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1 Introduction

The Internet of Things (IoT) refers to interrelated connected 

network of smart devices, sensors, embedded computers 

and etc. that store,process and communicate heterogeneous 

data. IoT and its applications propagate to majority of life’s 

infrastructure ranging from health and food production to 

smart cities and urban management. While efficiency and 

prevalence of IoT are increasing, security issues remain a 

necessary concern for industries (Tankard 2015). Internet-

connected devices, including those deployed in an IoT archi-

tecture, are increasingly targeted by cybercriminals due to 

their pervasiveness and the ability to use the compromised 

devices to further attack the underlying architecture (Choo 

2014; Pajouh et al. 2016; D’Orazio et al. 2017; Fortino and 

Trunfio 2014; Watson and Dehghantanha 2016). In the case 

of ransomware, for example, devices that are capable of 

storing a reasonably amount of data (e.g., Android and iOS 

devices) are likely to be targeted (Damshenas et al. 2015; 

D’Orazio and Choo 2016; Gubbi et al. 2013). Thus, ensuring 

the security of IoT nodes against threats such as malware is 

a topic of ongoing interest (Bertino et al. 2016; Sicari et al. 

2015; Kumar and Patel 2014; Abomhara and Kien 2015; 

Daryabar et al. 2012; Teing et al. 2017; Dezfouli et al. 2016).

While malware detection and mitigation research is now 

new, ransomware detection and mitigation remains chal-

lenging. Ransomware is a relatively new malware type that 

attempts to encrypt a compromised device’s data using a 

strong encryption algorithm (O’Gorman and McDonald 

2012). The victim will then have to pay the ransom (usually 
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using bitcoins) in order to obtain the password or decryption 

key (Song et al. 2016). Consequences include temporary or 

permanent loss of sensitive information, disruption of regu-

lar operations, direct/indirect financial losses (e.g., to restore 

systems and restore an organizations reputation) (FBI 2016).

A popular malware detection approach is the use of 

machine learning techniques to identify patterns of spe-

cific feature(s) within a malware code or behavior to dis-

tinguish malware from non-malicious applications (Faruki 

et al. 2015; Damshenas et al. 2015; Pajouh et al. 2016). For 

example, Andronio et al. (2015) proposed an Android ran-

somware detection system, Heldroid, that is based on Natu-

ral Language Processing (NLP). The approaches identify 

ransomware based on their typical characteristics, such as 

call function and application manifests. EldeRan (Sgandurra 

et al. 2016) is another machine learning based model for 

dynamically analyzing and classifying ransomware based on 

their installation activities. Mercaldo et al. (2016) presented 

a parser that analyzes a sample code and automatically iden-

tifies ransomware related instructions. In Caviglione et al. 

(2016), malware covert communications are detected using 

neural networks and decision tree techniques.

Changes in the energy consumption of a typical infected 

device can also be used as a feature for malware detection 

(Caviglione et al. 2016), as it could be trivial for a malware 

developer to change malware function calls or its behav-

iour but changing its power usage pattern is less likely and 

more difficult to realise (Shaerpour et al. 2013). Addition-

ally, power usage pattern is relatively similar on different 

platforms; thus, power consumption based detection meth-

ods appear to be a viable approach (Potlapally et al. 2006). 

Kim et al. (2008) proposed a power-aware malware detection 

framework based on anomalies in a device energy consump-

tion pattern. Similarly, Merlo et al. (2015) demonstrated the 

potential of detecting a malware on an Android device based 

on its energy consumption.

In this paper, we use machine learning techniques to 

detect ransomware based on their power usage patterns on 

IoT nodes, and specifically Android devices. The proposed 

model grinds device’s power usage into subsamples, clas-

sifies them and aggregates outputs to increase the detection 

rate to 95.65%.

