
 

 

Detecting contamination in viromes using ViromeQC 1 
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To the editor  3 

 4 

Eukaryotic viruses and bacteriophages have important roles in microbiomes, but characterization 5 

of viruses in metagenomics data is difficult. Viral-like particle (VLP) purification enables 6 

enrichment for viruses from microbiome samples before sequencing but contamination can result 7 

in misleading conclusions. We present a software tool named ViromeQC for analyzing virome 8 

data. Here, we demonstrate the utility of ViromeQC by applying it to 2,050 human, animal and 9 

environmental samples from 35 metagenomic virome sequencing studies that used one of the 10 

available VLP enrichment techniques. The resulting analysis reveals these viromes are rife with 11 

bacterial, archaeal and fungal contamination. Most samples show only modest virus enrichment, 12 

and such enrichment is very variable between viromes in the same study. To address these 13 

issues, we present a validated contamination quality-control pipeline to enable more robust 14 

virome metagenomic analyses. 15 

 Viruses affect the ecology and composition of microbial communities
1,2

. Bacteriophages 16 

(viruses of bacteria and archaea) are extremely abundant and diverse, and affect microbiomes in 17 

several ways including transduction, which is an important mechanism of lateral gene transfer
3
. 18 

Metagenomics can be used to characterize phage populations, but phage are so diverse, and 19 

evolve so rapidly, that they are poorly represented in sequence databases. Also, there are no 20 

universal viral genetic markers and the overall biomass of viruses, compared with other 21 

microorganisms in a sample, is low. For these reasons, phage sequences are difficult to identify 22 

in metagenomes although specific methods that are partly based on sequence characteristics of 23 

known phages have been reported
4,5

. 24 

VLP purification can be used to enrich microbiome samples for viral nucleic acids
6
, 25 

thereby improving virus detection. VLP protocols have various goals, ranging from untargeted 26 

analyses of highly purified phage populations to targeted identification of rare sequences of viral 27 

pathogens in diagnostic samples. These methods typically include filtration through small pore 28 

size filters that retain bacteria, cesium chloride gradient purification, treatment with chloroform 29 

to disrupt membranes, and exposure to nucleases to reduce free DNA and RNA concentration. If 30 

the aim is to use metagenomics to detect known viral pathogens, a low-purity sample may suffice 31 



 

 

because identification will be by alignment of sequence reads to viral databases. However, if the 32 

aim is to detect unknown viruses or report all viruses in a sample, a high purity sample is 33 

required. When coupled with untargeted shotgun sequencing
7
, VLP enrichment has underpinned 34 

numerous studies in human
8,9

, environmental 
10,11

, and built-environment settings
12

, but there is 35 

no single VLP enrichment protocol that is optimal for all sample types. 36 

Regardless of the VLP protocol, non-viral genetic material remains after enrichment
13

. 37 

These unwanted nucleic acids are contaminants, and their presence particularly confounds the de 38 

novo discovery of phages in untargeted virome sequencing. If the VLP virome is pure, it is 39 

possible to assemble reads into possibly fragmented viral genomes without using computational 40 

prediction approaches, which are unavoidably affected by low-confidence calls and false 41 

negatives
4,5

. The fraction of viruses in the VLP sample is associated with improved de-novo 42 

recovery of new viruses, but methods for evaluating VLP purity in samples have not been 43 

systematically explored. Studies have assessed contamination of VLP-preparations by PCR-44 

amplification of prokaryotic 16S rRNA gene sequences before virome sequencing
11,14–19

. Others 45 

have mapped the NGS virome sequencing output against the 16S rRNA gene, or a different 46 

marker
9,20–24

.  47 

However, these studies haven’t provided a validated pipeline to quantify viral enrichment 48 

in viromes or unenriched samples. Although efforts towards VLP-protocol optimization have 49 

been reported
24

, the largest meta-analysis of post-sequencing non-viral quantification to date 50 

considered just 67 viromes
13

. As the use of VLP enrichment for virome sequencing is increasing, 51 

we set out to evaluate non-viral contamination in >2,000 virome samples. 52 

To assess the enrichment rates of publicly available viromes, we applied our method 53 

(Supplementary Methods) on a collection of 2,050 VLP samples (Supplementary Table 1). 54 

