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Wei Liu'2, Matteo Pellegrini? & Xiaofan Wang'

'Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China, 2Department of Molecular, Cell and
Developmental Biology, University of California, Los Angeles, CA, 90055.

Network methods have had profound influence in many domains and disciplines in the past decade.
Community structure is a very important property of complex networks, but the accurate definition of a
community remains an open problem. Here we defined community based on three properties, and then
propose a simple and novel framework to detect communities based on network topology. We analyzed 16
different types of networks, and compared our partitions with Infomap, LPA, Fastgreedy and Walktrap,
which are popular algorithms for community detection. Most of the partitions generated using our
approach compare favorably to those generated by these other algorithms. Furthermore, we define
overlapping nodes that combine community structure with shortest paths. We also analyzed the E. Coli.
transcriptional regulatory network in detail, and identified modules with strong functional coherence.

ommunities are groups that are densely connected among their members, and sparsely connected with the

rest of the network. Community structure can reveal abundant hidden information about complex net-

works that is not easy to detect by simple observation. There are many large-scale complex networks
(systems) in the real world whose structure is not fully understood. A great deal of research has been carried out to
uncover the structures of these real world networks, to improve the ability to manage, maintain, renovate and
control them. With the help of varied approaches, it is possible to shed light on the general structure of these
networks, and further understand their function.

Network science methods have been used in various settings'?, including social**, information®, transporta-
tion®, energy’, ecological®, disease’, and biological networks'*"". In most of these cases we can find clear com-
munity structures, which are usually associated with specific functions. However, to date, most detection methods
have limitations, and there is still a lot of room to develop more general approaches.

At present, most methods focus on the detection of node community. One popular approach is based on the
optimization of the modularity Q'*'>*>*® of a sub-network. Some methods'>'****** force every node to be
assigned to a single community. This assumption doesn’t always reflect real world networks, where several
overlapping communities can co-exist. For example, in social networks, a person may have family relationship
circles, job circles, friend circles, social circles, hobby circles and so on. Algorithms that can discover overlapping
communities'®>* have been developed, and recently, methods to detect link communities****** have been pre-
sented. The concept of a link community is useful for discovering overlapping communities, as edges are more
likely to have unique identities than nodes, which instead tend to have multiple identities. In addition, statistical®,
information-theoretic®®**** and synchronization and dynamical clustering approaches*»******* have also been
developed to detect communities.

No matter which method is used to detect community structure, they should present a quantitative definition
of community first, but no definition is universally accepted so far. Here we defined community based on three
properties, and then propose a simple and novel method to detect communities based on network topology. The
main idea is similar to “fishing”. We first use the adjacency lists of nodes (network topology) as a “fishpond”, then
detect some strong sense communities from “fishpond” as “baits”, and then use these “baits” to catch the “fish”
(weak sense communities). Our method is simple, stable, and easy to understand. It’s a parameter free approach,
and it can detect overlapping communities, isolated communities and determine the number of communities in
an unsupervised manner. Moreover, our method can detect not only cohesive and large communities, but also
sparse and small ones. We analyzed 16 different types of networks with our method and the results show that our
approach compares favorably to other methods.

Results
We have tested the performance of our method with both synthetic networks and real-world networks. The size of
the networks spans tens to tens of thousands of nodes. We analyzed 16 different types of networks (as shown in
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Table 1 | The lists of we analyzed networks

Networks Nodes Edges Reference
GR_256 256 702 [29]
LFR_128 128 597 [42]
LFR_256 256 1294 [42]
LFR_512 512 3285 [42]
Karate 34 78 [30]
Dolphins 62 159 [32]
Football 15 613 [14][31]
Pol-books 105 441 [14]
Jazz 198 2742 [36]
E. Coli 418 519 [33]
Email 1133 5451 [44]
Facebook 2888 2981 [34]
Protein 3274 8748 [43]
Power 4941 6594 [7]
Collaboration 5242 14490 [41
PGP 10680 24316 [37]

table 1), and compared our partitions with several popular algo-
rithms. The results are in tables 2 and 3. Below we analyze one
synthetic network and four real world networks in detail.

