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Abstract Although a large body of work is devoted to finding communities in static so-

cial networks, only a few studies examined the dynamics of communities in evolving social

networks. In this paper, we propose a dynamic stochastic block model for finding commu-

nities and their evolution in a dynamic social network. The proposed model captures the

evolution of communities by explicitly modeling the transition of community memberships

for individual nodes in the network. Unlike many existing approaches for modeling social

networks that estimate parameters by their most likely values (i.e., point estimation), in this

study, we employ a Bayesian treatment for parameter estimation that computes the posterior

distributions for all the unknown parameters. This Bayesian treatment allows us to capture

the uncertainty in parameter values and therefore is more robust to data noise than point

estimation. In addition, an efficient algorithm is developed for Bayesian inference to handle

large sparse social networks. Extensive experimental studies based on both synthetic data

and real-life data demonstrate that our model achieves higher accuracy and reveals more

insights in the data than several state-of-the-art algorithms.
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1 Introduction

As online social networks such as Facebook1 and MySpace2 are gaining popularity rapidly,

social networks have become a ubiquitous part of many people’s daily lives. Therefore,

social network analysis is becoming a more and more important research field. One major

topic in social network analysis is the study of communities in social networks. For instance,

in Wikipedia,3 the online social network service is defined as “A social network service

focuses on building online communities of people who share interests and activities, or who

are interested in exploring the interests and activities of others”. Analyzing communities

in a social network, in addition to serving scientific purposes (e.g., in sociology and social

psychology), helps improve user experiences (e.g., through friend recommendation services)

and provides business value (e.g., in target advertisement and market segmentation analysis).

Communities have long been studied in various social networks. For example, in social

science an important research topic is to identify cohesive subgroups of individuals within

a social network where cohesive subgroups are defined as “subsets of actors among whom

there are relatively strong, direct, intense, frequent, or positive ties” (Wasserman and Faust

1994). As another example, communities also play an important role in Web analysis, where

a Web community is defined as “a set of sites that have more links to members of the com-

munity than to non-members” (Flake et al. 2000).

Social networks are usually represented by graphs where nodes represent individuals and

edges represent relationships and interactions among individuals. Based on this graph rep-

resentation, there exists a large body of work on analyzing communities in static social net-

works, ranging from well-established social network analysis (Wasserman and Faust 1994)

to recent successful applications such as Web community discovery (Flake et al. 2000).

However, these studies overlooked an important feature of communities—communities in

real life are usually dynamic. On a macroscopic level, community structures evolve over

time. For example, a political community whose members’ main interest is the presidential

election may become less active after the election takes place. On a microscopic level, indi-

viduals may change their community memberships, due to the shifts of their interests or due

to certain external events. In this respect, the above studies that analyze static communities

fail to capture the important dynamics in communities.

Recently, there has been a growing body of work on analyzing dynamic communities in

social networks. As we will discuss in detail in related work, some of these studies adopt a

two-step approach where first static analysis is applied to the snapshots of the social network

at different time steps, and then community evolution is introduced afterward to interpret the

change of communities over time. Because data in real world are often noisy, such a two-step

approach often results in unstable community structures and consequentially, unwarranted

community evolution. Some more recent studies attempted to unify the processes of com-

munity extraction and evolution extraction by using certain heuristics, such as regularizing

temporal smoothness. Although some encouraging results are reported, these studies lack

1http://www.facebook.com

2http://www.myspace.com

3http://www.wikipedia.org

http://www.facebook.com
http://www.myspace.com
http://www.wikipedia.org


Mach Learn (2011) 82: 157–189 159

rigorous generative models and therefore are usually ad hoc. Furthermore, none of these

studies explicitly model the transition or change of community memberships, which is the

key to the analysis of dynamic social network. In addition, most existing approaches con-

sider point estimation in their studies, i.e., they only estimate the most likely value for the

unknown parameters. Given the large scale of social networks and potential noise in data,

it is likely that the network data may not be sufficient to determine the exact value of para-

meters, and therefore it is important to develop methods beyond point estimation in order to

model and capture the uncertainty in parameter estimation.

In this paper, we present a probabilistic framework for analyzing dynamic communities

in social networks that explicitly addresses the above two problems. Instead of employing

an afterward effect or a regularization term, the proposed approach provides a unified frame-

work for modeling both communities and their evolution simultaneously; the dynamics of

communities is modeled explicitly by transition parameters that dictates the changes in com-

munity memberships over time; a Bayesian treatment of parameter estimation is employed

to avoid the shortcoming of point estimation by using the posterior distributions of parame-

ters for membership prediction. In short, we summarize the contributions of this work as

follows.

– We propose a dynamic stochastic block model for modeling communities and their evo-

lution in a unified probabilistic framework. Our framework has two versions, the online

inference version that progressively updates the probabilistic model over time, and the

offline inference version that learns the probabilistic model with network data obtained at

all time steps in a retrospective way. This is in contrast to most existing studies of social

network analysis that only focus on the online inference approaches. We illustrate the

advantage of the offline inference approach in our empirical study.

– We present a Bayesian treatment for parameter estimation in the proposed framework.

Unlike most existing approaches for social network analysis that only compute the most

likely values for the unknown parameters, the Bayesian treatment estimates the posterior

distributions for unknown parameters, which is utilized to predict community member-

ships as well as to derive important characteristics of communities, such as community

structures, community evolution, etc.

– We develop a very efficient algorithm for the proposed framework. Our algorithm is ex-

ecuted in an incremental fashion to minimize the computational cost. In addition, our

algorithm is designed to fully take advantage of the sparseness of data. We show that for

each iteration, our algorithm has a time complexity linear in the size of a social network

provided the network is sparse.

We conduct extensive experimental studies on both synthetic data and real data to investi-

gate the performance of our framework. We show that compared to state-of-the-art baseline

algorithms, our model is advantageous in (a) achieving better accuracy in community ex-

traction, (b) capturing community evolution more faithfully, and (c) revealing more insights

from the network data.

The rest of the paper is organized as follows. In Sect. 2 we discuss related work. In

Sect. 3, we present our dynamic stochastic block model for communities and their evolution.

In Sect. 4, we provide a point estimation approach to estimate the parameters in our model.

In Sect. 5, we propose a Bayesian inference method to learn the parameters in our dynamic

stochastic block model. In Sect. 6, we describe some details of our implementation and

provide a complexity analysis for our algorithm. In Sect. 7, we discuss several extensions to

our basic model. We present experimental studies in Sect. 8 and give conclusion and future

directions in Sect. 9.
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2 Related work

Finding communities is an important research topic in social network analysis. For the task

of community discovery, many approaches such as clique-based, degree-based, and matrix-

perturbation-based, have been proposed. Wasserman and Faust (1994) gave a comprehen-

sive survey on these approaches. Community discovery is also related to some important

research issues in other fields. For example, in applied physics, communities are important

in analyzing modules in a physical system and various algorithms, such as (Newman and

Girvan 2004; Newman 2006), have been proposed to discover modular structures in physical

systems. As another example, in the machine learning field, finding communities is closely

related to graph-based clustering algorithms (Chung 1997), such as the normalized cut al-

gorithm proposed by Shi and Malik (2000), the modularity-based approaches proposed by

White and Smyth (2005) and by Chen et al. (2009), and the graph-factorization clustering

(GFC) algorithm proposed by Yu et al. (2005). However, all these approaches focus on ana-

lyzing static networks while our focus in this study is on analyzing dynamic social networks.

In the field of statistics, a well-studied probabilistic model is the stochastic block model

(SBM). This model was originally proposed by Holland and Leinhardt (1976) and was fur-

ther extended by others, e.g. (Fienberg et al. 1985; Ho et al. 2002; Shortreed et al. 2006;

Snijders 2002; Wasserman and Pattison 1996). The SBM model has been successfully

applied in various areas such as bioinformatics and social science (Airoldi et al. 2006;

Fienberg et al. 1985; Ho et al. 2002). Researchers have extended the stochastic block model

in different directions. For example, Airoldi et al. (2006) proposed a mixed-membership

stochastic block model, Kemp et al. (2004) proposed a model that allows an unbounded

number of clusters, and Hofman and Wiggins (2008) proposed a Bayesian approach based

on the stochastic block model to infer module assignments and to identify the optimal num-

ber of modules. Our new model is also an extension of the stochastic block model. However,

in comparison to the above approaches which focus on static social networks, our approach

explicitly models the change of community memberships over time and therefore can dis-

covery communities and their evolution simultaneously in dynamic social networks.