2  Related literature

Securing IoT nodes is an active research area. For example, 

Sicari et al. (2015) and Jing et al. (2014) discussed several 

key research challenges and identified potential solutions 

and research opportunities for IoT security, and Abomhara 

and Kien (2015) provided a categorisation of IoT related 

threats.

Malware detection and mitigation for IoT nodes is one 

of several research challenges and opportunities identi-

fied, and is an ongoing research topic (Faruki et al. 2015; 

Suarez-Tangil et al. 2014). Detection methods include 

those based on malware’s properties (e.g., application 

signatures), and tracking of malicious activity and their 

energy consumption (Shaerpour et al. 2013). Malware 

detection based on energy consumption footprint is known 

to be more robust against malware anti-forensic techniques 

as changing a malware power consumption pattern is much 

more challenging in practice, compared to changing its 

function calls or application codes (Damshenas et  al. 

2013).

Kim et al. (2008) proposed a power-aware malware 

detection framework that detects previously unknown 

battery-draining malware. Their framework comprises a 

power monitoring tool and a data analyzer which gener-

ates a power signature to identify a malware. Merlo et al. 

(2015) presented an energy-related measurement at a dif-

ferent levels of abstraction for Android devices in order to 

achieve a trade-off between measurement precision and 

effective energy based profiling of malware. Yang and 

Tang (2016) used the frequencies of energy consumption 

waveform to generate a Gaussian Mixture Model (GMM) 

based on Mel frequency cepstral coefficients (MFCC) 

to detect malicious software. In Yang and Tang (2016), 

authors use a complex statistical approach to make deci-

sion based on power usage. This, however, is generally 

too computationally expensive for IoT nodes. The authors 

also employed frequencies of waveform in their approach; 

therefore, changes in the CPU’s specification would have 

a substantial impact on the results even though the wave-

form’s visual form remains invariant.

Machine learning algorithm, as previously discussed, 

has been widely employed in cyber security research, 

including malware detection. Andronio et al. (2015) pre-

sented Heldroid to detect Android ransomware Heldroid 

based on file encryption activities using a NLP-based text 

classifier, locking detector and a tracker. Heldroid utilises 

extracted features from malware application such as alert 

messages, function call and etc. Sgandurra et al. (2016) 

proposed EldeRan for dynamically analysing and classi-

fying ransomware based on the set of actions performed 

by the applications in their installation phase. EldeRan is 

designed for Windows platform and the most relevant fea-

ture to the class label is Registry Keys Operations, which 

is not applicable for Android devices. Mercaldo et  al. 

(2016) presented a three-step process to detect Android 

ransomware family. Similar to other static malware detec-

tion approaches, techniques such as code metamorphism 

could be used to evade detection.
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3  Research methodology

To develop a fingerprint of ransomware’s energy consump-

tion, initially, we need to record the power usage of tar-

geted applications. Similar to the approaches in previous 

studies (Yang 2012; Merlo et al. 2015) we used Power-

Tutor to monitor and sample power usage of all running 

processes in 500 ms intervals. PowerTutor creates logfiles 

containing sequence of energy usage of each process at 

given sampling interval. We conducted our experiments on 

three different Android devices, namely: a Samsung Gal-

axy SIII (CPU: 1.4 GHz, RAM: 2GB, OS: Android 4.4), a 

Samsung Galaxy S Duos (CPU: 1.0 GHz, RAM: 768 MB, 

OS: Android 4.0.1), and an Asus Padfone Infinity (CPU: 

1.7 GHz, RAM: 2 GB, OS: Android 4.4). To collect energy 

consumption logs of both ransomware and goodware, we 

installed the most popular Android applications, namely: 

Gmail (version 9.6.83), Facebook (version 99.0.0.26.69), 

Google Chrome (version 53.0.2785.124), Youtube (version 

11.39.56), Whatsapp (version 2.16.306), Skype (version 

7.20.0.411), AngryBrids (version 6.1.5), Google Maps 

(version 9.39.2), Music Player (version 4.2.52), Twitter 

(version 6.19.0), Instagram (version 9.6.0) and Guardian 

(version 3.13.107) and six active and recent ransomware 

samples (see Table 1) on all devices. All ransomware 

were downloaded via VirusTotal1 Intelligence API, and 

these ransomware have active Command and Control (C2) 

servers.

