑
c∈C U∗u,cU∗v,c. Therefore, when U∗ minimizes the

following loss function, U∗ is the best approximation of the
edges in the graph.

arg min
U∗≥0

∥∥∥A − U∗(U∗)T
∥∥∥2

F
, (1)

where ‖·‖2F represents the Frobenius norm. Notice that this
loss function is equivalent to the symmetric NMF based
graph clustering [15].

Loss function for attribute-value clustering. In
CARNMF, attribute-value clusters St of attribute t ∈ T are
represented as a matrix V (t) ∈ R|Xt |×kt , where each row and
column correspond to an attribute x ∈ Xt and an attribute
cluster st ∈ St, respectively. A cell V (t)

x,st
represents probabil-

ity p(x | st).
To derive V (t) from X(t), we introduce a matrix U(t) ∈

R
|V|×kt , which denotes the relationships between the nodes

and attribute-value clusters with probability p(u, st). Using
both matrices U(t) and V (t), probability p(u, x, st), which is
the existence of edge e(t)

u,x ∈ Et in terms of attribute-value
cluster st, is calculated as U(t)

u,st
V (t)

x,st
. Moreover, probability

p(u, x) is derived as
∑

st∈St
U(t)

u,st
V (t)

x,st
. Therefore, when U(t),

V (t) minimize loss function, U(t), V (t) represent the best ap-
proximation of the edges in the graph.

arg min
U(t),V (t)≥0

∥∥∥X(t) − U(t)(V (t))T
∥∥∥2

F
. (2)

Loss function for relationship detection. In
CARNMF, the relationships between communities and
attribute-value clusters of attribute t ∈ T are represented as a
matrix R(t) ∈ R�×kt , where each row and column corresponds
to a community c ∈ C and an attribute-value cluster st ∈ St,
respectively. The cell contains the probability p(st | c).
We assume R(t) is a linear transformation that maps U∗ into
U(t), where U∗ and U(t) derived by Eq. (1) and Eq. (2), re-
spectively. Moreover, the joint probability p(u, st) = U(t)

u,st

can also be calculated as
∑

c p(u, c)p(st | c) =
∑

c U∗u,cR(t)
c,st

Therefore, when R(t) minimizes the loss function, R(t) rep-
resents the relationships between the communities and the
attribute-value clusters.

arg min
U(t),U∗,R(t)≥0

∥∥∥U(t) − U∗R(t)
∥∥∥2

F
. (3)

Equation (3) can be regarded as an NMF that decomposes
the matrix of the node-by-attribute value cluster into node-
by-community and community-by-attribute value cluster
matrices. In other words, Eq. (3) indicates the effect of
the relationship between nodes and attribute-value clusters
against communities.

Unified loss function. To achieve CAR-clustering, the
aforementioned three sub-problems must be solved. In this

work, we attempt to solve them simultaneously by introduc-
ing a unified loss function, which is expressed as

L = arg min
U∗, {U(t), V (t), R(t)}t∈T

∥∥∥A − U∗(U∗)T
∥∥∥2

F

+
∑
t∈T

{∥∥∥X(t) − U(t)(V (t))T
∥∥∥2

F
+ λt

∥∥∥U(t) − U∗R(t)
∥∥∥2

F

}
,

(4)

where λt for attribute t ∈ T is a user-defined parameter to
control the effect of attribute-value clusters for community
detection. Higher λt yields a stronger effect of the attribute-
value clusters in community detection.

4.3 Optimization

Similar to the ordinary NMF, the loss function in Eq. (4)
is not simultaneously convex for all variables. Hence, we
consider the NMF to be a Frobenius norm optimization,
where update equations are derived based on [27]. From
the Karush-Kuhn-Tucker (KKT) conditions, we derive up-
date rules corresponding to the variables as follows:

U∗ ← U∗ � AT U∗ +
∑

t∈T λtU(t)(R(t))T

2U∗(U∗)T U∗ +
∑

t∈T λtU∗R(t)(R(t))T
, (5)

U(t) ← U(t) � X(t)V (t) + λtU∗R(t)

U(t)(V (t))T V (t) + λtU(t)
, (6)

V (t) ← V (t) � (X(t))T U(t)

(V (t))T (U(t))T U(t)
, (7)

R(t) ← R(t) � (U∗)T U(t)

(U∗)T U∗R(t)
. (8)

The detailed explanations for the derivation of update
rules are described in appendix A, B, C, and D.