Recently, finding communities and their evolution in dynamic networks has gained more

and more attention. Kumar et al. (2003) studied the evolution of the blogosphere as a graph

in terms of the change of characteristics, (such as in-degree, out-degree, strongly connected

components), the change of communities, as well as the burstiness in blog community.

Leskovec et al. (2005) studied the patterns of growth for graphs in various fields and pro-

posed generators that produce graphs exhibiting the discovered patterns. Palla et al. (2007)

analyzed a co-authorship network and a mobile phone network, where both networks are

dynamic. They use the clique percolation method (CPM) to extract communities at each

timestep and then match communities in consecutive timesteps to analyze community evo-

lution. They studied some interesting characteristics, such as community sizes, ages and

their correlation, community auto-correlation (relative overlap between the same commu-

nity at two timesteps t1 and t2 as a function of τ = t2 − t1), etc. Toyoda and Kitsuregawa

(2003) studied the evolution of Web communities from a series of Web archives. They first

proposed algorithms for extracting communities in each timestep. And then they proposed

different types of community changes, such as emerge, dissolve, grow, and shrink, as well

as a set of metrics to quantify such changes for community evolution analysis. Spiliopoulou

et al. (2006) proposed a framework, MONIC, to model and monitor cluster transitions over

time. They defined a set of external transitions such as survive, split, disappear, to model

transactions among different clusters and a set of internal transitions, such as size and loca-

tion transitions to model changes within a community. Asur et al. (2007) introduced a fam-

ily of events on both communities and individuals to characterize evolution of communities.



Mach Learn (2011) 82: 157–189 161

They also defined a set of metrics to measure the stability, sociability, influence and popular-

ity for communities and individuals. Sun et al. (2007) proposed a parameter-free algorithm,

GraphScope, to mine time-evolving graphs where the Minimum Description Length (MDL)

principle is employed to extract communities and to detect community changes. Mei and

Zhai (2005) extracted latent themes from text and used the evolution graph of themes for

temporal text mining. In all these studies, however, community extraction and community

evolution are analyzed in two separated stages. That is, when communities are extracted at

a given timestep, historic community structure, which contains valuable information related

to current community structure, is not taken into account.

There are some recent studies on evolutionary embedding and clustering that are closely

related to our work. Sarkar and Moore (2005) proposed a dynamic method that embeds

nodes into latent spaces where the locations of the nodes at consecutive timesteps are reg-

ularized so that dramatic change is unlikely. Chakrabarti et al. (2006) proposed the first

evolutionary clustering methods where the cluster membership at time t is influenced by the

clusters at time t − 1. As a result, the cluster membership for a node at time t depends both

on its relationship with other nodes at time t and on its cluster membership at time t − 1.

Tantipathananandh et al. (2007) proposed an optimization-based approach for modeling dy-

namic community structure. Chi et al. (2007) proposed an evolutionary version of the spec-

tral clustering algorithm. They used graph cut as a metric for measuring community struc-

tures and community evolution. Lin et al. (2008, 2009a) extended the graph-factorization

clustering (GFC) and proposed the FacetNet algorithm for analyzing dynamic communities.

Ahmed and Xing (2008) extended temporal Dirichlet process mixture model for cluster-

ing problem for documents. In their model, the probabilities transiting between clusters are

considered independent, while we consider the transition follows certain distribution. Lin

et al. (2009b) extends (Lin et al. 2008) by modeling of content of documents. Tang et al.

(2008) used joint matrix factorization method to discover the community evolution. Kim

and Han (2009) proposed the particle-and-density based method to discover the evolution of

communities. Its overall quality is measured by the combination of the history quality with

the snapshot quality. A preliminary version of our work has been reported in Yang et al.

(2009). We will conduct performance studies to compare our algorithm with some of these

algorithms. Here we want to point out that compared to our new algorithm, none of these

existing approaches has a rigorous probabilistic interpretation and they all are restricted to

an online inference framework.

3 The dynamic stochastic block model

3.1 Notations

Before discussing the statistical models, we first introduce the notations that are used

throughout this paper. We represent by W (t) ∈ R
n×n the snapshot of a social network at

a given time step t (or snapshot network), where n is the number of nodes in the network.

Each element wij in W (t) is the weight assigned to the link between nodes i and j : it can be

the frequency of interactions (i.e., a natural number) or a binary number indicating the pres-

ence or absence of interactions between nodes i and j . For the time being, we focus on the

binary link, which will be extended to other types of links in Sect. 7. For a dynamic social

network, we use WT = {W (1),W (2), . . . ,W (T )} to denote a collection of snapshot graphs for

a given social network over T discrete time steps. In our analysis and modeling, we first

assume nodes in the social network remain unchanged during all the time steps, followed by
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the extension to dynamic social networks where nodes can be removed from and added to

networks.

We use zi ∈ {1, . . . ,K}, where K is the total number of communities, to denote the com-

munity assignment of node i and we refer to zi as the community of node i. We furthermore

introduce zik = [zi = k] to indicate if node i is in the kth community where [x] outputs one

if x is true and zero otherwise. Community assignments matrix Z = (zik : i ∈ {1, . . . , n}, k ∈

{1, . . . ,K}) includes the community assignments of all the nodes in a social network at a

given time step. Finally, we use ZT = {Z(1), . . . ,Z(T )} to denote the collection of community

assignments of all nodes over T time steps.

3.2 Stochastic block model (SBM)

We first briefly review the Stochastic Block Model (SBM). SBM is a well studied statis-

tical model that has been successfully used in social network analysis (Hofman and Wig-

gins 2008; Holland and Leinhardt 1976). In the SBM model, a network is generated in

the following way. First, each node is assigned to a community following a probability

π = {π1, . . . , πK} where πk is the probability for a node to be assigned to community k.

Then, depending on the community assignments of nodes i and j (assuming that zik = 1

and zj l = 1), the link between i and j is generated following a Bernoulli distribution with

parameter Pkl . So the parameters of SBM are π ∈ R
K , the prior distribution of the com-

munities, and P ∈ R
K×K , the link generation probabilities. The diagonal element Pkk of

P is called the “within-community” link probability for community k and the off-diagonal

element Pkl, k �= l is called “between-community” link probability between communities k

and l.

3.3 Dynamic stochastic block model (DSBM)

The traditional stochastic block model can only handle static networks. To extend it to han-

dling dynamic networks, we propose a Dynamic Stochastic Block Model (DSBM) for mod-

eling communities and their evolution in a unified probabilistic framework. Our DSBM is

defined as the following. Assuming the community matrix Z(t−1) for time step t −1 is avail-

able, we use a transition matrix A ∈ R
K×K to model the community matrix Z(t) at time

step t . More specifically, for a node i, if node i was assigned to community k at time t − 1

(i.e., z
(t−1)
ik = 1), then with probability Akk node i will remain in community k at time step t

and with probability Akl node i will change to another community l where k �= l. We have

each row of A sums to 1, i.e.,
∑

l Akl = 1. Given the community memberships in Z(t), the

link between nodes will be then decided stochastically by probabilities P in the SBM model.

The generative process of the Dynamic Stochastic Block Model and the graphical rep-

resentation are shown in Table 1 and Fig. 1, respectively. Note that DSBM and SBM differ

in how the community assignments are determined. In our DSBM model, instead of follow-

ing a prior distribution π , the community assignments at any time t (t > 1) are determined

by those at time t − 1 through transition matrix A, where A aims to capture the dynamic

evolution of communities.