We then use PowerTutor to monitor and record the 

device processes’ power usage (while running the appli-

cations and ransomware, separately) for 5 min. While run-

ning the applications (also referred to as goodware), the 

user interactions mirrored a real world usage. This proce-

dure was repeated five times per device; thus, we obtained 

5repeation × 3device = 15 power usage samples for each and 

every application and ransomware.

As each device’s CPU has its own power usage specifi-

cation, the energy consumption of all devices were mapped 

to a specific range in order to have a meaningful evalua-

tion. So, we normalised the CPU power consumption for 

all monitored processes on the devices to [0, 1], where 0 

indicates no power usage and 1 presents the maximum 

CPU power utilisation. Scripts were written to process log-

files, extract and normalize power usage values, and gener-

ate a row-normalized dataset. Each row includes a label 

(i.e., goodware or ransomware) and a normalized sequence 

of energy consumption for five minutes of activity.

3.1  Classification

Assigning correct label to a sample based on previous 

observations is a key element of Supervised Learning and 

Classification (Michalski et al. 2013). We applied four state-

of-the-art classifiers, namely: k-Nearest Neighbor (KNN), 

Neural Network (NN), Support Vector Machine (SVM) and 

Random Forest (RF), on the power usage samples to recog-

nise the class of each sequence of power consumption. KNN 

is a simple and powerful classifier which seeks K nearest 

sample(s) and assigns the majority of neighbor’s label to the 

given samples (Cover and Hart 1967). NN (Haykin 1998) 

is an implementation of human brain networks and mostly 

used to approximate the function between inputs and output. 

Another popular technique for supervised learning is SVM 

(Burges 1998), which is based on the concept of decision 

planes that define decision boundaries. A decision plane dif-

ferentiates a set of objects based on their class memberships. 

Ensemble learning has been the motivation of developing 

RF (Verikas et al. 2011) that operates by constructing a mul-

titude of decision trees at training time and generating the 

class label.

Power usage sequence of each process can be consid-

ered as time-series data. A wide range of methods have been 

proposed to classify time-series data (Xing et al. 2010; Fu 

2011). In this study, a distance based time-series classifi-

cation approach based on Dynamic Time Warping (DTW) 

(Müller 2007) is used for distance measure, and KNN is used 

as a classifier. Similarity distance is a key element in KNN 

classification and we apply two different distances to find the 

closest neighbor as follows:

• Euclidean distance: Euclidean distance or Euclidean 

metric is the intuitive distance between two vectors in 

Euclidean space and calculated as follow: 

• Dynamic time warping (DTW): DTW is a recognized 

technique for finding an optimal alignment between two 

time-dependent sequences (see Fig. 1). According to 

DTW’s ability to deal with time deformations and issues 

associated with speed differences in time-dependent 

(1)d(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)
2.

Table 1  Ransomware

MD5 hash Download date

30a03d7a5e6ec234bbb6d333e9f30ec9 14 Oct 2016

597bbb81e6409a389299aa8ded222e8b 5 Oct 2016

6315c783974743327f8d19c67c465f28 13 Oct 2016

37cd3ac4d5acda83a5512032c99ea279 12 Oct 2016

e1b9eb7415892ef6ca3fda9f304428a6 12 Oct 2016

902c4044dc7872382001e2e3e36a8c0f 11 Oct 2016

1 http://www.virustotal.com.

http://www.virustotal.com
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data, it is also employed to calculate distance or simi-

larity between time series (Müller 2007). Let us denote 

two sequences that display two discrete subsamples as 

X = (x1,… , x
n
) and Y = (y1,… , y

m
) of length m, n � ℕ. 

