
Vol.:(0123456789)1 3

J Ambient Intell Human Comput (2018) 9:1141–1152

DOI 10.1007/s12652-017-0558-5

ORIGINAL RESEARCH

Detecting crypto-ransomware in IoT networks based on energy

consumption footprint

Amin Azmoodeh1 · Ali Dehghantanha2 · Mauro Conti3 ·

Kim-Kwang Raymond Choo4

Received: 5 March 2017 / Accepted: 28 July 2017 / Published online: 23 August 2017

© The Author(s) 2017. This article is an open access publication

Keywords Ransomware detection · Power consumption ·

Internet of Things security · Machine learning · Malware

detection · Android

1 Introduction

The Internet of Things (IoT) refers to interrelated connected

network of smart devices, sensors, embedded computers

and etc. that store,process and communicate heterogeneous

data. IoT and its applications propagate to majority of life’s

infrastructure ranging from health and food production to

smart cities and urban management. While efficiency and

prevalence of IoT are increasing, security issues remain a

necessary concern for industries (Tankard 2015). Internet-

connected devices, including those deployed in an IoT archi-

tecture, are increasingly targeted by cybercriminals due to

their pervasiveness and the ability to use the compromised

devices to further attack the underlying architecture (Choo

2014; Pajouh et al. 2016; D’Orazio et al. 2017; Fortino and

Trunfio 2014; Watson and Dehghantanha 2016). In the case

of ransomware, for example, devices that are capable of

storing a reasonably amount of data (e.g., Android and iOS

devices) are likely to be targeted (Damshenas et al. 2015;

D’Orazio and Choo 2016; Gubbi et al. 2013). Thus, ensuring

the security of IoT nodes against threats such as malware is

a topic of ongoing interest (Bertino et al. 2016; Sicari et al.

2015; Kumar and Patel 2014; Abomhara and Kien 2015;

Daryabar et al. 2012; Teing et al. 2017; Dezfouli et al. 2016).

While malware detection and mitigation research is now

new, ransomware detection and mitigation remains chal-

lenging. Ransomware is a relatively new malware type that

attempts to encrypt a compromised device’s data using a

strong encryption algorithm (O’Gorman and McDonald

2012). The victim will then have to pay the ransom (usually

Abstract An Internet of Things (IoT) architecture gener-

ally consists of a wide range of Internet-connected devices

or things such as Android devices, and devices that have

more computational capabilities (e.g., storage capacities) are

likely to be targeted by ransomware authors. In this paper,

we present a machine learning based approach to detect

ransomware attacks by monitoring power consumption of

Android devices. Specifically, our proposed method moni-

tors the energy consumption patterns of different processes

to classify ransomware from non-malicious applications.

We then demonstrate that our proposed approach outper-

forms K-Nearest Neighbors, Neural Networks, Support Vec-

tor Machine and Random Forest, in terms of accuracy rate,

recall rate, precision rate and F-measure.

 * Ali Dehghantanha

 a.dehghantanha@salford.ac.uk

 Amin Azmoodeh

 azmoodeh@cse.shirazu.ac.ir

 Mauro Conti

 conti@math.unipd.it

 Kim-Kwang Raymond Choo

 raymond.choo@fulbrightmail.org

1 Department of Computer Science and Engineering, Shiraz

University, Shiraz, Iran

2 Department of Computer Science School of Computing

Science and Engineering, University of Salford,

Greater Manchester, UK

3 Department of Mathematics, University of Padua, Padua,

Italy

4 Department of Information Systems and Cyber Security, The

University of Texas at San Antonio, San Antonio, TX, USA

http://orcid.org/0000-0002-9294-7554
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-017-0558-5&domain=pdf

1142 A. Azmoodeh et al.

1 3

using bitcoins) in order to obtain the password or decryption

key (Song et al. 2016). Consequences include temporary or

permanent loss of sensitive information, disruption of regu-

lar operations, direct/indirect financial losses (e.g., to restore

systems and restore an organizations reputation) (FBI 2016).

A popular malware detection approach is the use of

machine learning techniques to identify patterns of spe-

cific feature(s) within a malware code or behavior to dis-

tinguish malware from non-malicious applications (Faruki

et al. 2015; Damshenas et al. 2015; Pajouh et al. 2016). For

example, Andronio et al. (2015) proposed an Android ran-

somware detection system, Heldroid, that is based on Natu-

ral Language Processing (NLP). The approaches identify

ransomware based on their typical characteristics, such as

call function and application manifests. EldeRan (Sgandurra

et al. 2016) is another machine learning based model for

dynamically analyzing and classifying ransomware based on

their installation activities. Mercaldo et al. (2016) presented

a parser that analyzes a sample code and automatically iden-

tifies ransomware related instructions. In Caviglione et al.

(2016), malware covert communications are detected using

neural networks and decision tree techniques.

Changes in the energy consumption of a typical infected

device can also be used as a feature for malware detection

(Caviglione et al. 2016), as it could be trivial for a malware

developer to change malware function calls or its behav-

iour but changing its power usage pattern is less likely and

more difficult to realise (Shaerpour et al. 2013). Addition-

ally, power usage pattern is relatively similar on different

platforms; thus, power consumption based detection meth-

ods appear to be a viable approach (Potlapally et al. 2006).

Kim et al. (2008) proposed a power-aware malware detection

framework based on anomalies in a device energy consump-

tion pattern. Similarly, Merlo et al. (2015) demonstrated the

potential of detecting a malware on an Android device based

on its energy consumption.

In this paper, we use machine learning techniques to

detect ransomware based on their power usage patterns on

IoT nodes, and specifically Android devices. The proposed

model grinds device’s power usage into subsamples, clas-

sifies them and aggregates outputs to increase the detection

rate to 95.65%.