3.4 Likelihood of the complete data

To express the data likelihood for the proposed DSBM model, we make two assumptions

about the data generation process. First, link weight wij is generated independent of the

other nodes/links, provided the membership zi and zj . Second, the community assignment
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Table 1 The generative process

of the Dynamic Stochastic Block

Model (DSBM)

For time 1:

generate the Social Network followed by SBM

For each time t > 1:

generate z
(t)
i

∼ p(z
(t)
i

|z
(t−1)
i

,A)

For each pair (i, j) at time t :

generate w
(t)
ij

∼ Bernoulli(·|P
z
(t)
i

,z
(t)
j

)

Fig. 1 The graphical

representation of the Dynamic

Stochastic Block Model

(DSBM). For clarity, the figure

only shows the representation for

a pair of nodes i and j

z
(t)
i of node i at time step t is independent of the other nodes/links, provided its community

assignment z
(t−1)
i at time t − 1. Using these assumptions, we write the likelihood of the

complete data for our DSBM model as follows

Pr(WT , ZT |π,P,A)

=

T∏

t=1

Pr(W (t)|Z(t),P )

T∏

t=2

Pr(Z(t)|Z(t−1),A)Pr(Z(1)|π) (1)

where the emission probability Pr(W (t)|Z(t),P ) and the transition probability

Pr(Z(t)|Z(t−1),A) are

Pr(W (t)|Z(t),P ) =
∏

i∼j

Pr(w
(t)
ij |z

(t)
i , z

(t)
j ,P )

=
∏

i∼j

∏

k,l

(
P

w
(t)
ij

kl (1 − Pkl)
1−w

(t)
ij

)z
(t)
ik

z
(t)
j l

and

Pr(Z(t)|Z(t−1),A) =

n∏

i=1

Pr(z
(t)
i |z

(t−1)
i ,A)

=

n∏

i=1

∏

k,l

A
z
(t−1)
ik

z
(t)
il

kl ,

respectively. Note that in the above equations, w
(t)
ij = 1 if there exists a link between nodes

i and j at time t , 0 otherwise. In addition, z
(t)
ik z

(t)
j l = 1 only if at time t node i belongs to

community k and node j belongs to community l. Similarly, z
(t−1)
ik z

(t)
il = 1 only if node i

belongs to community k at time t − 1, and belongs to community l at time t , where k may
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be equal to l. Furthermore, in our model self-loops are not considered and so in the above

equations, i ∼ j means over all i’s and j ’s such that i �= j . So the above equations are a

compact representation of our DSBM model.

Finally, term Pr(Z(1)|π) is the probability of community assignments at the first time

step and is expressed as

Pr(Z(1)|π) =

n∏

i=1

∏

k

π
z
(1)
ik

k .

4 Point estimation

For point estimation, we can use EM algorithm to get the maximum values of the parameters

π,P,A and the approximate posterior distribution for the community assignments ZT . We

take the variational EM algorithm. To run the variational EM algorithm, we assume the pos-

terior distribution for ZT can be factorized as q(ZT ) =
∏T

t=1

∏n

i=1 q(z
(t)
i ). In the variational

E-step, we obtain the posterior distribution q(z
(t)
i ), and in the variational M-step, we ob-

tain the maximum values for the parameters π,A,P . It can be shown that in the variational

E-step, the posterior distribution q(z
(t)
i ) is computed as

t = 1:

lnq(z
(1)
i ) =

∑

k

z
(1)
ik

⎛
⎝lnπk +

∑

j �=i

∑

l

E[z1
j l](w

(1)
ij lnPkl + (1 − w

(1)
ij ) ln(1 − Pkl))

⎞
⎠

+
∑

k

z
(1)
ik

∑

l

E[z
(2)
il ] lnAkl + const,

t ∈ [2, T − 1]:

lnq(z
(t)
i ) =

∑

k

z
(t)
ik

⎛
⎝∑

j �=i

∑

l

E[zt
j l](w

(t)
ij lnPkl + (1 − w

(t)
ij ) ln(1 − Pkl))

⎞
⎠

+
∑

k

z
(t)
ik

∑

l

(
E[z

(t+1)
il ] lnAkl + E[z

(t−1)
il ] lnAlk

)
+ const,

t = T :

lnq(z
(T )
i ) =

∑

k

z
(T )
ik

⎛
⎝∑

j �=i

∑

l

E[zT
jl](w

(T )
ij lnPkl + (1 − w

(T )
ij ) ln(1 − Pkl))

⎞
⎠

+
∑

k

z
(T )
ik

∑

l

E[z
(T −1)
il ] lnAlk + const.

In can seen that the approximate posterior distribution for q(z
(t)
i ) is multinomial distribution

of q(z
(t)
i ) =

∏
k γ

(t)
ik

z
(t)
ik . In the M-step, we maximize the log-likelihood over the parameters

π,P,A. The results are

πk =

∑
i E[z

(1)
ik ]

∑
k

∑
i E[z

(1)
ik ]

=

∑
i γ

(1)
ik∑

k

∑
i γ

(1)
ik

,



Mach Learn (2011) 82: 157–189 165

Pkl =

∑T

t=1

∑
i∼j (E[z

(t)
ik ]E[z

(t)
j l ] + E[z

(t)
il ]E[z

(t)
jk ])w

(t)
ij∑T

t=1

∑
i∼j (E[z

(t)
ik ]E[z

(t)
j l ] + E[z

(t)
il ]E[z

(t)
jk ])

=

∑T

t=1

∑
i∼j (γ

(t)
ik γ

(t)
j l + γ

(t)
il γ

(t)
jk )w

(t)
ij∑T

t=1

∑
i∼j (γ

(t)
ik γ

(t)
j l + γ

(t)
il γ

(t)
jk )

,

Akl =

∑T

t=2

∑
i E[z

(t−1)
ik ]E[z

(t)
il ]

∑
l

∑T

t=2

∑
i E[z

(t−1)
ik ]E[z

(t)
il ]

=

∑T

t=2

∑
i γ

(t−1)
ik γ

(t)
il∑T

t=2

∑
i γ

(t−1)
ik

.

After running the variational EM algorithm, the final community assignments are obtained

by

Z
∗
T = max

ZT

lnq(ZT ) (2)

resulting z
(t)∗
i = arg maxk γ

(t)
ik .

5 Bayesian inference

In order to predict memberships of nodes in a given dynamic social network, a straightfor-

ward approach is to first estimate the most likely values for parameters π , P , and A from

the historical data, and then to infer the community memberships in the future using the es-

timated parameters. This is usually called point estimation in statistics, and is notorious for

its instability when data is noisy. We address the limitation of point estimation by Bayesian

inference (Bishop 2006). Instead of using the most likely values for the model parameters,

we utilize the distribution of model parameters when computing the prediction.

5.1 Conjugate prior for Bayesian inference

We first introduce the prior distributions for model parameters π , P , and A.

The conjugate prior for π is the Dirichlet distribution

Pr(π) =
Ŵ(

∑
k γk)∏

k Ŵ(γk)

∏

k

π
γk−1

k (3)

where Ŵ(·) is the Gamma function. For the P matrix, we first assume it to be symmetric and

therefore reduce the number of parameters to n(n+1)

2
.

The conjugate prior for each parameter Pkl for l ≥ k is a Beta distribution, and therefore

the prior distribution for P is

Pr(P ) =
∏

k,l≥k

Ŵ(αkl + βkl)

Ŵ(αkl)Ŵ(βkl)
P

αkl−1

kl (1 − Pkl)
βkl−1. (4)

Finally, the conjugate prior for each row A is a Dirichlet distribution and the prior distri-

bution for A is

Pr(A) =
∏

k

Ŵ(
∑

l μkl)∏
l Ŵ(μkl)

∏

l

A
μkl−1

kl . (5)
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5.2 Joint probability of the complete data

To make our presentation concise, we introduce the following notations.

n
(t)
k =

∑

i

z
(t)
ik , (6)

n
(t1:t2)

k→l =

t2∑

t=t1+1

n∑

i=1

z
(t−1)
ik z

(t)
il , (7)

n
(t1:t2)

k→· =

t2∑

t=t1+1

n∑

i=1

z
(t−1)
ik , (8)

n
(t1:t2)

kl =

t2∑

t=t1

∑

i∼j

(z
(t)
ik z

(t)
j l + z

(t)
il z

(t)
jk ), (9)

n̂
(t1:t2)

kl =

t2∑

t=t1

∑

i∼j

w
(t)
ij (z

(t)
ik z

(t)
j l + z

(t)
il z

(t)
jk ). (10)

Here are some descriptions of the above notations. n
(t)
k represents the size, measured by

the number of community members, of community k at time t . n
(t1:t2)

k→l represents the total

number of transitions from community k to community l between time t1 (exclusive) and

t2 (inclusive). n
(t1:t2)

k→· represents the sum of the sizes of community k over time t1 (exclu-

sive) and t2 (inclusive). n
(t1:t2)

kl are the total number of pairs of nodes i and j , over time t1
(inclusive) and t2 (inclusive), where i �= j , i belongs to community k and j belongs to com-

munity l, or the other way around. n̂
(t1:t2)

kl is defined similarly to n
(t1:t2)

kl , except that n̂
(t1:t2)

kl is

a weighted sum, weighed by the element w
(t)
ij in W (t).

Using these notations, and with the prior distributions of the model parameters, Theo-

rem 1 gives the closed form expression for the joint probability of the complete data that is

marginalized over the distribution of model parameters.