The aforementioned update rules monotonically de-
crease the unified loss function (Eq. (4)). It should be no-
ticed that the updated variables may have quite large values,
leading to inconsistent results. To avoid such situations, we
normalize them immediately after each update according to
the following formulas:

U∗ ← U∗(Q∗)−1, (9)

V (t) ← V (t)(Q(t))−1, (10)

U(t) ← U(t)Q(t), (11)

R(t) ← R(t)(QR)−1. (12)

where Q∗ = Diagonalize(U∗), Q(t) = Diagonalize(V (t)), and
QR(t)

= Diagonalize(R(t)).

Diagonalize(Z ∈ Ra×b) = Diag

⎛⎜⎜⎜⎜⎜⎝
a∑

i=1

Zi,1 · · · ,
a∑

i=1

Zi,b

⎞⎟⎟⎟⎟⎟⎠ .
(13)

Diag(·) provides a diagonal matrix where the diagonals are
the input sequence. Algorithm 1 shows the optimization al-
gorithm based on the aforementioned update rules.
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Algorithm 1 Optimization Algorithm
Input: A, {X(t)}t∈T, {λt}t∈T, δ
Output: U∗, {U(t),V (t),R(t)}t∈T
1: U∗, {U(t),V (t),R(t)}t∈T ← random non-negative init
2: ε′ ← maxFloat, ε ← ε′

2
3: while abs(ε′ − ε) ≥ δ do

4: U∗ ← U∗ � AT U∗+∑t∈T λtU(t)(R(t))T

2U∗(U∗)T U∗+∑t∈T U∗R(t)(R(t))T

5: U∗ ← U∗ (Q∗)−1

6: for t ∈ T do
7: U(t) ← U(t) � X(t)V(t)+λtU∗R(t)

U(t)(V(t))T V(t)+λtU(t)

8: V (t) ← V (t) � (X(t))T U(t)

(V(t))T (U(t))T U(t)

9: U(t) ← U(t)Q(t)

10: V (t) ← V (t)
(
Q(t)
)−1

11: R(t) ← R(t) � (U∗)T U(t)

(U∗)T U∗R(t)

12: R(t) ← R(t)
(
QR
)−1

13: end for
14: ε′ ← ε
15: ε ← L

(
U∗, {U(t),V (t),R(t)}t∈T

)
16: end while

4.4 Complexity Analysis

Here, we analyze the computational complexity of the pro-
posed algorithm. The equations in our algorithm have the
following complexities:

• Updating U∗ (Eqs. (5) and (9)) needs O(|E|� +
|V|�2∑t kt).

• Updating U(t) (Eqs. (6) and (11)) and V (t) (Eqs. (7) and
(10)) needs O

(
(|V| + |Xt |)k2

t + |Et |kt

)
.

• Updating R(t) (Eqs. (8) and (12)) needs O
(
|V|(�kt+�

2)
)
.

In summary, the time complexity of our algorithm is
follows, where iter is the number of outer iterations (lines
3–16 in our algorithm).

O

⎛⎜⎜⎜⎜⎜⎝iter
∑

t

(
|V|(�2kt + k2

t ) + |Xt |k2
t + |E|� + |Et |kt

)⎞⎟⎟⎟⎟⎟⎠ .
(14)

5. Experimental Evaluations

To demonstrate the applicability and effectiveness of
CARNMF, we conducted a set of experiments using real-
world datasets. Specifically, the performance of the pro-
posed scheme was compared to simple baseline and the
state-of-the-art methods.

The experiments were performed on a PC with an In-
tel Core i7 (3.3 GHz) CPU with 16 GB RAM running
Ubuntu14.04. CARNMF was implemented by Python 2.7.6
with Numpy 1.9.0.

5.1 Datasets

We used two datasets: DBLP and arXiv.

• DBLP: Digital Bibliography Project† is a bibliographic
†http://dblp.uni-trier.de/

Table 1 Selected conferences on four research areas.