DTW uses a Cost Matrix C�ℝ
n×m. Each cell Ci,j indi-

cates the distance between x
i
 and yj (see Fig. 2). DTW’s 

purpose is to discover an optimal alignment between X 

and Y having a minimal entirely distance. As an intui-

tive explanation, an optimal alignment traverse across 

a valley of low cost cells within the cost matrix C. A 

warping path is specified as a sequence p = {p1,… , pL} 

with pl = (nl, ml)�[1:N] × [1:M], l�[1:L] satisfying the 

following conditions:

– Boundary condition: p1 = (1, 1) and pL = (N, M).

– Monotonicity condition: n
1
≤ n

2
≤ ⋯ ≤ n

L
and

m
1
≤ m

2
≤ ⋯ ≤ m

L
.

– Step size condition: pl+1 − pl = {(1, 0), (0, 1), (1, 1)}

for l�[1:L1].

The summation of all local distances of a warping path’s 

elements outcomes the total cost of path and in order to find 

optimal warping path p
∗, the path having minimum total 

cost among all possible paths is selected. Finally, to meas-

ure similarity or distance between two sequences X and Y, 

their total cost of optimal warping path are evaluated. The 

total cost cp(X, Y) of a warping path p between X and Y with 

respect to the local cost measure c is defined as: 

(2)cp(X, Y) =

L
∑

l=1

c(xnl, yml).

The DTW distance DTW(X, Y) between X and Y is then 

defined as the total cost of p∗: 

Figure 3 illustrates how DTW aligns two power usage 

subsamples in order to find optimal path between them for 

distance calculation.

3.2  Metrics and cross-validation

Similar to the approach in (Buczak and Guven 2016), we 

use the following four common performance indicators for 

malware detection:

• True positive (TP): indicates that a ransomware is cor-

rectly predicted as a malicious application.

• True negative (TN): indicates that a goodware is detected 

as a non-malicious application correctly.

• False positive (FP): indicates that a goodware is mistak-

enly detected as a malicious application.

• False negative (FN): indicates that a ransomware is not 

detected and labelled as a non-malicious application.

To evaluate the effectiveness of our proposed method, we 

used machine learning performance evaluation metrics that 

are commonly used in the literature, namely: Accuracy, 

Recall, Precision and F-Measure.

Accuracy is the number of samples that a classifier cor-

rectly detects, divided by the number of all ransomware and 

goodware applications:

(3)
DTW(X, Y) = cp∗(X, Y) = min{cp(X, Y)| p is an (N, M)

− warping path}.

(4)Accuracy =
TP + TN

TP + TN + FP + FN
.

Fig. 1  Alignment between two different sequences

Fig. 2  Dynamic Time Warping’s path finding

Fig. 3  Dynamic time Warping’s path finding example for power 

usage sequences
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Precision is the ratio of predicted ransomware that are cor-

rectly labelled a malware. Thus, Precision is defined as 

follows:

Recall or detection rate is the ratio of ransomware samples 

that are correctly predicted, and is defined as follows:

(5)Precision =
TP

TP + FP
.

(6)Recall =
TP

TP + FN
.

F-Measure is the harmonic mean of precision and recall, and 

is defined as follows:

Cross-validation (Kohavi et  al. 1995) is a fundamental 

technique in machine learning to assess the extent that the 

findings of an experiment can be generalized into an inde-

pendent dataset. In order to evaluate the performance of the 

proposed method, we used the leave-one-out cross valida-

tion. We are aware that in order to implement this validation 

method, all subsamples of a sample need to be excluded 

(7)F − Measure =
2 ∗ TP

2 ∗ TP + FP + FN
.

Fig. 4  Power consumption 

graph for Simplocker ransom-

ware

Fig. 5  Power consumption 

graph for facebook application
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from the classifier training phase. All evaluations were con-

ducted using MATLAB R2015a running on a Microsoft 

Windows 10 Pro personal computer powered by Intel Core 

i7 2.67 GHz and 8 GB RAM.