Theorem 1 With the priors of parameters θ = {π,P,A} defined in (3)–(5) together with

the notations given in (6)–(10), the joint probability of observed links and unobserved com-

munity assignments is proportional to

Pr(WT , ZT ) =

∫
Pr(WT , ZT |θ)Pr(θ)dθ

∝
∏

k

Ŵ(n
(1)
k + γk)

∏

k

∏
l Ŵ(n

(1:T )
k→l + μkl)

Ŵ(n
(1:T )
k→· +

∑
l μkl)

×
∏

k,l>k

B
(
n̂

(1:T )
kl + αkl, n

(1:T )
kl − n̂

(1:T )
kl + βkl

)

×
∏

k

B

(
n̂

(1:T )
kk

2
+ αkk,

n
(1:T )
kk − n̂

(1:T )
kk

2
+ βkk

)

where B(·) is the Beta function.



Mach Learn (2011) 82: 157–189 167

The proof of the theorem is provided in the appendix. In this Bayesian inference framework,

to obtain the community assignment of each node at each time step, we need to compute the

posterior probability Pr(ZT |WT ).

Next, we introduce two versions of the inference framework—an offline inference ap-

proach and an online inference approach.

5.3 Offline inference

In our offline inference, it is assumed that the link data of all time steps are accessible

and therefore, the community assignments of all nodes in all time steps can be decided

simultaneously by maximizing the posterior probability, i.e.,

Z
∗
T = arg max

ZT

Pr(ZT |WT ) = arg max
ZT

Pr(WT , ZT ) (11)

where Pr(WT , ZT ) is given in Theorem 1. Note that in offline inference, the community

membership of each node at every time step t is decided by the link data of all time steps

in a retrospective way, even the link data of time steps later than t . In other words, we try

to fit the community membership of each node at time t to the entire available data from

time 1 to time T . Given this observation, we expect offline inference to deliver more reliable

estimation of community memberships than the online learning that is discussed in the next

subsection.

5.4 Online inference

In our online inference, the community memberships are learned incrementally over time.

Assume we have decided the community membership Z(t−1) at time step t −1, and observed

the links W (t) at time t . We decide the community assignments at time t by maximizing the

posterior probability of community assignments at time t given Z(t−1) and W (t), i.e.,

Z∗(t) = arg max
Z(t)

Pr(Z(t)|W (t),Z(t−1)).

Hence, to decide Z(t), the key is to efficiently compute Pr(Z(t)|W (t),Z(t−1)) except for time

step 1 in which we need to compute Pr(Z(1)|W (1)). The following theorem, whose proof is

given the appendix, provides closed form solutions for the two probabilities. It is important

to note that both probabilities are computed by averaging over the distribution of the model

parameters.

Theorem 2 With the priors of parameters θ = {π,P,A} given in (3)–(5), the posterior

probability of unobserved community assignments given the observed links and the commu-
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nity assignments at previous time step is proportional to

Pr(Z(1)|W (1)) ∝
∏

k

Ŵ(n
(1)
k + γk)

×
∏

k,l>k

B
(
n̂

(1)
kl + αkl, n

(1)
kl − n̂

(1)
kl + βkl

)

×
∏

k

B

(
n̂

(1)
kk

2
+ αkk,

n
(1)
kk − n̂

(1)
kk

2
+ βkk

)
,

Pr(Z(t)|W (t),Z(t−1)) ∝
∏

k

(∏

l

Ŵ(n
(t−1:t)
k→l + μkl)

Ŵ(n
(t−1:t)
k→· +

∑
l μkl)

)

×
∏

k,l>k

B
(
n̂

(t)
kl + αkl, n

(t)
kl − n̂

(t)
kl + βkl

)

×
∏

k

B

(
n̂

(t)
kk

2
+ αkk,

n
(t)
kk − n̂

(t)
kk

2
+ βkk

)
.

(12)

In online inference, it is assumed that data arrives sequentially and historic community as-

signments are not updated upon the arrival of new data. Therefore, the online inference

algorithm is done progressively and can be implemented more efficiently than the offline

inference algorithm.

6 Inference algorithm

In general it is an intractable problem to optimize the posterior probabilities in the offline and

online inference algorithms introduced in the previous section. As a consequence, we appeal

to the Gibbs sampling method (Geman and Geman 1984; Griffiths and Steyvers 2004) for

the solutions. In Gibbs sampling, we need to compute the conditional probability of the

community assignment of each node conditioned on the community assignments of other

nodes. We will first describe the algorithm and then analyze the time complexity of the

proposed algorithm.

6.1 Gibbs sampling algorithm

For offline inference, we need to compute the conditional probability Pr(z
(t)
i |ZT ,{i,t}− , WT ),

via Pr(ZT |WT ), where ZT ,{i,t}− are the community assignments of all nodes at all

time steps except node i at time step t . This can be computed by marginalizing z
(t)
i

in (11). Similarly, for online learning, we need to compute the conditional probabil-

ity Pr(z
(t)
i |Z

(t)

i−
,W (t),Z(t−1)), where Z

(t)

i−
is the collection of community assignments

of all nodes, except node i, at time step t . This can be computed by marginalizing

Pr(Z(t)|W (t),Z(t−1)). The following algorithms describe a simulated annealing version of

our inference algorithm.

Algorithm 1 Probabilistic simulated annealing algorithm

1. Randomly initialize the community assignment for each node at time step t (online infer-

ence) or at all time steps (offline learning); select the temperature sequence {T1, . . . , TM}

and the iteration number sequence {N1, . . . ,NM}.
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2. For each iteration m = 1, . . . ,M , run Nm iterations of Gibbs sampling with target distri-

butions exp{log Pr(ZT |WT )/Tm} (offline case) or exp{log Pr(Z(t)|W (t),Z(t−1))/Tm} (on-

line case).

Algorithm 2 Gibbs sampling algorithm

1. Compute the following statistics with the

initial assignments:

n
(1)
k

n
(1:T )
kl , n̂

(1:T )
kl or n

(t)
kl , n̂

(t)
kl

n
(1:T )
k→l , n

(1:T )
k→· or n

(t−1:t)
k→l , n

(t−1:t)
k→· .

2. For each iteration mi = 1 : Nm, and for each node i = 1 : n at each time t

– Compute the objective function in Simulated Annealing

exp
{

log Pr(z
(t)
i |ZT ,{i,t}− , WT )/Tm

}
or

exp
{

log Pr(z
(t)
i |Z

(t)

i−
,W (t),Z(t−1))/Tm

}

up to a constant using the current statistics, and then obtain the normalized distrib-

ution. (Note: the two objective functions correspond to the offline inference and the

online inference, respectively.)

– Sample the community assignment for node i according to the distribution obtained

above, update it to the new one.

– Update the statistics.

6.2 Time complexity

In our implementation, we adopt several techniques to improve the efficiency of the algo-

rithm. First, since in each step of the sampling, only one node i at a given time t changes

its community assignment, almost all the statistics can be updated incrementally to avoid

recomputing. Second, our algorithm is designed to take advantage of the sparseness of the

matrix W (t). For instance, we exploit the sparseness of W (t) to facilitate the computation of

n̂
(t1:t2)

kl . We give the time complexity as the following.

Theorem 3 The time complexity of our implementation of the Gibbs sampling algorithm is

O(nT + eT + K2T + NT (eC1 + nC2)) where e is the maximal number of edges over all

the time steps in the social network, N is the number of iterations in Gibbs sampling, C1

and C2 are constants.

Proof In the initial computation for the statistics in (6)–(10), O(n) is the time for computing

n
(1)
k ,∀k; O(nT ) is the time complexity of computing n

(1:T )
k→l , and n

(1:T )
k→· ,∀k, l; O(eT ) is the

time complexity of computing n̂
(1:T )
kl ,∀k, l. In these computations, we make use the sparse-

ness of z
(t)
i , which has only one non-zero value, and the sparseness of W (t); O(nT +K2T ) is

the time for computing n
(1:T )
kl ,∀k, l. In the subsequent updating at each iteration of the Gibbs

sampling algorithm, only one z
(t)
i is possibly changed, the updating only takes O(et

iC1 +C2),
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where et
i is the number of edges associated with node i at time t , summing over all nodes

at all time steps, O(eT C1 + nT C2) is the time required to update the statistics after updat-

ing all community assignments at each iteration. Finally adding the time together, the time

complexity of the Gibbs sampling algorithm is O(n + eT + nT + nT + K2T + N(eT C1 +

nT C2)), which is also O(nT + eT + K2T + NT (eC1 + nC2)). �

As can be seen, when the social network is sparse and when the degree of each node is

bounded by a constant, the running time of each iteration of our Gibbs sampling algorithm

is linear in the size of the social network.