DB DM ML IR
SIGMOD, VLDB KDD, ICDM NIPS, ICML SIGIR, ECIR

PODS, EDBT PKDD, SDM ECML, UAI JCDL, ECDL
ICDT PAKDD COLT TREC

Table 2 Selected journals on four research areas.

math-ph
Communications in Mathematical Physics

Reviews in Mathematical Physics
Letters in Mathematical Physics
Journal of Mathematical Physics

nucl-th
Annual Review of Nuclear and Particle Science

Progress in Particle and Nuclear Physics
Atomic Data and Nuclear Data Tables

Journal of Nuclear Materials
astro-ph

Research in Astronomy and Astrophysics
Annual Review of Astronomy and Astrophysics

New Astronomy Reviews
Space Science Review

cond-mat
Nature Nanotechnology

Nature Materials
Nano Letters

Journal of Materials Science

database in the computer science area. DBLP contains
publication information, such as authors and confer-
ences. We used a part of the dataset by extracting con-
ferences similar to [28]. We extracted four research
areas: data mining, databases, machine learning, and
information retrieval, and five major conferences for
each area. Consequently, 10,491 papers in 20 confer-
ences (shown in Table 1) were selected.

• arXiv: arXiv†† is a repository of electronic preprints
in various scientific fields. Similar to above, we chose
four research areas: mathematical physics (math-ph),
nuclear (nucl-th), astrophysics (astro-ph), and mate-
rials (part of cond-mat), and four major journals for
each area. Consequently, 12,547 papers in 16 journals
(shown in Table 2) were selected.

Multi-attributed graphs were constructed from the
datasets as follows: The nodes correspond to the authors.
If two authors co-author a paper, we placed a weighted edge
between the authors. The weighting denotes the number of
co-authored papers. Each author has attributes term, paper,
and conference/journal, which are defined below:

• term: Each term is regarded as a node. An edge is
generated between an author and a term if the author
uses the term in the titles of at least one paper. The edge
weight denotes the term frequency for each author. As
a preprocessing, we applied stop-word elimination and
stemming.

• paper: Each paper is regarded as a node. An edge is
generated if the author publishes the paper. The edge

††https://arxiv.org
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weight is always 1.0 because each paper can only be
published once.

• conference/journal: Each conference or journal corre-
sponds with a node. An edge is created between an
author and a conference/journal if the author publishes
at least one paper at the conference/journal. The edge
weight is the total number of publications at the con-
ference/journal.

5.2 Results of CAR-Clustering

Figure 1 shows examples of the detected communities and
their associated attribute-value clusters in DBLP detected by
the proposed method. The number of communities and that
of term clusters were each 50, whereas the number of con-
ference clusters and that of paper clusters were each 4. The
red, blue, and gray rectangles correspond to communities,
term clusters, and conference clusters, respectively, showing
the top nodes in community/cluster in terms of the contribu-
tion. The edge weights show the strengths of the relation-
ships between the communities and the corresponding term
and conference clusters.

The result includes the communities containing re-
searchers in database and data mining areas, namely, “ji-
awei han”, “hans-peter kriegel,” and “jennifer widom.” We
can observe: (1) the communities of “jiawei han” and “hans-
peter kriegel” are mainly related to data mining conferences
(i.e., KDD, ICDM, SDM, PAKDD, and PKDD), while that
of “jennifer widom” is related to database conferences (i.e.,
SIGMOD, VLDB, PODS, EDBT, and ICDT); (2) “jiawei
han”’s community is strongly related to topics “frequent pat-
tern mining” and “kind of matching”, “hans-peter kriegel”’s
community is related to “clustering” and “frequent pattern
mining”, and “jennifer widom”’s community is relates to

Fig. 1 Example communities with attribute-value clusters. The red, blue
and gray rectangles correspond to communities, term clusters, and confer-
ence clusters, respectively.

“clustering” and “databases”; and (3) the communities of
“jiawei han” and “hans-peter kriegel” are related in terms
of data mining conferences and the topic “frequent pattern
mining” while the communities “hans-peter kriegel” and
“jennifer widom” are related in terms of topic “clustering”.
From the results, it seems that the proposed scheme success-
fully extract representative communities and their related
topics along with their relationships.

5.3 Accuracy Comparison

The proposed scheme is compared to a baseline method as
well as the state-of-the-art methods to quantitatively evalu-
ate the performance of community detection and attribute-
value clustering. In this experiment, we find the hyper pa-
rameters which bring the highest accuracy for each method
using grid search. The comparison methods include:

• NMF [29]: Baseline approaches that apply NMF
for binary relationships between graph components,
including author-term (A-T), author-paper (A-P),
author-conference (A-C), term-paper (T-P), and term-
conference (T-C)†.

• LCTA [11]: A probabilistic generative model for com-
munities, topics of textual attributes, and their relation-
ships. We set hyper parameter λ to 0.0 for all dataset.