We will evaluate the performance of the classification 

algorithms in the next section.

4  Performance of classification algorithms

Table 2 displays the findings of applying classification algo-

rithms on our dataset. As previously discussed, we will now 

use the leave-one-out technique for cross validation. Fig-

ures 4 and 5 illustrate the power usage graph of Simplocker 

ransomware and Facebook application, respectively. 

Comparison of Figs. 5 and 4 reflects a significant differ-

ence between patterns of power consumption of ransomware 

versus benign applications. However, as patterns of power 

consumptions are not predictable and depend on many fac-

tors such as files content, encryption algorithm etc. samples 

are highly distributed in the feature space.

It appears that direct application of conventional clas-

sification algorithms namely NN, KNN and SVM, is not 

promising. For example, the KNN classifier that uses DTW 

as a similarity measure outperformed other techniques while 

conventional KNN (with parameter setting of K = 1, 5, 10) 

is ranked lowest among the classification approaches.

Since Euclidean method calculates similarity by sum-

ming distances between corresponding points of samples, 

the calculated distance could be far when the position of 

occurring power usage patterns varies (even if samples are 

visually cognate). On the other hand, DTW attempts to align 

samples based on the distance between pieces of samples 

that are more similar regardless of the position of similar 

energy usage pattern. Consequently, the performance of 

KNN classifier is significantly influenced by the distance 

criteria. The second place belongs to RF that selects subset 

of features and works in splitted feature spaces instead of 

using a complete feature space. These observations led us to 

hypothesis that a subset of features (i.e., a specific interval 

within Ransomware infection period) may improve perfor-

mance of classification techniques.

5  Proposed method

In the proposed method to overcome high distribution of 

features, power usage samples are divided into subsamples 

prior to using different classification techniques to identify 

the subsamples’ labels.

To divide the power usage samples, we assume a fix 

window size (interval) and move it forward from the start-

ing point of each sample (when the process has actually 

started), while we append a new subsample to a set of 

subsamples in each step as depicted in Fig. 6. Algorithm 1 

describes the algorithm we used to receive a set of sam-

ples and a window size w and generate the subsample’s 

database. Subsample (window) size is a time-value. For 

example, w = 6 means that the subsample contains values 

for 6 intervals of PowerTutor; therefore, its time-length is 

6 × 500
ms

= 3000
ms

.

Input: Sample set S = {Sample1, Sample2, . . . , Samplen}
& window size w

Output: Subsamples set DB
DB ← {}
for i ← 1 to n do

l ← 1
while (l + w) < length(samplei) do

Append 〈Labeli, Pl, ., Pl+w〉 to DB

l ← l + 1

end

end

return DB

A label should be assigned to each and every subsample 

to determine the sample class. As shown in Algorithm 2, 

a classifier is trained using the subsample database DB. 

The sample is then splitted into a set of subsamples and 

the Sample Grinding algorithm (1) is used to identify each 

subsample’s label by the trained classifier. This approach 

identifies the samples class based on the pattern of most 

similar item in the subsample’s database and sets its final 

label by aggregating all subsamples’ labels. Figure 7 illus-

trates the training phase, and Fig. 8 depicts classification 

phase of the proposed method.

Table 2  Performance of 

machine learning techniques: a 

comparative summary

Best (optimal) values are highlighted in bold

Accuracy (%) Recall (%) Precision (%) F-Measure (%)

KNN (K = 1) 71.85 71.11 56.14 62.75

KNN (K = 5) 72.59 72.22 57.02 63.73

KNN (K = 10) 72.22 71.11 56.64 63.05

KNN (K = 1 and DTW) 83.70 78.89 73.96 76.34

Neural network 75.93 73.33 61.68 67.01

Random forest 80.74 76.67 69.00 72.63

SVM 78.52 74.44 65.69 69.79
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Fig. 6  Subsampling against a 

sample

Fig. 7  Training phase of the 

proposed method

Fig. 8  Classification phase of 

the proposed method
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Input: Subsample database DB&Sample

Output: Labelǫ{R,G}
Labels ← {}
Classifier = TrainClassifier(DB)
Subsamples = Grind Sample Using Algorithm 1
i ← 1
while i < size(Subsamples) do

L ← Classifier(Subsamplei)
Append L to Labels

i ← i + 1

end

return most frequent item in Labels

In the next section, we will discuss our findings.