7 Extensions

In this section, we present two extensions to our basic framework, including how to handle

different types of links and how to handle insertion and deletion of nodes in the network. In

addition, we discuss how to choose the hyperparameters in our model.

7.1 Handling different types of link

So far, we have used binary links in our model, where the binary links (i.e., either wij = 1

or wij = 0) indicate the presence or absence of a relation between a pair of nodes. However,

there exist other types of links in social networks as well. Here we show how to extend our

model to handle two other cases: when wij ∈ N and when wij ∈ R+.

In some applications, wij indicates the frequency of certain interactions. For example,

wij may represent the occurrence of interactions between two bloggers during a day, the

number of papers that two authors co-authored during a year, etc. In such cases, wij can be

any non-negative integer. Our current model actually can handle this case with little change:

the emission probability

Pr(wij |zi, zj ) =
∏

k,l

(P
wij

kl (1 − Pkl))
zikzj l (13)

remains valid for wij ∈ N , except that instead of a Bernoulli distribution (i.e., wij = 0 or

1), now wij follows a geometric distribution. Note that the (1 − Pkl) term is needed to take

into account the case where there is no edge between i and j . With minor modifications, we

give the joint probability Pr(WT , ZT ) in offline inference, and the conditional probability

Pr(Z(t)|W (t),Z(t−1)) in online inference as follows:

Pr(WT , ZT ) ∝
∏

k

Ŵ(n
(1)
k + γk)

∏

k

∏
l Ŵ(n

(1:T )
k→l + μkl)

Ŵ(n
(1:T )
k→· +

∑
l μkl)

×
∏

k,l>k

B
(
n̂

(1:T )
kl + αkl, n

(1:T )
kl + βkl

)

×
∏

k

B

(
n̂

(1:T )
kk

2
+ αkk,

n
(1:T )
kk

2
+ βkk

)
,

Pr(Z(1)|W (1)) ∝
∏

k

Ŵ(n
(1)
k + γk)
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×
∏

k,l>k

B
(
n̂

(1)
kl + αkl, n

(1)
kl + βkl

)

×
∏

k

B

(
n̂

(1)
kk

2
+ αkk,

n
(1)
kk

2
+ βkk

)
,

Pr(Z(t)|W (t),Z(t−1)) ∝
∏

k

(∏

l

Ŵ(n
(t−1:t)
k→l + μkl)

Ŵ(n
(t−1:t)
k→· +

∑
l μkl)

)

×
∏

k,l>k

B
(
n̂

(t)
kl + αkl, n

(t)
kl + βkl

)

×
∏

k

B

(
n̂

(t)
kk

2
+ αkk,

n
(t)
kk

2
+ βkk

)
.

In other applications, wij indicates the similarity or distance between nodes. For example,

wij may represent the topic similarity between posts written by two bloggers, the content

similarity between a paper and the papers it cites, etc. In such cases, wij ∈ R+ belongs to the

set of non-negative real numbers. In such a case, we can first discretize wij by using finite

bins and then introduce the emission probabilities as before. Another way to handle the

case when wij ∈ R+ is suggested by Zhu (2005), which is to introduce a k-nearest neighbor

graph and therefore reduce the problem to the case when wij = 0 or 1.

7.2 Handling the variability of nodes

In dynamic social networks, at a given time, new individuals may join in the network and

old ones may leave. To handle insertion of new nodes and deletion of old ones, existing

algorithm such as (Chi et al. 2007) and (Lin et al. 2008) use some heuristics, e.g., by assum-

ing that all the nodes are in the network all the time but in some time steps certain nodes

have no incident links. In comparison, in both the online and the offline versions of our al-

gorithm, no such heuristics are necessary. For example, for online inference, let St denote

the set of nodes at time t , It = St

⋂
St−1 be set of nodes appearing in both time steps t and

t − 1. Ut = St − St−1 be the new nodes at time t . Then we can naturally model the posterior

probability of the community assignments at time t as

Pr(Z(t)|W (t),Z(t−1)) ∝ Pr(Z(t),W (t)|Z(t−1))

= Pr(W (t)|Z(t))Pr(Z
(t)
It

|Z
(t−1)
It

)Pr(Z
(t)
Ut

) (14)

and we can directly write the part corresponding to (12) in Theorem 2 as

Pr(Z(t)|W (t),Z(t−1)) ∝
∏

k

Ŵ(n
(t)
k,Ut

+ γk) ×
∏

k

(∏

l

Ŵ(n
(t−1:t)
k→l,It

+ μkl)

Ŵ(n
(t−1:t)
k→·,It

+
∑

l μkl)

)

×
∏

k,l>k

B
(
n̂

(t)
kl,St

+ αkl, n
(t)
kl,St

− n̂
(t)
kl,St

+ βkl

)

×
∏

k

B

(
n̂

(t)
kk,St

2
+ αkk,

n
(t)
kk,St

− n̂
(t)
kk,St

2
+ βkk

)
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where n∗
∗,S is the corresponding statistics evaluated on the nodes set of S. Similar results can

be derived for the offline learning algorithm. In brief, our model can handle the insertion

and deletion of nodes without using any heuristics.

7.3 Hyperparameters

In this subsection, we discuss the roles of the hyperparameters (γ,α,β , and μ) and give

some guidelines on how to choose the values for these hyperparameters. In the experimental

studies, we will further investigate the impact of the values of these hyperparameters on the

performance of our algorithm.

– γ is the hyperparameter for the prior of π . We can interpret the γk as an effective number

of observations of zik = 1. Without other prior knowledge we set all γk to be the same.

– α,β are the hyperparameters for the prior of P . As stated before, we discriminate two

probabilities in P , i.e., Pkk the “within-community” link probability, and Pkl,l �=k the

“between-community” link probability. For the hyperparameters, we set two groups of

values, i.e., (1) αkk, βkk,∀k and (2) αkl,l �=k, βkl,l �=k . Because we have the prior knowledge

that nodes in the same community have higher probability to link to each other than nodes

in different communities, we set αkk ≥ αkl,l �=k, βkk ≤ βkl,l �=k .

– μ is the hyperparameter for A. Ak∗ = {Ak1, . . . ,Akk, . . . ,AkK} are the transition proba-

bilities for nodes to switch from the kth community to other (including coming back to

the kth) communities in the following time step. μk∗ = {μk1, . . . ,μkk, . . . ,μkK} can be

interpreted as effective number of nodes in the kth community switching to other (includ-

ing coming back to the kth) communities in the following time step. With prior belief that

most nodes will not change their community memberships over time, we set μkk ≥ μkl,l �=k .

Finally, how to select the exact values for the hyperparameters γ,α,β , and μ is further

described in the empirical studies.

8 Experimental studies

In this section, we conduct several experimental studies. First, we show that the performance

of our algorithms is not sensitive to most hyperparameters in the Bayesian inference and for

the only hyperparameters that impact the performance significantly, we provide a principled

method for automatic parameter selection. Second, we show that our Gibbs-sampling-based

algorithms have very fast convergence rate, which makes our algorithms very practical for

real applications. Third, by using a set of benchmark datasets with a variety of charac-

teristics, we demonstrate that our algorithms clearly outperform several state-of-the-art al-

gorithms in terms of discovering the true community memberships and capturing the true

evolution of community memberships. Finally, we use three real datasets of dynamic social

networks to illustrate that from these datasets, our algorithms are able to reveal interesting

insights that are not directly obtainable from other algorithms. In all the following experi-

ments, the Gibbs-sampling algorithm is run with temperature sequence of 1:-0.1:0, and iter-

ation number sequence of [20,10,10,10,10,10,10,5,5,5,5], and totally 100 iterations.

8.1 Performance metrics

The experiments we conducted can be categorized into two types, those with ground truth

available and those without ground truth. By ground truth we mean the true community
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membership of each node at each time step. When the ground truth is available, we mea-

sure the performance of an algorithm by the normalized mutual information between the

true community memberships and those given by the algorithm. More specifically, if the

true community memberships are represented by C = {C1, . . . ,CK} and those given by the

algorithm are represented by C′ = {C ′
1, . . . ,C

′
K}, then the mutual information between the

two is defined as

M̂I(C, C
′) =

∑

Ci ,C
′
j

p(Ci,C
′
j ) log

p(Ci,C
′
j )

p(Ci)p(C ′
j )

and the normalized mutual information is defined by

MI(C, C
′) =

M̂I(C, C′)

max(H(C),H(C′))

where H(C) and H(C′) are the entropies of the partitions C and C′. The value of MI is

between 0 and 1 and a higher MI value indicates that the result given by the algorithm C′

is closer to the ground truth C . This metric MI has been commonly used in the information

retrieval field (Gong and Xu 2007; Xu and Gong 2004).