• SCI [8]: An NMF based method for detecting commu-
nities as well as their semantic descriptions via node’s
attribute values. We set hyper parameters α and β to 80
for DBLP dataset, and 80 and 0.05 for arXiv dataset,
respectively.

• HINMF [26]: A model that clusters objects and at-
tributes simultaneously and takes the consensus among
the binary NMFs. This work is the most similar to
our proposal. We set hyper parameter α to 0.01 for
all dataset.

Note that, LCTA and SCI deal with a single concate-
nated feature of multiple attributes. Therefore, we prepare
concatenated feature consisting of term, document and con-
ference/journal, and apply these approaches on the feature.
As for CARNMF, we set parameters λt to all 0.01 for DBLP
dataset, and all 0.05 for arXiv dataset.

To evaluate the qualities of these methods, we com-
pared the accuracy [11] of community and attribute-value
clustering w.r.t. paper and conference/journal. We designed
a ground truth to measure the accuracy. To derive the
ground truth, each author is labeled based on research ar-
eas of their papers, in other words, if the author mostly pub-
lished papers for the specific area, the author is labeled as
that area. Similarly, the labels for conference/journal and
paper were manually given by referring to the conference
categories.

Definition 5 (Accuracy): Given a set S of elements, for

†Because NMF assumes the co-occurrences of binary relation-
ships, paper-conference (one-to-one relationship) is excluded.



816
IEICE TRANS. INF. & SYST., VOL.E102–D, NO.4 APRIL 2019

Table 3 Quality evaluations of community detection and attribute clustering.

DBLP dataset arXiv dataset
Author Paper Conference Author Paper Journal

NMF(A-T) 64.02 ± 5.73 N/A N/A 60.99 ± 0.07 N/A N/A
NMF(A-P) 43.12 ± 5.17 44.58 ± 5.89 N/A 44.84 ± 5.06 30.94 ± 1.15 N/A
NMF(A-C) 75.35 ± 6.85 N/A 87.60 ± 1.73 75.85 ± 7.29 N/A 73.68 ± 2.33
NMF(T-P) N/A 50.02 ± 7.93 N/A N/A 39.80 ± 5.05 N/A
NMF(T-C) N/A N/A 69.88 ± 6.68 N/A N/A 100.00 ± 0.0

LCTA 48.90 ± 7.57 26.13 ± 4.36 68.50 ± 12.46 46.72 ± 5.72 31.50 ± 1.17 56.87 ± 6.53
SCI 54.78 ± 8.79 22.31 ± 1.48 58.20 ± 7.40 35.42 ± 4.01 29.79 ± 1.11 47.49 ± 6.37

HINMF 68.90 ± 9.08 56.46 ± 3.08 90.10 ± 12.63 74.30 ± 7.99 29.68 ± 0.95 73.12 ± 8.86
CARNMF 86.34 ± 2.39 78.19 ± 9.87 97.20 ± 5.21 77.64 ± 2.88 44.05 ± 3.14 75.00 ± 5.23

Fig. 2 Accuracy for different λt values.

each element n ∈ S, the true label and the cluster label gen-
erated by a method are denoted by sn and rn, respectively.
Then, the accuracy is defined as:

Accuracy =
∑

n∈S δ(sn,map(rn))
|S|

where | · | is the cardinality of a set; δ(x, y) is a delta function
which returns 1 if x = y, otherwise 0; and map(rn) is a
mapping function that maps rn to the equivalent label in the
dataset. The best mapping can be found by Kuhn-Munkres
algorithm [30]. �

Table 3 summarizes the evaluation results. The number
of communities and the number of attribute-value clusters
for each attribute are each four. Each cell shows the mean
and the standard deviation of the accuracies for 20 trials.
N/A denotes that the method does not support the category.
Values in bold indicate a significant improvement using the
Student-t test, where p < 0.05.

CARNMF achieved the best performance for commu-
nity detection (author) and attribute-value clustering (pa-
per and conference/journal) with significant gaps for DBLP
dataset (respectively 11%, 22% and 7%) and for arXiv
dataset (respectively 2%, 5%) relative to the comparative

methods. In particular, CARNMF has an improved clus-
tering quality compared to NMF by taking the relationships
between communities and attribute-value clusters into ac-
count.