6  Findings and discussion

We experimented with different window sizes, ranging from 

5 to 50 each an increment of 5 in each experiment. Hence, 

the window size of each dataset includes subsamples with 

length w.

As discussed in Sect. 5, all subsamples of each sample 

should be classified. We evaluated grinded data using SVM 

(see Table 5; Fig. 11), NN (see Table 6; Fig. 12), RF (see 

Table 7; Fig. 13) and KNN with K = 1 classifiers. Table 3 

and Fig. 9 show the result for KNN employing the Euclid-

ean distance. Similar setting was applied for KNN using 

DTW distance and the findings are presented in Table 4 and 

Fig. 10. In order to summarise the findings and since K = 1 

is the setting with higher efficiency, other settings (K = 5, 10

) for KNN are excluded.

As shown in Fig. 14, the KNN classifier that uses DTW 

distance with a subsample size of 7.5 s outperformed all 

other methods in terms of detection rate 95.65% and perfor-

mance of 94.27%. Although KNN is the least sophisticated 

classification approach, it outperformed other rival classifi-

cation techniques since it only relies on the formation and 

distribution of goodware’s and ransomware’s subsamples. 

The performance of KNN using DTW for all evaluation met-

rics peaks at window size = 15. However, the remaining clas-

sifiers were not able to achieve an optimal performance at 

the specified window size. For example, NN’s best accuracy, 

precision and F-measure occurred at w = 20, while highest 

recall was achieved at w = 15. The numerical results indi-

cate that subsamples are not from specified and exact data 

Table 3  Evaluation metrics for different window sizes, KNN and 

Euclidean distance: a comparative summary

Best (optimal) values are highlighted in bold

Window size Accuracy 

(%)

Recall (%) Precision 

(%)

F-Measure 

(%)

5 90.67 89.86 84.93 87.32

10 92.75 94.29 86.84 90.41

15 92.23 92.86 86.67 89.66

20 91.19 90.00 86.30 88.11

25 86.53 90.00 76.83 82.89

30 87.05 91.43 77.11 83.66

35 86.01 91.43 75.29 82.58

40 81.87 94.29 68.04 79.04

45 78.24 91.43 64.00 75.29

50 78.24 91.43 64.00 75.29

Fig. 9  Evaluation Metrics for different Window Sizes, KNN and 

Euclidean distance: A Comparative Summary

Table 4  Evaluation metrics for different window sizes, KNN and 

DTW distance: a comparative summary

Best (optimal) values are highlighted in bold

Window size Accuracy 

(%)

Recall (%) Precision 

(%)

F-Measure 

(%)

5 89.64 86.96 84.51 85.71

10 91.19 92.75 84.21 88.28

15 94.27 95.65 89.19 92.31

20 91.19 94.20 83.33 88.44

25 91.19 94.20 83.33 88.44

30 92.23 92.75 86.49 89.51

35 91.19 91.30 85.14 88.11

40 90.67 89.86 84.93 87.32

45 89.64 86.96 84.51 85.71

50 89.11 84.28 85.51 84.89
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distribution and classes have overlap sample(s) in feature 

space. Therefore, KNN that seeks for most similar subsam-

ple to input data outperform other classification approaches. 

Moreover, according to ability to align subsamples, DTW 

can find closer energy consumption pattern and consequently 

provide more accurate classification results than euclidean.