Where there is no ground truth available in the dataset, we measure the performance

by using the metric of modularity which is proposed by Newman and Girvan (2004) for

measuring community partitions. For a given community partition C = {C1, . . . ,CK}, the

modularity is defined as

Modu(C) =
∑

k

[
Cut(Vk,Vk)

Cut(V ,V )
−

(
Cut(Vk,V )

Cut(V ,V )

)2
]

where V represents all the nodes in the social network and Vk indicates the set of nodes

in the kth community Ck . Cut(Vi,Vj ) =
∑

p∈Vi ,q∈Vj
wpq . As state in (Newman and Gir-

van 2004), modularity measures how likely a network is generated due to the proposed

community structure versus generated by a random process. Therefore, a higher modular-

ity value indicates a community structure that better explains the observed social network.

Many existing studies, such as (Brandes et al. 2008; Chen et al. 2009; Lin et al. 2008;

White and Smyth 2005), have used this metric for performance analysis.

8.2 Experiments on synthetic datasets

8.2.1 Data generator

We generate synthetic data by following a procedure suggested by Newman and Girvan

(2004). The data consists of 128 nodes that belong to 4 communities with 32 nodes in

each community. Links are generated in the following way. For each pair of nodes that

belong to the same community, the probability that a link exists between them is pin; the

probability that a link exists between a pair of nodes belonging to different communities

is pout . However, by fixing the average degree of nodes in the network, which we set to

be 16 in our datasets, only one of pin and pout can change freely. In other words, a single

parameter z, which represents the mean number of edges from a node to nodes in other

communities, is enough to describe the data. By increasing z (and therefore pout ), the net-

work becomes more noisy in the sense that the community structure becomes less obvi-

ous and hard to detect. In this study, we generate datasets under four different noise levels
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Fig. 2 The adjacency matrices for the datasets with different noise levels, where the x and y axes represent

the nodes, and each dot represents a link between the corresponding pair of nodes

by setting z = 2,3,4,5, which correspond to pin = 0.1935 (pout = 0.0208), pin = 0.1613

(pout = 0.0312), pin = 0.1290 (pout = 0.0417), and pin = 0.0968 (pout = 0.0521), respec-

tively. The adjacency matrices for the datasets at the four noise levels are shown in Fig. 2.

The above network generator described by Newman et al. can only generate static net-

works. To study dynamic evolution, we let the community structure of the network evolve

in the following way. We start with introducing evolution to the community memberships:

at each time step after time step 1, we randomly choose 10% of the nodes to leave their

original community and join the other three communities at random. After the community

memberships are decided, links are generated by following the probabilities pin and pout as

before. We generate the network with community evolution in this way for 10 time steps.
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8.2.2 Hyperparameters

In the first experiment, we study the impact of the hyperparameters on the performance of

our algorithm. Figure 3 shows the performance of our algorithm, in terms of the average

normalized mutual information and the average modularity over all time steps, under a large

range of values for the hyperparameters γ (for the initial probability π ) and μ (for the tran-

sition matrix A), respectively. As can be seen, the performance varies little under different

values for γ and μ, which verifies that our algorithm is robust to the setting of these hyper-

parameters. As a result, in the following experiments, unless stated otherwise, we simply set

γ = 1 and μkk = 10. Note that we only show the results of our online inference algorithm

for the dataset with noise level 2. The results for the dataset with other noise levels and for

the offline inference algorithm are similar and therefore are not shown here.

However, the performance of our algorithm is somewhat sensitive to the hyperparameters

α and β for P , which is the stochastic matrix representing the community structure at each

time step. In Fig. 4(a) we show the performance of our algorithm under a large range of

α and β values, which demonstrates that the performance varies under different α and β

values. This result makes sense because α and β are crucial for the stochastic model to

correctly capture the community structure of the network. For example, the best performance

is achieved when α is in the same range as the total number of links in the network. In

addition, we see a clear correlation between the accuracy with respect to the ground truth,

which is not seen by our algorithm, and the modularity, which is available to our algorithm.

This correlation is clearly demonstrated in Fig. 4(b), where we scaled the modularity so

that it has the same mean as the average mutual information. As a result, we can use the

modularity value as a validation metric to automatically choose good values for α and β . All

the experimental results reported in the following are obtained from this automatic validation

procedure.

Fig. 3 The performance, in

terms of (a) the average

normalized mutual information

and (b) the average modularity

over all time steps, under

different values for γ and μkk

(with μkl = 1,∀k �= l), which

shows that the performance is not

sensitive to γ and μ

Fig. 4 The performance, in terms of (a) the average normalized mutual information vs. the average mod-

ularity and (b) the average normalized mutual information vs. the scaled modularity, over all time steps,

under the cases with α and β valued at α,β are (αkk = 1, βkl = 1), (αkk = 5, βkl = 1), (αkk = 10, βkl = 1),

(αkk = 1e2, βkl = 10), (αkk = 1e4, βkl = 10), and in all the cases αkl,l �=k = 1
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8.2.3 Comparison with the baseline algorithms

In this experiment, we compare the performance of the online and offline versions of our

DSBM algorithm with those of two recently proposed algorithms for analyzing dynamic

communities—the dynamic graph-factorization clustering algorithm (FacetNet) by Lin et al.

(2008) and the evolutionary spectral clustering algorithm (EvolSpect) by Chi et al. (2007). In

addition, we also provide the performance of the static versions for all the algorithms—static

stochastic block models (SSBM, Holland and Leinhardt 1976) for DSBM, static graph-

factorization clustering (SGFC, Yu et al. 2005) for FacetNet, and static spectral clustering

(SSpect, Shi and Malik 2000) for EvolSpect.

Figure 5 presents the performance, in terms of the normalized mutual information with

respect to the ground truth over the 10 time steps, of all the algorithms for the four datasets

with different noise levels. We can obtain the following observations from the results. First,

our DSBM algorithms have the best accuracy and outperform all other baseline algorithms at

every time step for all the four datasets. Second, the offline version of our algorithm, which

takes into consideration all the available data simultaneously, has better performance than

that of the online version. Third, the evolutionary versions of all the algorithms outperform

their static counterparts in most cases, which demonstrates the advantages of the dynamic

models in capturing community evolution in dynamic social networks. We obtain similar

results for the modularity metric and due to the limit of space, we do not include them here.

Fig. 5 The normalized mutual information with respect to the ground truth over the 10 time steps, of all the

algorithms on the four datasets with different noise levels
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Fig. 6 (a) The average precision and (b) the average recall, for detecting the nodes that switch their commu-

nity memberships, over all the time steps for the four datasets with different noise levels

Next, we investigate which algorithms can capture the community evolution more faith-

fully. For this purpose, since we have the ground truth on which nodes actually changed

their communities at each time step, we compute the precision (the fraction of nodes, among

those an algorithm found switched communities, that really changed their communities) and

the recall (the fraction of nodes, among those really changed their communities, that an al-

gorithm found switched communities) for all the algorithms. Figure 6 shows the average

precision and recall for all the algorithms over all the time steps for the four datasets with

different noise levels. As can be seen, our DSBM algorithms have the best precision and the

best recall values for all the four datasets, which illustrates that our algorithms can capture

the true community evolution more faithfully than the baseline algorithms.

8.2.4 Comparison with point estimation

In this experiment, we compare the performance of the proposed model by using Bayesian

inference with that by using point estimation. With this comparison, we can validate the

benefit of Bayesian inference. From Sect. 4, we can see that the point estimation approach

is best fit into the offline setup. Thus we compare the dynamic stochastic block model by

using Bayesian inference with that by using point estimation in the offline setting. We use

the same synthetic data sets as in last experiment as shown in Fig. 2. The results are shown

in Fig. 7. In the figure, DSBM-BA refers to the Bayesian inference for dynamic stochas-

tic block model, and DSBM-PE refers to the point estimation for the dynamic stochastic

block model with random initializations for the parameters γ . It is clear from the figure

that using Bayesian Inference is much better than using point estimation. The reason for

the bad performance of DSBM-PE is that the EM algorithm converges to a local optimum

that there are only two communities found at each time step. Since the point estimation

is heavily sensitive to initializations, we also include the result of using point estimation

with good initializations as refereed to DSBM-PEGI. To obtain good initializations, we run

Bayesian inference with 10 iterations of Gibbs sampling algorithm and initialize γ by the

resulting community assignments. From the performance we can see that on the one hand,

by comparing DSBM-PEGI with DSBM-PE, we see the benefit of using Bayesian Inference

to get good initializations for point estimation; on the other hand, from Fig. 7 we can see

even with good initializations, the point estimation approach still has poorer performance

than the Bayesian inference approach, especially on capturing the community changes for

individuals as measured by precision and recall and also when the data is more noisy.
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Fig. 7 The normalized mutual information with respect to the ground truth over the 10 time steps, of all the

algorithms on the four datasets with different noise levels

8.2.5 Convergence rate and running time

In our algorithms, we adopt the Gibbs sampling for Bayesian inference. In this experiment,

we show that this Gibbs sampling procedure converges very quickly. In Fig. 8, we show how

the value of the objective function changes over the number of iterations at each time step.