5.4 Insights on Parameters

This section discusses the effect of parameter λt for each
attribute. The larger the λt value, the greater the influence
of the attribute-value cluster for t ∈ T is on the community.
Therefore, optimal parameter settings should result in better
results. Figures 2 shows the behavior of the accuracy with
different values with respect to different attributes. For each
evaluation, λs (s � t) of the other attributes were fixed. In
most cases, the accuracy shows a convex form and the peak
is around 10−2. More importantly, the accuracy is insensitive
to the setting, making tuning easier.

5.5 How to Determine Parameters

In this section, we discuss about how to determine the
user defined parameters (i.e., �, kt and λt). As for the
number of communities/clusters (i.e., �, kt), the larger
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Fig. 3 Convergence analysis of the proposed algorithm to optimize a loss
function and the corresponding accuracy curve.

community/cluster size brings the finer grained communi-
ties/clusters (e.g. laboratory, research topic) and the smaller
community/cluster size brings the coarse grained commu-
nities/clusters (e.g. research society, research area). In the
data analysis task, the required granularity of the commu-
nities/clusters varies depending on the purpose of the data
analysis. Therefore, when applying CARNMF, the number
of communities/clusters should be adjusted so as to obtain
the target size by repeatedly applying our method. As for λt,
as we discussed in the previos section, by setting the λt to
around 0.01, our method achieves highest accuracy. Thus,
in the practical use of our method, it is better to set λt to
0.01.

5.6 Convergence Analysis

In this section, we experimentally provide convergence
analysis to optimize the proposed loss function in Eq. (4).
Figures 3 (a) and (b) show the convergence curve of the loss
function for DBLP and arXiv, respectively. In addition, the
accuracy of each iteration is plotted. The black line shows
the value of the loss function. The red, green, and blue lines
show the accuracy of community detection and attribute-
value clustering for author, paper, and conference/journal,
respectively. As the number of iterations increases, the loss
function decreases while the accuracy improves.

5.7 Efficiency Analysis

This section analyzes computational efficiency in terms of
the numbers of communities and attribute clusters. When
the numbers are fixed to four as experiments above, the run-
ning times of CARNMF on the DBLP (arXiv) dataset are
1.186 ± 0.253s (0.682 ± 0.138s). When changing the num-
bers of communities and term clusters to 50, while those
of paper and conference remain four, the running times
increases to 7.471 ± 0.563s (DBLP) and 6.526 ± 0.172s
(arXiv). These values are still reasonable for various ap-
plications.

Moreover, we examine the running time of our method
by changing the number of nodes in an input graph. The-
oretically, as discussed in Sect. 4.4, the computational com-
plexity is dependent on the number of vertices, that of edges,
and that of distinct values of each attribute. As most of real-
world graphs are modeled as scale-free networks, edges in a

Fig. 4 Time complexity of CARNMF w.r.t. the number of input nodes.

graph are very sparse, therefore, we examine the sensitivity
of processing time on the proposed method in terms of the
number of nodes. In this experiment, we selected all of the
papers on DBLP, and construct the multi-attributed graph as
same manner as described in Sect. 5.1. We set the number
of communities and clusters are four. Figure 4 shows that
the time complexity of our method is almost linear to the
number of nodes. From the figure, we ensure that the time
complexity of our method is linear to the numbers of nodes
and edges (as shown on Eq. (14)). Therefore, when the input
graph is sparse, our method is highly efficient.

6. Conclusion

In this paper we have proposed CAR-clustering, which in-
cludes community detection, attribute-value clustering, and
extraction of their relationships, for clustering over multi-
attributed graphs. We have also proposed a novel algo-
rithm CARNMF based on NMF. CARNMF employs a uni-
fied loss function to simultaneously solve different NMFs.
This approach is better than the state-of-the-art methods in
that it can exploit the correlation between communities and
attribute-value clusters for enhancing the quality of the re-
sult. Our experiments have demonstrated that CARNMF
successfully achieves CAR-clustering. CARNMF has de-
tected reasonable communities with meaningful semantic
descriptions via the relationship between communities and
attribute-value clusters for real-world datasets. These results
are useful for many applications such as node property es-
timations [3]–[5], community-wise information recommen-
dations [6], and semantic reasoning for nodes/edges [7]. Ad-
ditionally, CARNMF has achieved higher accuracy than
comparative methods, including a baseline and the state-
of-the-art methods. Our future work includes several direc-
tions. First, we will extend the proposed method for chrono-
logical analysis over temporal multi-attributed graphs. Sec-
ond, we plan to automate the parameter tuning (e.g., the
numbers of communities/clusters, λt, etc.).
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Appendix A: Fixing U(t), V(t), R(t), Optimize L, over U∗