As controls, we included 2,189 metagenomes that were not enriched for viruses from the 55 

curatedMetagenomicData
25

 and the National Center for Biotechnology Information Shortread 56 

Archive (NCBI-SRA)
26

 repositories, as well as 108 publicly accessible synthetic 57 

metagenomes
27,28

 and one mock community (Supplementary Table 2). After uniform 58 

preprocessing to remove low-quality reads (Supplementary Methods), we computed the 59 

percentage of raw reads in each sample that align to the small subunit ribosomal RNA gene (SSU 60 

rRNA), which has never been found in a virus genome. This provided a proxy for non-viral 61 

microbial sequence abundance
13

. We estimated the abundance of the bacterial and archaeal 16S 62 



 

 

and micro-eukaryotic 18S ribosomal genes in all of the viromes and metagenomes. Unenriched 63 

metagenomes provided a baseline estimation of the environment-specific rRNA gene abundance, 64 

from which we calculated the relative enrichment of viromes with respect to the metagenomes. 65 

Environmental and human/animal unenriched metagenomes had a median rRNA gene abundance 66 

of 0.08% (n=320, interquartile-range=0.07%) and 0.25% (n=1,551, interquartile-range=0.1%) 67 

(Fig. 1). 68 

Prokaryotic and micro-eukaryotic contamination of viromes estimated by the 69 

quantification of the SSU-rRNA revealed a wide range of enrichment efficiencies, with a large 70 

fraction of samples (n=567, 28.7%) having no virus enrichment at all, and >50% (n=990) having 71 

less than threefold enrichment. A substantially smaller fraction of samples (n=339, 17.15%) 72 

showed high enrichment (>100-fold). Differences in enrichment rates were not clearly associated 73 

with any one VLP-purification method, although the heterogeneity of protocols makes it difficult 74 

to provide statistical support to this observation. According to taxonomic annotations of the 75 

rRNA gene sequences retrieved in viromes, the largest source of contamination was bacterial 76 

DNA (1,466 samples), with 88 samples having higher abundances of eukaryotic associated SSU 77 

rRNAs (Supplementary Table 3). The rRNA gene abundance variability was higher in viromes 78 

than in metagenomes (Mann–Whitney U test p-value = 7.5e
–8

, Supplementary Figure 1), 79 

revealing not only that many viromes are poorly enriched for viruses, but also that the level of 80 

bacterial and archaeal contamination is unpredictable.  81 

The intra-dataset enrichment efficiencies were extremely variable, spanning more than 82 

two orders of magnitude in 48.7% of the studies, which shows that even the same virome-83 

enrichment protocol applied to samples from the same study can still have vastly different levels 84 

of contamination. For example, the 91 stool samples from the dataset of Ly et al.
18

 had a 16S 85 

rRNA gene abundance standard deviation equal to 4.6 times the average (Figure 1; ref. 38). This 86 

suggests that quality-benchmarking viromes after sequencing is crucial to evaluate the presence 87 

of contaminants, and that intra-dataset variability should be carefully considered in downstream 88 

analyses of untargeted viromes. 89 

Four VLP datasets were highly enriched in rRNA genes with a median abundance > 10% 90 

and peaks of 90% reads aligning to either the 16S/18S or 23S/28S rRNA gene subunits (datasets 91 

36, 47, 50 and 51, see Supplementary Table 1). Conversely, the median rRNA gene abundance 92 

observed in unenriched real and synthetic metagenomes never exceeded 1% (Supplementary 93 



 

 

Table 2). The experimental design of these four studies pointed at the likely cause of 94 

contamination because they involved DNA and RNA co-extraction, with DNA and retro-95 

transcribed cDNA sequenced together. We hypothesize that higher rRNA abundance was 96 

observed due to incompletely depleted structural rRNA in the samples. In a further 25 RNA 97 

viromes, we also found higher rRNA abundances than would be expected (4.18% median 98 

abundance when considering both rRNA subunits, maximum of 67.5%, Supplementary Table 99 

4). As it was not possible to evaluate the VLP enrichment efficiency by estimating rRNA 100 

abundances for samples with atypically high levels of rRNA, we excluded datasets with more 101 

than 10% median abundance of rRNA genes from the downstream analysis because viromes 102 

with such high levels of rRNA genes are unlikely to be useful in downstream genome assembly 103 

and analysis. In total, 307 samples were removed, all of which were from studies that sequenced 104 