Synthetic Network. The synthetic network we analyzed is the LFR
benchmark network*. It contains 128 nodes and 597 edges, and
includes 8 communities and 10 overlapping nodes. The average
degree is 9.328, the maximum degree is 30, the minimum size of a
community is 10, the maximum size of a community is 30, the
mixing parameter is 0.1, and the number of memberships of
overlapping nodes is 2. As shown in Fig. 1, we detected 8
communities in this network using our algorithm, and they are
identical with those real communities, except for the 10
overlapping nodes. The reason is these 10 overlapping nodes do
not satisfy the overlapping node definition of our algorithm, which
combines the structure property with shortest path. We provide
examples of other benchmark networks in table 2.

Real-World Networks. The Zachary karate club network is a famous
empirical network. A conflict between club president John (node 34)
and the instructor Mr. Hi (node 1) lead to 34 members of the
university sports club to split into two groups®. As Fig. 2 (a)
shows, the two communities discovered by our algorithm are
identical with the groups described by Newman®. We note that
some nodes should be defined as “overlapping nodes” based on
the general definition. For example, node 10 and node 3 have
equal numbers of connections with two communities, but they
have different shortest path lengths with nodes 1 and 34, the hub
nodes. As a result, we don’t define them as overlapping nodes based
on our definition.

The American college football network is another widely used
empirical network compiled by Newman' in 2004. There are 115
Division I-A teams that play 613 games during the regular fall season
of 2000, and these teams are grouped into 11 different conferences,
except for 8 independent teams. We found 11 strong sense com-
munities using our algorithm, as shown in Fig. 2 (b). These are
identical to the 11 conferences of Division I-A teams, except for
the 8 independent teams, which are assigned to “The Southeast
Conference”, “The Big East Conference” and “The Mid-American
Conference” respectively.

The Facebook network™ is a directed user-user friendships net-
work compiled by Julian and Jure in 2012. There are 2888 users and
2981 friendships in this network. An edge indicates that the user
represented by the left node is a friend of the user represented by
the right node. We identified 7 strong sense communities and 9
overlapping nodes, as shown in Fig. 2 (c). The structure of this
network is very clear based on visual inspection. All the friendships
are established around ten users, so that we should have 10 com-
munities. Our partitions merge community pairs involving nodes
603 and 288, 710 and 714, and 2687 and 2699. We found that all
these pairs are directly connected to each other and all the overlap-
ping nodes are of the first type.

Biological Network. The E. Coli transcriptional regulatory net-
work® was compiled by Shen-Orr et.al. in 2002. There are 423
operons and 519 regulatory links as well as 5 self-regulation events.
This is a directed network, and each edge is directed from an operon
that encodes a transcription factor to an operon that it directly
regulates (an operon is one or more genes transcribed on the same
mRNA). Here we use an undirected version of the network, and
analyze the network using the updated RegulonDB* 8.3.

As shown in Fig. 2 (d), the E. Coli transcriptional regulatory net-
work is composed of 29 disconnected sub-networks and 5 isolated
nodes. We detected all the disconnected parts and isolated nodes
correctly using our algorithm. The largest sub-network was divided
into 18 communities and 19 overlapping nodes. We analyze the 23
modules that have more than 3 members using the DAVID func-
tional annotation tool***®. All of the communities are functionally
coherent (i.e. the genes appear to participate in a common biological
process). For example, the first module contains 7 operons, which are
enriched for the process “Arginine biosynthesis (p-value is 8.1E-
28)”. The second module contains 8 operons (23 genes), and 22 genes
are involved in “Sulfur metabolic processes (p-value is 2.1E-39)”.
The results of other modules are shown in Table 4. Each module
we identified has at least one transcription factor (except for module
4). We also found that the all of the overlapping nodes we discovered
are of the first type. Besides gene ecfl, which doesn’t have any annota-
tion, the other overlapping nodes all share different functions across
modules.

Table 2 | The analyze of empirical networks

Networks Ours Infomap LPA Fastgreedy Walkirap
Names Clusters N NMI N NMI N, NMI N NMI N NMI
GR_256 18 18 1.0000 18 1.0000 18 1.0000 18 0.9688 18 0.9890
LFR_128 8 8 0.9184 50 0.6233 8 0.9187 7 0.8276 8 0.9200
LFR_256 14 14 0.9751 109 0.6776 14 0.9676 12 0.8498 14 0.9681
LFR_512 26 26 0.9820 219 0.7168 24 0.9304 17 0.7085 24 0.9172
Karate 2 2 1.0000 3 0.6995 3 0.6995 3 0.6925 5 0.5042
Dolphins 2 3 0.7621 6 0.5373 6 0.5699 4 0.5571 4 0.5816
Football 12 11 0.9492 12 0.9720 9 0.8947 6 0.7532 10 0.9369
Polbooks 3 3 0.5780 6 0.4935 3 0.5744 4 0.5308 4 0.5428
N, represents the number of communities detected by different algorithms, and clusters represent the number of real communities of empirical network.
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Table 3 | The analyze of unempirical networks