When update U∗ with U(t), V (t) and R(t) fixed, we need to
solve the following problem:

arg min
U∗≥0

L(U∗) = arg min
U∗≥0

∥∥∥A − U∗(U∗)T
∥∥∥2

F

+
∑
t∈T

{
λt

∥∥∥U(t) − U∗(R(t))T
∥∥∥2

F

}
. (A· 1)

To this end, we introduce a Lagrange multiplier matrix
Ξ = (Ξi, j) for the nonnegative constraint U∗ ≥ 0, and the
Lagrange L(U∗) = L(U∗) + tr

(
ΞT U∗

)
. We achieve the fol-

lowing equivalent objective function:

L(U∗) = tr
(
AT A
)
− 2tr

(
AT U∗(U∗)T

)

+ tr
(
(U∗)T U∗U∗(U∗)T

)

+
∑
t∈T
λt

(
tr
(
(U(t))T U(t)

)
− 2tr

(
(R(t))T (U∗)T U(t)

)

+ tr
(
(R(t))T U∗T U∗R(t)

)
+ tr
(
ΞT U∗

))
. (A· 2)

Set derivative of L(U∗) with respect to U∗ to 0, we have:

Ξ = − 2AT RU∗ + 2U∗(U∗)T U∗

+
∑
t∈T
λt(−U(t)(R(t))T + U∗R(t)(R(t))T ). (A· 3)

Using Karush-Kuhn-Tucker (KKT) condition for the non-
negativity of U∗, we have the following equation:

U∗i, jΞi, j = U∗i, j
(
−2AT RU∗ + 2U∗(U∗)T U∗

+
∑
t∈T
λt(−U(t)(R(t))T + U∗R(t)(R(t))T )

⎞⎟⎟⎟⎟⎟⎠
i, j

= 0.

(A· 4)

http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1145/2433396.2433471
http://dx.doi.org/10.1109/mmmc.2005.5
http://dx.doi.org/10.1109/icdm.2013.167
http://dx.doi.org/10.1145/2337542.2337548
http://dx.doi.org/10.1109/34.868688
http://dx.doi.org/10.1109/isi.2007.379553
http://dx.doi.org/10.1137/1.9781611972825.10
http://dx.doi.org/10.1103/physreve.83.066114
http://dx.doi.org/10.1016/j.physrep.2009.11.002
http://dx.doi.org/10.2200/s00298ed1v01y201009dmk003
http://dx.doi.org/10.1016/j.ins.2015.05.008
http://dx.doi.org/10.1145/2517088
http://dx.doi.org/10.14778/3067421.3067430
http://dx.doi.org/10.1017/nws.2015.9
http://dx.doi.org/10.1109/asonam.2011.104
http://dx.doi.org/10.1145/2339530.2339726
http://dx.doi.org/10.1145/2339530.2339726
http://dx.doi.org/10.1145/1557019.1557107
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1145/1557019.1557061
http://dx.doi.org/10.1002/nav.3800020109


ITO et al.: C.A.R. DETECTION ON MULTI-ATTRIBUTED GRAPHS
819

This is the fixed point equation that the solution must satisfy
at convergence. Given an initial value of U∗, the successive
update of U∗ is:

U∗ ← U∗ � AT U∗ +
∑

t∈T λtU(t)(R(t))T

2U∗(U∗)T U∗ +
∑

t∈T λtU∗R(t)(R(t))T
.

(A· 5)

Appendix B: Fixing U∗, V(t), R(t), Optimize L, over U(t)

When update U(t) with U∗, V (t) and R(t) fixed, we need to
solve the following problem:

arg min
U(t)≥0

L(U(t)) = arg min
U(t)≥0

∥∥∥X(t) − U(t)(V (t))T
∥∥∥2

F

+ λt

∥∥∥U(t) − U∗(R(t))T
∥∥∥2

F
. (A· 6)

To this end, we introduce a Lagrange multiplier matrix
Ψ = (Ψi, j) for the nonnegative constraints U(t) ≥ 0 and the
Lagrange L(U(t)) = L(U(t)) + tr

(
ΨT U(t)

)
. We achieve the

following equivalent objective function:

L(U(t)) = tr
(
(X(t))T X(t)

)
− 2tr

(
(X(t))T V (t)(U(t))T

)

+ tr
(
U(t)(V (t))T U(t)(V (t))T

)

+ λttr
(
(U(t))T U(t)

)
− 2λttr

(
(R(t))T (U∗)T U(t)

)

+ λttr
(
(R(t))T U∗T U∗R(t)

)
+ tr
(
ΨT U(t)

)
. (A· 7)

Set derivative of L(R(t)) with respect to R(t) to 0, we have:

Ψ = − X(t)V (t) + U(t)(V (t))T V (t)

+ λt(U
(t) − U∗R(t)). (A· 8)

Following KKT condition for the nonnegativity of U(t), we
have the following equation:

U(t)
i, jΨi, j = U(t)

i, j

(
−X(t)V (t) + U(t)(V (t))T V (t)

+λt(U
(t) − U∗R(t))

)
i, j
= 0. (A· 9)

This is the fixed point equation that the solution must satisfy
at convergence. Given an initial value of U(t), the successive
update of U(t) is:

U(t) ← U(t) � X(t)V (t) + λtU∗R(t)

U(t)(V (t))T V (t) + λtU(t)
. (A· 10)

Appendix C: Fixing U∗, U(t), R(t), Optimize L, over V(t)

When update V (t) with U∗, U(t) and R(t) fixed, we need to
solve the following problem:

arg min
V (t)≥0

L(V (t)) = arg min
V (t)≥0

∥∥∥X(t) − U(t)(V (t))T
∥∥∥2

F
.

(A· 11)

To this end, we introduce a Lagrange multiplier matrix
Θ = (Θi, j) for the nonnegative constraints V (t) ≥ 0, and

the Lagrange L(V (t)) = L(V (t))+ tr
(
ΘT V (t)

)
. We achieve the

following equivalent objective function:

L(V (t)) = tr
(
(X(t))T X(t)

)
− 2tr

(
(X(t))T V (t)(U(t))T

)

+ tr
(
U(t)(V (t))T U(t)(V (t))T

)
+ tr
(
ΘT V (t)

)
. (A· 12)

Set derivative of L(V (t)) with respect to V (t) to 0, we have:

Θ = −2(X(t))T U(t) + 2(V (t))T (U(t))T U(t). (A· 13)

Following KKT condition for the nonnegativity of V (t), we
have the following equation:

V (t)
i, jΘi, j = V (t)

i, j

(
−2(X(t))T U(t) + 2(V (t))T (U(t))T U(t)

)
i, j

= 0. (A· 14)

This is the fixed point equation that the solution must satisfy
at convergence. Given an initial value of V (t), the successive
update of V (t) is:

V (t) ← V (t) � (X(t))T U(t)

(V (t))T (U(t))T U(t)
. (A· 15)

Appendix D: Fixing U∗, U(t), V(t), Optimize L, over R(t)

When update R(t) with U∗, U(t) and V (t) fixed, we need to
solve the following problem:

arg min
R(t)≥0

L(R(t)) = arg min
R(t)≥0

∥∥∥U(t) − U∗(R(t))T
∥∥∥2

F
. (A· 16)

To this end, we introduce a Lagrange multiplier matrix
Φ = (Φi, j) for the nonnegative constraints R(t) ≥ 0 and the
Lagrange L(R(t)) = L(R(t)) + tr

(
ΦT R(t)

)
. We achieve the

following equivalent objective function:

L(R(t)) = tr
(
(U(t))T U(t)

)
− 2tr

(
(R(t))T (U∗)T U(t)

)

+ tr
(
(R(t))T U∗T U∗R(t)

)
+ tr
(
ΦT R(t)

)
. (A· 17)

Set derivative of L(R(t)) with respect to R(t) to 0, we have:

Φ = −(U∗)T U(t) + (U∗)T U∗R(t). (A· 18)

Following the Karush-Kuhn-Tucker (KKT) condition for the
nonnegativity of R(t), we have the following equation:

R(t)
i, jΦ = R(t)

i, j

(
−(U∗)T U(t) + (U∗)T U∗R(t)

)
i, j
= 0. (A· 19)

This is the fixed point equation that the solution must satisfy
at convergence. Given an initial value of V (t), the successive
update of V (t) is:

R(t) ← R(t) � (U∗)T U(t)

(U∗)T U∗R(t)
. (A· 20)
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