DNA and RNA together. Although protocols of this type cannot be evaluated with our approach, 105 

they may be useful for some tasks such as sequence-based detection of known pathogens.  106 

To improve virus enrichment estimates we next calculated the abundance of the large 107 

ribosomal subunit rRNA gene (LSU-rRNA), encoding for prokaryotic 23S and eukaryotic 28S 108 

rRNAs (Fig. 2a) and of 31 single-copy universal markers from bacterial and archaeal ribosomal 109 

proteins
29

 (Supplementary Figure 2). Because some ribosomal proteins are occasionally found 110 

in viral genomes
30

, it is plausible that this might result in assigning viral genomes as 111 

contaminants. However, extensive mapping of these universal ribosomal markers against viral 112 

repositories provided evidence that the rare inclusion of a marker gene in a viral genome is 113 

unlikely to affect the results (Supplementary Note 1, Supplementary Fig. 3, Supplementary 114 

Table 5), especially when considering all 31 single-copy universal markers. Although a few 115 

samples (11.8%) still harbored high levels of rRNA genes (i.e., >5% abundance, Supplementary 116 

Fig. 4b, Supplementary Fig. 5), the abundance quantification of rRNA genes (SSU and LSU) 117 

and genes encoding single-copy proteins were in agreement for most viromes. In 75.3% of the 118 

viromes, rRNA genes and single-copy marker abundances were either both below (67.1%) or 119 

above (8%) the reference unenriched-metagenomes medians (Supplementary Fig. 4). The 120 

abundance of the individual markers was highly correlated (Fig. 2b), as were the abundances of 121 

SSU rRNA and single-copy markers (Spearman’s coefficient = 0.72 when considering the 122 

abundance of all 31 markers together). A weaker correlation was observed between LSU rRNA 123 

and single-copy markers (Fig. 2b, Spearman’s coefficient = 0.47). Although rRNA and single-124 



 

 

copy marker abundances were generally in agreement, we propose that a multi-marker approach 125 

is required to accurately estimate viral enrichment. For example, one of the datasets we 126 

examined
9
 had substantial amounts of LSU rRNA genes, but was found to be highly virus-127 

enriched if only SSU rRNA were quantified.  128 

Finally, we defined a comprehensive enrichment score that includes rRNA large and 129 

small subunit abundances and single-copy markers. This score expresses virus enrichment in a 130 

sample compared with the medians observed in unenriched metagenomes, and was computed by 131 

taking the minimum across the three single enrichment scores for both viromes and 132 

metagenomes (see Supplementary Methods). Fewer than 50% of viromes that we analyzed had 133 

an overall enrichment greater than threefold, fewer than 15% reached 30-fold enrichment, and 134 

only 10% of the viromes were more than 50-fold enriched. Most of the viromes failed to meet 135 

even a low level of enrichment (two- to threefold; Fig. 2c). Most studies had mixed enrichment 136 

levels across samples (average of 55.41 s.d. 76.5 samples per dataset), with samples within the 137 

same dataset spanning between one- and 100-fold virus-enrichment, confirming what we 138 

observed previously on enrichments based on the SSU-rRNA gene only (Fig. 2d),. This further 139 

underscores how samples that underwent the same VLP-technique might have widely different 140 

levels of non-viral contamination. 141 

To highlight the importance of quality control in untargeted virome metagenomics, we 142 

investigated the extent to which the viral enrichment score is connected with success in 143 

computational identification of viral genomes from virome samples subjected to metagenomic 144 

assembly. We assembled 1,445 untargeted virome samples and classified each of the resulting 145 

2.09×10
7
 contigs as viral or not-viral using VirSorter

4
 (Supplementary Methods). The 146 

proportion of viral and potentially-viral contigs increased from an average of 7.9% to an average 147 

of 31% for samples with viral enrichment-scores of 1–2-fold and 5–9-fold, respectively. 148 

However, the proportion of predicted viral contigs did not substantially increase at higher 149 

enrichment values (Supplementary Fig. 6). Indeed, in most samples enriched by a factor of 100-150 

fold or more, for which there are, at best, just traces of ribosomal genes from prokaryotes and 151 

eukaryotes, fewer than 25% of the assembled nucleotides could be classified as “potentially 152 

viral” (i.e., VirSorter category 1, 2 or 3), and fewer than 4% was ‘surely viral’ (i.e,. category 1). 153 