Ours Infomap LPA Fastgreedy Walktrap

Networks N Q N Q N, Q N Q N Q

Jazz 3 0.4397 7 0.2800 3 0.4295 4 0.4389 11 0.4384
E. Coli 46 0.8902 72 0.7351 55 0.7445 45 0.7784 52 0.7463
Email 19 0.5374 69 0.5260 5 0.0320 12 0.5070 49 0.5307
facebook 7 0.7307 11 0.7961 9 0.7496 8 0.8087 6 0.6331
Protein 303 0.8673 423 0.7105 365 0.7095 203 0.7632 395 0.7291
Power 632 0.8199 487 0.8182 495 0.8043 41 0.9335 364 0.8310
Collab. 684 0.8378 716 0.7921 720 0.7950 427 0.8026 815 0.7824
PGP 770 0.8194 1065 0.8014 985 0.8023 204 0.8525 1574 0.7894

N_ represents the number of communities.

Comparison with other methods. To test the performance of our
algorithm, we compared our partitions with four popular algorithms:
Infomap®, LPA”, Fastgreedy®* and Walktrap®. Empirical networks
are compared using NMI values, as shown in table 2. The others are

Figure 1| A network of LFR-benchmark with 128 nodes. This network is constructed from 8 pre-assigned communities, and 10 overlapping nodes are

included.
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Figure 2 | The networks of real-world. (a) Zachary karate club network: the two communities we detected are identical with the two real communities.
(b) US college football network: the 11 communities we detected are identical with the 11 real conferences except for the 8 independent teams,

which are assigned to 3 different conferences respectively. (c) Facebook network: we discover 7 communities and 9 overlapping nodes (orange diamond
shaped nodes) using our algorithm. (d) E. Coli transcriptional regulatory network: we discovered 46 modules, 5 isolated nodes and 19 overlapping nodes

(red diamond shaped nodes) with our algorithm.

methods. Our algorithm and Fastgreedy always have stable higher
modularity. We conclude that our algorithm performs well and is
competitive with other methods.

Discussion
Discovering complex network community structure has become an
important challenge during the past decade. Several advanced algo-
rithms have been proposed to detect community structures in com-
plex networks, but each has limitations®. For example, some
approaches don’t perform well on large-scale networks, some need
to pre-estimate community numbers, some can’t uncover overlap-
ping communities, some depend on multiple parameters, some
unable to discover sparse modules or small communities, some are
domain-specific, work with specific structures, and still some don’t
generate stable partitions etc.

Our algorithm overcomes most of these limitations. It’s a para-
meter free approach, and can find communities from adjacency lists
of nodes directly. Thus it is conceptually very simple, efficient, easily

implementable and suitable for large-scale networks. As we have
shown, it can be applied to networks from multiple domains. It
can auto-detect the number of communities, discover isolated nodes
and isolated communities, and always outputs stable partitions.
Furthermore, It can offer two different kinds of overlapping com-
munities, and detect cohesive communities, sparse communities and
small communities as well. There are many sparse communities and
small communities in real world networks, so it is important to be
able to identify these structures. For example, sparse communities
and small communities are important structures in biological
networks.

We propose a novel and simple framework to detect community
structure of complex networks based on network topology.
Compared to popular methods previously reported in the literature,
our algorithm preforms competitively for both synthetic and real
networks, but as we all know, it is far from providing an unforeseen
breakthrough in community finding. In the future, we intend to
improve the ability of our algorithm to detect the second type of
overlapping nodes and discover hierarchical structure of complex
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Table 4 | The function annotations of E. coli. modules detected by our algorithm