Furthermore and in practice, KNN’s requirement for con-

current distance calculations between training and testing 

objects can be implemented using parallel processing (so 

distances can be independently computed). Subsamples dic-

tionary can be partitioned into sperate IoT nodes and each 

subsample is sent to nodes. They return a label and a similar-

ity value and the label having less similarity value is final 

subsample’s label. This approach reduces the classification 

time and mitigates the need for storage capacity in every 

node.

7  Conclusion

With increasing prevalence of Internet-connected devices 

and things in our data-centric society, ensuring the secu-

rity of IoT networks is vital. Successfully compromised IoT 

nodes could hold the network to ransom (D’Orazio et al. 

2017; Choo 2014). For example, in the case of ransom-

ware, denying availability to data in an IoT network could 

Fig. 10  Evaluation metrics for different window sizes, KNN and 

DTW distance: a comparative summary

Table 5  Evaluation metrics for different window sizes and SVM: a 

comparative summary

Best (optimal) values are highlighted in bold

Window size Accuracy 

(%)

Recall (%) Precision 

(%)

F-Measure 

(%)

5 77.72 59.42 73.21 65.60

10 88.60 85.51 83.10 84.29

15 91.19 94.20 83.33 88.44

20 89.64 82.61 87.69 85.07

25 87.56 75.36 88.14 81.25

30 81.35 55.07 88.37 67.86

35 78.24 47.83 84.62 61.11

40 78.24 47.83 84.62 61.11

45 76.17 42.03 82.86 55.77

50 76.68 42.03 85.29 56.31

Fig. 11  Evaluation metrics for different window sizes and SVM: a 

comparative summary

Table 6  Evaluation metrics for different window sizes and neural 

network: a comparative summary

Best (optimal) values are highlighted in bold

Window size Accuracy 

(%)

Recall (%) Precision 

(%)

F-Measure 

(%)

5 88.08 82.61 83.82 83.21

10 88.08 84.06 82.86 83.45

15 89.64 88.41 83.56 85.92

20 90.67 86.96 86.96 86.96

25 89.64 85.51 85.51 85.51

30 89.12 85.51 84.29 84.89

35 88.08 82.61 83.82 83.21

40 86.01 81.16 80.00 80.58

45 85.49 82.61 78.08 80.28

50 86.01 82.61% 79.17 80.85
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adversely affect the operation of an organisation and result 

in significant financial loss and reputation damage.

In this paper, we presented an approach to detect ran-

somware, using their power consumption. Specifically, we 

utilise the unique local fingerprint of ransomware’s energy 

consumption to distinguish ransomware from non-malicious 

applications. The sequence of applications’ energy con-

sumption is splitted into several sequences of power usage 

subsamples, which are then classified to build aggregated 

subsample’s class labels. Our set of experiments demon-

strated that our approach achieved a detection rate of 95.65% 

and a precision rate of 89.19%.

Future works include prototyping the proposed approach 

for deploying in a real-world IoT network, with the aims of 

evaluation and refinement.

Fig. 12  Evaluation metrics for different window sizes and neural net-

work: a comparative summary

Table 7  Evaluation metrics for different window sizes and random 

forest: a comparative summary

Best (optimal) values are highlighted in bold

Window size Accuracy 

(%)

Recall (%) Precision 

(%)

F-Measure 

(%)

5 86.01 69.57 88.89 78.05

10 87.05 74.29 88.14 80.62

15 87.05 77.14 85.71 81.20

20 84.97 75.71 81.54 78.52

25 86.01 75.71 84.13 79.70

30 85.49 75.71 82.81 79.10

35 85.49 74.29 83.87 78.79

40  87.56 78.57 85.94 82.09

45 86.01 78.57 82.09 80.29

50 86.01 75.71 84.13 79.70

Fig. 13  Evaluation metrics for different window sizes and random 

forest: a comparative summary

Fig. 14  Best results of each 

classifier in each measurement: 

a comparative summary
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