At such high enrichment rates, assembled contigs could all be considered viral, which means 154 

there is a substantial false negative rate. This is likely due to viral genomes not displaying 155 



 

 

enough similarity with known reference viruses, and to the limitation of contig-based viral 156 

detection tools when analyzing contigs with relatively short length
4
. Conversely, 55 of the 475 157 

lowly enriched samples (i.e. less than threefold) had more than 20% of the assembled nucleotides 158 

labelled as potentially viral, which is inconsistent with the high abundance of prokaryotic 159 

organisms with much longer genomes and could suggest the presence of false positives. Caution 160 

is needed when interpreting the results of viral mining software and incorporating virome-161 

enrichment into untargeted virome analyses should improve downstream analyses. 162 

 Our analysis should serve to raise awareness of the potential for prokaryotic and 163 

eukaryotic contamination in viromes. Unfortunately, post-sequencing evaluation of non-viral 164 

contaminants in viromes before contig-based virus classification is rarely performed. Our read-165 

based estimates of non-viral contamination could be used to guide the selection of tools and 166 

thresholds for downstream viral contig detection. We caution that if metagenomic assembly is 167 

carried out on poorly enriched samples, it increases the number of contigs that are wrongfully 168 

assigned as viral by computational predictions.  169 

We urge researchers to apply quality control to viromes before genome analysis. This is 170 

particularly important when datasets are retrieved from public sources, and when metagenomic 171 

assembly is used to characterize unknown viruses in samples. The computational pipeline we 172 

introduce to analyze the enrichment of viromes differs from previous methods that focused on 173 

only 16S rRNA genes to address microbial contamination. ViromeQC integrates the abundances 174 

of 16S/18S rRNA genes, 23S/28S rRNA genes, and a panel of 31 universal bacterial genes. 175 

ViromeQC software is freely available at http://segatalab.cibio.unitn.it/tools/viromeqc.  176 
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Figure 1. Survey of viral enrichment rates on 1,977 samples from 35 studies estimated as 277 

percentage of reads aligning to the small subunit rRNA gene. The vertical dotted lines 278 

indicate the median of median SSU rRNA abundances in human/animal (red dotted line) and 279 

environmental (blue dotted line) unenriched metagenomes, as a reference. The two medians are 280 

used to calculate the enrichment rate of each virome with respect to the reference metagenomes. 281 

The frequency of enrichment levels of all the 1,977 viromes that passed quality-control is 282 

represented in the inset histogram. The histogram on the right side shows the number of reads 283 

(bar height) and the number of samples (to the left of the bar) in each dataset. Datasets are 284 

grouped by type (environmental or Human/animal). Datasets within the same group are ordered 285 

by median abundance. References to each dataset are provided in (Supplementary Tables 1 and 286 

2). Error bars in the right barplot show the 95% confidence intervals. Boxes show the quartiles of 287 

each dataset, the central line in each box indicates the median, while whiskers extend to show 288 

data points within 1.5 IQR range. Data-points, including outliers, are overlaid to the boxes 289 

  290 



 

 

Figure 2. Combined quantification of ribosomal genes and genes coding for universal 291 

proteins identifies the cross-study set of 101 samples with >100x VLP enrichment. (a) The 292 

retrieved viromes were mapped against rRNA small and large subunits reference sequences (x-293 

axis), and against 31 single-copy bacterial markers (y-axis). The scatter plot shows the 294 

percentage of aligned reads on 1,751 human and animal viromes (red) and 226 environmental 295 

viromes (blue). The dotted lines indicate the median abundances in the corresponding 296 

metagenomes. (b) Spearman’s correlation coefficients between the 31 single-copy markers and 297 

the small and large subunits of the rRNA gene. (c) Fraction of the discarded viromes at different 298 

enrichment thresholds (dashed lines) and using different components to calculate the enrichment. 299 

The proposed threshold (rRNA SSU + LSU + single-copy markers) is drawn in black. (d) 300 

Enrichment scores of samples within each dataset grouped by dataset type together with 301 

metagenomes used as controls. The enrichment score is based on both SSU and LSU rRNAs and 302 

single-copy markers. References to each dataset are provided in Supplementary Tables 1 and 2 303 
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