I N, Ng Function clusters P-value TFs N
1 7 10 Arginine biosynthesis 8.1E-28 1 10
2 8 23 Sulfur metabolic process 2.1E39 2 22
3 6 10 Carbohydrate catabolic process 6.0E-12 2 9
4 4 6 Cellular carbohydrate metabolic process 5.6E7 0 6
5 15 51 Locomotion 2.2E90 2 45
6 12 16 SOS response 8.5E-29 1 13
7 14 27 Amine metabolic process 7.6E-22 2 22
8 7 7 Cellular amino acid biosynthetic process 3.6E-10 2 7
9 5 5 Cytoplasm 3.6E3 1 5
10 5 23 lon transport 5.0E-34 1 22
11 16 24 Nitrogen compound biosynthetic process 1.9E-19 1 19
12 16 18 Cellular process 3.1E3 5 16
13 24 34 Cellular metabolic process 6.2E6 1 25
14 18 35 Cellular metabolic process 5.8E-10 8 32
15 5 12 Chorismate metabolic process 3.0E25 1 11
16 8 1 Cellular aromatic compound metabolic process 2.4E-15 1 10
17 24 56 Cellular process 7.3E4 3 15
18 25 73 Generation of precursor metabolites and energy 1.7E-69 5 58
19 10 19 Macromolecule metabolic process 1.2E5 1 15
20 124 236 Primary metabolic process 8.9E21 35 183
21 6 7 Monocarboxylic acid metabolic process 1.1E-8 2 6
22 6 11 Carbohydrate metabolic process 1.1E9 1 10
23 26 71 Metabolic process 1.1E-5 9 61
I represents the index of Module, N,, represents the number of operons each module contains, N, represents the number of genes each module contains, TFs represents the number of TF in each module, N,
represents how many genes are matched with the DAVID Escherichia coli database in each module.

network. While in the current implementation we do identify most
overlapping nodes, others are left out, hindering the ability to split
bigger communities into smaller ones.

Methods

We defined community based on three properties, and then propose a simple and
novel framework to detect communities based on network topology. The three
properties of community are community structure property, community member-
ship property and overlapping member properties respectively. The community
structure property is used to define a community, while the community membership
and overlapping member properties are used to define the members of a community.

Community structure property. Although there is not a general definition, it is
widely accepted that a community should be a sub-network that is internally densely
connected, while externally sparsely connected******”*!. Here we define two types of
community structures: strong sense and weak sense communities. A sub-network is
defined as a strong sense community if its internal connections are larger than its
external connections. A sub-network is defined as a weak sense community, if its

e
? ®
/9

p,

(a)

internal connections are equal or smaller than its external connections, but its internal
connections are larger than the connections between this sub-network and any other
communities.

In Fig. 3 (a) we provide an example of two types of community structures. In this
network, the internal connections of a community are colored blue, and the con-
nections among communities are colored purple. Based on our definition, it’s easy to
see that the cyan community is a strong sense community, as it has more internal
connections than external connections. While the yellow community is a weak sense
community, as although the number of internal connections equals the number of
external ones, its internal connections are more numerous than the connections
between it and any one of the other two communities. As we can see, the orange
community is also a weak sense community.

Community membership property. By definition, a member of a community should
have more neighbors within its community than in any other community, unless it is
an overlapping member. That is to say, each node should join the community, which
has its maximum number of neighbors, except for overlapping nodes.

Overlapping member property. We define two types of overlapping nodes. One is
based on the number of connections between it and corresponding communities, and

®—®

GO
@ @
@ ©
e« e

(h)

Figure 3 | Example of community property. (a) Community structure property: the nodes of this network divide into three clusters, the cyan
cluster is a strong sense community, and the others are weak sense communities. (b) Overlapping member property: node d is a second type of

overlapping node shared by cyan community and green community.
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Stepl: Initialize adjacency lists of nodes.

v

Step2: Detect strong sense communilies.
Detect strong sense communily from adjacency lists based on
its definition, then remove corresponding adjacency lists.

Step3:Detect weak sense communities.
Detect weak sense community from adjacency lists based on
| its definition, then remove corresponding adjacency lists.
_ 4
Stepd: Assign unallocated nodes.
Assign each unallocated node to the community which the
maximum number of its neighbors belong to .

Step5: Remove redundant.
If a community is equal or a proper subset of other
communities then remove it If two community have
significantly overlap. then remove the intersection part from
the smaller one.

v

Step6: Adjust misallocated nodes.
Adjust misallocated nodes of each community based on its
membership propenty.

Step7: Verify overlapping nodes.

Check each overlapping nodes between any two communities
whether or not satisfy the overlapping membership definition,
if ves, keep it. otherwise, assign it to the community with
which has its more neighbors.