As can be seen, the first time step requires more iterations but even for the first time step,

fewer than 20 iterations are enough for the algorithm to converge. For the time steps 2 to 10,

by using the results at the previous time step as the initial values, the algorithm converges in

just a couple of iterations. The total running time of the proposed algorithm on the synthetic

data set with 128 nodes, 1024 edges, and 10 times is about 1 minutes on a 2.0 GHz CPU

2.0 GB memory Linux machine. This result, together with the time complexity analysis in

Sect. 6.2, demonstrates that our algorithm is practical and is scalable to large social networks

in real applications.
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Fig. 8 Convergence rate of Gibbs sampling procedure in the online learning, where the x axis is the iteration

number and the y axis represents the value of the objective function

8.3 Experiments on real datasets

In this section we present experimental studies on three real datasets: a traditional social

network dataset, a blog dataset, and a paper co-authorship dataset.

8.3.1 The southern women data

The southern women data is a standard benchmark data in social science. It was collected in

1930’s in Natchez, Mississippi. The data records the attendance of 18 women in 14 social

events during a period of one year. The detailed data is presented in Table 2. We obtain

the social network by assigning wij for women i and j the number of times that they co-

participated in the same events. We first apply the static stochastic model (SBM) to the

aggregated data and we set the number of communities to be 2, the number used in most

previous studies. Not surprisingly, we obtain the same result as most social science methods

reported in (Freeman 2003), that is, women 1–9 belong to one community and women 10–18

belong to the other community.

Next, based on the number of events that occurred, we partition the time period into

3 time steps: (1) February–March, when women 1–7,9,10, and 13–18, participated social

events 2,5,7, and 11; (2) April–May, when women 8,11,12, and 16 joined in and together

they participated in events 3,6,9, and 12; (3) June–November, when events 1,4,8,10, and 13

happened for which women 17 and 18 did not show up. We apply both the offline and the

online versions of our algorithm on this dataset with 3 time steps.

It is worth noting that in this dataset, not all individuals showed up in all the three time

steps. As a result, when applying our algorithms, we adopted the technique introduced in

Sect. 7.2 to handle the insertion of new nodes and deletion of old ones.

The community membership detected by our offline and online algorithms are shown in

Table 3. It turns out that the offline algorithm reports no community change for any woman.

This result suggests that if we take the overall data into consideration simultaneously, the

evidence is not strong enough to justify any change of community membership. However,

the online algorithm detects that woman 8 changed her community at timestep 3, as shown

in Table 3. By investigating the social events in Table 2 we see that this change is due to the

social event 8, which is the only event that woman 8 participated at time step 3. Because

woman 8 does not have a long history of community membership (notice that woman 8 has

only shown up since timestep 2), we believe this result by our online algorithm makes sense

and it actually provides interesting insights into this real-world dataset.
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Table 2 The southern women data, from (Freeman 2003)

Names of Participants of Group I Code Numbers and Dates of Social Events Reported in Old City Herald

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

6/27 3/2 4/12 9/26 2/25 5/19 3/15 9/16 4/8 6/10 2/23 4/7 11/21 8/3

1. Mrs. Evelyn Jefferson × × × × × × . . . × × . . . . . . . . . . . . . . .

2. Miss Laura Mandeville × × × . . . × × × × . . . . . . . . . . . . . . . . . .

3. Miss Theresa Anderson . . . × × × × × × × × . . . . . . . . . . . . . . .

4. Miss Brenda Rogers × . . . × × × × × × . . . . . . . . . . . . . . . . . .

5. Miss Charlotte McDowd . . . . . . × × × . . . × . . . . . . . . . . . . . . . . . . . . .

6. Miss Frances Anderson . . . . . . × . . . × × . . . × . . . . . . . . . . . . . . . . . .

7. Miss Eleanor Nye . . . . . . . . . . . . × × × × . . . . . . . . . . . . . . . . . .

8. Miss Pearl Oglethorpe . . . . . . . . . . . . . . . × . . . × × . . . . . . . . . . . . . . .

9. Miss Ruth DeSand . . . . . . . . . . . . × . . . × × × . . . . . . . . . . . . . . .

10. Miss Verne Sanderson . . . . . . . . . . . . . . . . . . × × × . . . . . . × . . . . . .

11. Miss Myra Liddell . . . . . . . . . . . . . . . . . . . . . × × × . . . × . . . . . .

12. Miss Katherine Rogers . . . . . . . . . . . . . . . . . . . . . × × × . . . × × ×

13. Mrs. Sylvia Avondale . . . . . . . . . . . . . . . . . . × × × × . . . × × ×

14. Mrs. Nora Fayette . . . . . . . . . . . . . . . × × . . . × × × × × ×

15. Mrs. Helen Lloyd . . . . . . . . . . . . . . . . . . × × . . . × × × . . . . . .

16. Mrs. Dorothy Murchison . . . . . . . . . . . . . . . . . . . . . × × . . . . . . . . . . . . . . .

17. Mrs. Olivia Carleton . . . . . . . . . . . . . . . . . . . . . . . . × . . . × . . . . . . . . .

18. Mrs. Flora Price . . . . . . . . . . . . . . . . . . . . . . . . × . . . × . . . . . . . . .

8.3.2 The blog dataset

This blog dataset was collected by the NEC Labs and have been used in several previous

studies on dynamic social networks (Chi et al. 2007; Lin et al. 2008). It contains 148,681

entry-to-entry links among 407 blogs during 15 months. In this study, we first partition the

data in the following way. The first 7 months are used for the first 7 time steps; data in

months 8 and 9 are aggregated into the 8th time step; data in months 10–15 are aggregated

into the 9th time step. The reason for this partition is that in the original dataset, the number

of links dropped dramatically toward the end of the time and the partition above makes the

number of links at each time step to be evenly around 200. Note that in this dataset, instead

of binary links, we give weights to the links as the number of entry-to-entry links occurred

during a give period. As a result, another purpose of studying this dataset is to demonstrate

that our algorithm can handle different types of links.

Clustering performance We run our algorithms on this dataset and compare the per-

formance, in terms of modularity, with that of the two baselines, the dynamic graph-

factorization clustering (FacetNet, Lin et al. 2008) and the evolutionary spectral clustering

(EvolSpect, Chi et al. 2007). Following (Chi et al. 2007), we set the number of communities

to be 2 (which roughly correspond to a technology community and a political community).

In terms of hyperparameters for our algorithm, for γ and μ, we simply chose some default

values (i.e., γk = 1, μkl = 1, and μkk = 10), and for α and β , we chose the ones that result in

the best modularity. For the two baseline algorithms, their parameters are chosen to obtain

the best modularity. Figure 9 shows the performance of the algorithms. As can be seen, for
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Table 3 Communities

membership detected by the

offline algorithm and the online

algorithm, where + and −
indicate the two communities

women offline inference online inference

time steps time steps

1 2 3 1 2 3

1 − − − − − −

2 − − − − − −

3 − − − − − −

4 − − − − − −

5 − − − − − −

6 − − − − − −

7 − − − − − −

8 − − − +

9 − − − − − −

10 + + + + + +

11 + + + +

12 + + + +

13 + + + + + +

14 + + + + + +

15 + + + + + +

16 + + + +

17 + + + +

18 + + + +

Fig. 9 The performance, in terms of the modularity, of different algorithms (including the naive method

using neighbor counting) on the NEC blog datasets, with the community number set to 2

this dataset, the offline and online versions of our algorithm give similar results and they

both outperform the baseline algorithms.