Quipui:
If some adjacency list is empty, output corresponding
node as an isolated node.

Output:
1 All detected communities:
Isolated communities if they existing.

4

Step9: Detect disconnected parts.
Detect all the 1solated communities based on the
| aq‘j_u-.‘cnulg list of each t_:_nullncalcd node.

A Yes

Is there any node
. unallocated?

F

Is there any change for
\ cach community?

A

Step8: verify detected communities
If @ community doesn’t satisfy the definition of weak
sense community, then merge it with the one with

Yes
«-—

which it has the most connections.

Figure 4 | The flowchart of our algorithm. The flow chart described our algorithm step by step in detailed. It includes 8 main steps and 1 additional step if

necessary.

the shortest path between it and hub members of corresponding communities, while
the other is based on topology structure of community. For the first type of
overlapping node, not only the number of connections between it and the
corresponding communities should be equal, but also the shortest path between it and
hub members of corresponding communities should be equal as well. For the second
type of overlapping node, it should be tightly connected with both communities, and
there should be few connections between the two corresponding communities if
remove such nodes. As the network in Fig. 3 (b) shows, node “d” should be assigned to
the cyan community if we don’t take into account overlapping member properties.
However, node “d” is an overlapping node of the second type, connecting the cyan
and green communities, based on our definition.

Hub member. A hub member has the most neighbors within a community.

Algorithm. Our algorithm is based on the idea that community structures can be
detected from sub-networks by comparing the number of internal and external
connections of each community, and it is mainly made up of four parts: initialize the
adjacency lists of nodes, search for strong sense communities from adjacency lists,
detect weak sense communities based on strong sense ones from adjacency lists, and
iteratively readjust nodes to discovered communities based on their community
membership property until the approach converges. The specific steps are as shown in
Fig. 4. An example of the application of the algorithm to a network is shown in the
supplementary materials.

Due to the fact that our algorithm is similar in spirit to the label propagation
algorithm (LPA), we compare its performance with LPA. The greatest similarity
between these two algorithms is that they both tend to assign each node in the
network to the community with which they have the maximum number of neighbors.
The main differences have to do with the fact that LPA initializes node communities,
while we initialize edge communities (the adjacency list of each node denotes all it’s
corresponding edges); LPA depends on specific random seeds, initial conditions and
tie-break rules for its execution, while our approach doesn’t; Our algorithm is a
deterministic algorithm, while LPA isn’t; LPA searches for communities based on
label dynamic propagation and static network topology, while our algorithm searches
for community only based on static network topology.

Evaluation measures. To evaluate the performance of our algorithm we need an
approach to measure the accuracy of community partitions. However, there is no
general standard technique for this, because it is difficult to know the structures of real
world networks a priori, Therefore, we use the normalized mutual information (NMI)
measure'® to evaluate community partitions. NMI is defined as follows

(HX)+H(Y)—H(X.Y))

NMIXIY) = =3+ HY)) 2

(1)

Where X corresponds to the real communities, Y corresponds to the predicted
communities, and H(X) denotes the entropy of random community X, whereas
H(X,Y) H(X,Y) denotes the joint entropy of X and Y.

For other networks we use the modularity*® measure to evaluate the quality of a
partition. It is based on the intuitive idea that random networks do not exhibit
community structure. Let us define a matrix e where the elements e;; represents the
fraction of total connections between two different communities, and the real fraction
of links exclusively within a community is e;; Then the sum of any row of e,

a;= Zj e;j corresponds to the fraction of links connected to community i, and the

expected number of intra-community links is just a>. We can compare e;; and a?
directly, and sum over all the communities in the network. This measure is known as

modularity:
Q= Z (eii_“?) (2)

Complexity Analysis

It is advantageous for an algorithm to have lower time complexity, so that it can be
applied to large-scale networks. Our algorithm consists of two stages: the first stage is
detecting communities, and the cost time complexity is O(k*+Ikn), where n is the
number of nodes, k is the number of detected communities and /is the maximum size
of the initial adjacency lists. The second stage is adjusting membership among
communities, and has a cost time complexity O(vk®>+Ik’+kn), where v is the max-
imum count of overlapping nodes. Thus, the total time complexity for both steps is
O((v+Dk*+Ikn). As a result, this algorithm can be efficiently applied to a network of
tens of thousands of nodes and the execution time is around an hour on a typical CPU.
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