Some meaningful community changes Actually, we found that most blogs are stable in

terms of their communities. However, there are still some blogs changing their communities

detected by our algorithms based on the links information. Here, we present the community

memberships of four representative blogs. Three of them (blogs 94, 192, and 357) have the

most number of links across the whole time and one of them (blog 230) has the least number

of links, only at two time steps. To help the visualization, we assign one of the two labels to
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Fig. 10 Neighbor distributions of the four representative blogs (the color bars in each sub figure), the com-

munity results of the offline and online versions of DSBM (on the top of each sub figure), and some top

keywords occurred in the blogs (at the bottom of each sub figure)

each blog where the labels are obtained by applying the normalized cut algorithm (Shi and

Malik 2000) on the aggregated blog graph. Therefore, these labels give us the community

membership of each blog if we use static analysis on the aggregated data. Then to visualize

the dynamic community memberships, for a blog at a given time step, we show the fractions

of the blog’s neighbors (through links) that have each of the two possible labels at the given

time step.

Figure 10 illustrates how these fractions change over time for these 4 representative

blogs. On the top of each subfigure, we show the community memberships computed by

our algorithms and at the bottom of each subfigure, we show some top keywords that

occurred most frequently in the corresponding blog site. From the figure we can see that

blogs 94 and 132, for which our algorithms detect no changes in community memberships,

have very homogeneous neighbor labels and very focused top keywords. In comparison,

blog 357 has relatively inhomogeneous neighbors during different time steps and has more

changes of community memberships detected by our algorithm. It turns out that blog 357

is a blog that reports news events in the area of San Francisco, including both technology

events and political events. Finally, we look at blog 230. This blog is more technology fo-

cused. However, during the whole time period, it only generated 2 entry-to-entry links in

time steps 3 and 8 respectively. The link generated at time 3 pointed to a political blog

(blog 60, http://catallarchy.net) and that at time 8 pointed to a technology blog (blog 362,

http://www.siliconbeat.com). Although the results obtained by our algorithms are correct

http://catallarchy.net
http://www.siliconbeat.com
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based on these evidence, we can see that the link-based analysis can be unreliable when the

links are very sparse.

Now seeing that the simple neighbor counting approach gives results consistent with

our algorithms, one may wonder if such a naive approach is good enough for analyzing

dynamic social networks. To answer this question, in Fig. 9 we also plot the performance

of this neighbor counting approach (as diamond-shaped points on the magenta-colored line)

and we can see that such a naive approach by itself does not give performances comparable

to our algorithms.

8.3.3 The paper co-authorship (DBLP) data

This data was extracted from DBLP and has been studied in (Asur et al. 2007; Lin et al.

2008). It contains the co-authorship information among the papers in 28 conferences over 10

years (1997–2006). The 28 conferences span three main areas—data mining (DM), database

(DB), and artificial intelligence (AI). The nodes in the networks are the authors and the link

weights are the number of papers co-authored by a pair of authors. Since the links in each

time step are sparse, we aggregate the 10 years into 5 time steps with 2 years each. We apply

our algorithm to this dataset with the known community number 3.

We first delineate the community evolution during the 5 time steps shown in Fig. 11.

To avid clutter, we only show the most significant evolutions (in terms of the number of

authors that made the transitions), which turn out to be mostly from DB to DM commu-

nities and from DB to AI communities. From the figure, we can observe the trend that the

community of DB gets smaller and the community of DM gets larger along the time, while

the size of community AI remains relatively stable. This trend actually matches our knowl-

edge about the period (1997–2006) of the data. Besides the community evolution, we also

find some meaningful community evolution for individual researchers. Here we only list

four authors who have large number of publications and on whom our algorithms detect

a lot of changes in community memberships. These authors include Soumen Chakrabarti

(from DB to AI), Laks V. S. Lakshmanan (from DM to DB), Christos Faloutsos (from DB

to DM), and Byron Dom (from DB to AI). By checking the conference venues of the pa-

pers published by these authors each year and by checking the biographies of these authors,

we verified that the above changes all correspond to switches of research focus that really

happened.

It is worth mentioning that the conference venues (and therefore the class labels for

all the conferences and all the papers) are not used in our algorithms. This implies that

by only studying the interactions among individuals (the co-authorship), our algorithms

can discover meaningful changes of community memberships that are related to real-world

events.

Fig. 11 Community evolutions

for DBLP data set
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9 Conclusion

In this paper, we proposed a framework based on Bayesian inference to find communities

and to capture community evolution in dynamic social networks. The framework is a prob-

abilistic generative model that unifies the communities and their evolution in an intuitive

and rigorous way; the Bayesian treatment gives robust prediction of community member-

ships; the proposed algorithms are implemented efficiently to make them practical in real

applications. Extensive experimental studies showed that our algorithms outperform several

state-of-the-art baseline algorithms in different measures and reveal very useful insights in

several real social networks.

The current Bayesian framework relies solely on the links to infer the community mem-

berships of nodes in social networks. This may be insufficient when the number of links is

sparse. In the future, we plan to extend our framework to incorporate information other than

links such as the contents of blogs.
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Appendix

In this appendix, we provide detailed proof for Theorem 1, 2.

Proof of Theorem 1 The joint probability Pr(WT , ZT ) is computed by integrating over the

parameters θ = {π,P,A} under the conjugate prior of θ = {π,P,A}, i.e.,

Pr(WT , ZT ) =

∫

π,P,A

Pr(WT , ZT |π,P,A)Pr(π)Pr(P )Pr(A)dπdPdA.

The key to this computation is that we can factorize the probability Pr(WT , ZT |π,P,A) into

three parts that depend on π , P , A, respectively as in (1), i.e.,

Pr(WT , ZT |π,P,A) =

T∏

t=1

Pr(W (t)|Z(t),P )

T∏

t=2

Pr(Z(t)|Z(t−1),A)Pr(Z(1)|π).

Then the integral is taken independently,

Pr(WT , ZT ) =

∫

π

Pr(Z(1)|π)Pr(π)dπ

∫

P

T∏

t=1

Pr(W (t)|Z(t),P )Pr(P )dP

×

∫

A

T∏

t=2

Pr(Z(t)|Z(t−1),A)Pr(A)dA.

As the prior for π,P,A is assumed to be conjugate to the corresponding likelihood term,

the integral can be easily computed.
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For π , the integral is

∫

π

Pr(Z(1)|π)Pr(π)dπ =
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In the above computation, we use the property of Dirichlet distribution and the definition

introduced in (6). For P , the integral is
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P
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In the above computation, we use the property of beta distribution, the symmetry of Pkl , and

the definitions introduced in (9)–(10).

For A, the integral is

∫
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In the above computation, we use the property of Dirichlet distribution and the definitions

introduced in (7), (8).

Finally, coming the three integrals and ignore the terms that are independent of WT , ZT ,

we have
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This completes the proof. �
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Proof of Theorem 2 To compute Pr(Z(t)|W (t),Z(t−1)), we note that

Pr(Z(t)|W (t),Z(t−1))

∝ Pr(W (t),Z(t),Z(t−1))

= Pr(W (t)|Z(t))Pr(Z(t)|Z(t−1))

=

∫

P

Pr(W (t)|Z(t),P )Pr(P )dP

∫

A

Pr(Z(t)|Z(t−1),A)Pr(A)dA.

With similar computations as in proof of Theorem 1, the two integrals results in

Pr(W (t)|Z(t)) ∝
∏

k,l>k

B(n̂
(t)
kl + αkl, n

(t)
kl − n̂

(t)
kl + βkl)

×
∏

k

B

(
n̂

(t)
kl

2
+ αkl,

n
(t)
kl − n̂

(t)
kl

2
+ βkl

)
,

Pr(Z(t)|Z(t−1)) ∝
∏

k

∏
l Ŵ(n

(t−1:t)
k→l + μkl)

Ŵ(n
(t−1:t)
k→· +

∑
l μkl)

.

Multiplying these two terms, we get the one for Pr(Z(t)|W (t),Z(t−1)) as given in Theorem 2.

To compute Pr(Z(1)|W (1)), we note

Pr(Z(1)|W (1)) ∝ Pr(W (1)|Z(1))Pr(Z(1)).

The first term Pr(W (1)|Z(1)) is computed as above with t replaced with 1. For Pr(Z1), we

have already computed in proof of Theorem 1, i.e.,

Pr(Z(1)) =

∫

π

Pr(Z(1)|π)Pr(π)dπ ∝
∏

k

Ŵ(n
(1)
k + γk).

Multiplying these two terms, we get the one for Pr(Z(1)|W (1)) as given in Theorem 2. �
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