2 Related literature

Securing IoT nodes is an active research area. For example,

Sicari et al. (2015) and Jing et al. (2014) discussed several

key research challenges and identified potential solutions

and research opportunities for IoT security, and Abomhara

and Kien (2015) provided a categorisation of IoT related

threats.

Malware detection and mitigation for IoT nodes is one

of several research challenges and opportunities identi-

fied, and is an ongoing research topic (Faruki et al. 2015;

Suarez-Tangil et al. 2014). Detection methods include

those based on malware’s properties (e.g., application

signatures), and tracking of malicious activity and their

energy consumption (Shaerpour et al. 2013). Malware

detection based on energy consumption footprint is known

to be more robust against malware anti-forensic techniques

as changing a malware power consumption pattern is much

more challenging in practice, compared to changing its

function calls or application codes (Damshenas et al.

2013).

Kim et al. (2008) proposed a power-aware malware

detection framework that detects previously unknown

battery-draining malware. Their framework comprises a

power monitoring tool and a data analyzer which gener-

ates a power signature to identify a malware. Merlo et al.

(2015) presented an energy-related measurement at a dif-

ferent levels of abstraction for Android devices in order to

achieve a trade-off between measurement precision and

effective energy based profiling of malware. Yang and

Tang (2016) used the frequencies of energy consumption

waveform to generate a Gaussian Mixture Model (GMM)

based on Mel frequency cepstral coefficients (MFCC)

to detect malicious software. In Yang and Tang (2016),

authors use a complex statistical approach to make deci-

sion based on power usage. This, however, is generally

too computationally expensive for IoT nodes. The authors

also employed frequencies of waveform in their approach;

therefore, changes in the CPU’s specification would have

a substantial impact on the results even though the wave-

form’s visual form remains invariant.

Machine learning algorithm, as previously discussed,

has been widely employed in cyber security research,

including malware detection. Andronio et al. (2015) pre-

sented Heldroid to detect Android ransomware Heldroid

based on file encryption activities using a NLP-based text

classifier, locking detector and a tracker. Heldroid utilises

extracted features from malware application such as alert

messages, function call and etc. Sgandurra et al. (2016)

proposed EldeRan for dynamically analysing and classi-

fying ransomware based on the set of actions performed

by the applications in their installation phase. EldeRan is

designed for Windows platform and the most relevant fea-

ture to the class label is Registry Keys Operations, which

is not applicable for Android devices. Mercaldo et al.

(2016) presented a three-step process to detect Android

ransomware family. Similar to other static malware detec-

tion approaches, techniques such as code metamorphism

could be used to evade detection.

1143Detecting crypto-ransomware in IoT networks based on energy consumption footprint

1 3

3 Research methodology

To develop a fingerprint of ransomware’s energy consump-

tion, initially, we need to record the power usage of tar-

geted applications. Similar to the approaches in previous

studies (Yang 2012; Merlo et al. 2015) we used Power-

Tutor to monitor and sample power usage of all running

processes in 500 ms intervals. PowerTutor creates logfiles

containing sequence of energy usage of each process at

given sampling interval. We conducted our experiments on

three different Android devices, namely: a Samsung Gal-

axy SIII (CPU: 1.4 GHz, RAM: 2GB, OS: Android 4.4), a

Samsung Galaxy S Duos (CPU: 1.0 GHz, RAM: 768 MB,

OS: Android 4.0.1), and an Asus Padfone Infinity (CPU:

1.7 GHz, RAM: 2 GB, OS: Android 4.4). To collect energy

consumption logs of both ransomware and goodware, we

installed the most popular Android applications, namely:

Gmail (version 9.6.83), Facebook (version 99.0.0.26.69),

Google Chrome (version 53.0.2785.124), Youtube (version

11.39.56), Whatsapp (version 2.16.306), Skype (version

7.20.0.411), AngryBrids (version 6.1.5), Google Maps

(version 9.39.2), Music Player (version 4.2.52), Twitter

(version 6.19.0), Instagram (version 9.6.0) and Guardian

(version 3.13.107) and six active and recent ransomware

samples (see Table 1) on all devices. All ransomware

were downloaded via VirusTotal1 Intelligence API, and

these ransomware have active Command and Control (C2)

servers.

We then use PowerTutor to monitor and record the

device processes’ power usage (while running the appli-

cations and ransomware, separately) for 5 min. While run-

ning the applications (also referred to as goodware), the

user interactions mirrored a real world usage. This proce-

dure was repeated five times per device; thus, we obtained

5repeation × 3device = 15 power usage samples for each and

every application and ransomware.

As each device’s CPU has its own power usage specifi-

cation, the energy consumption of all devices were mapped

to a specific range in order to have a meaningful evalua-

tion. So, we normalised the CPU power consumption for

all monitored processes on the devices to [0, 1], where 0

indicates no power usage and 1 presents the maximum

CPU power utilisation. Scripts were written to process log-

files, extract and normalize power usage values, and gener-

ate a row-normalized dataset. Each row includes a label

(i.e., goodware or ransomware) and a normalized sequence

of energy consumption for five minutes of activity.

3.1 Classification

Assigning correct label to a sample based on previous

observations is a key element of Supervised Learning and

Classification (Michalski et al. 2013). We applied four state-

of-the-art classifiers, namely: k-Nearest Neighbor (KNN),

Neural Network (NN), Support Vector Machine (SVM) and

Random Forest (RF), on the power usage samples to recog-

nise the class of each sequence of power consumption. KNN

is a simple and powerful classifier which seeks K nearest

sample(s) and assigns the majority of neighbor’s label to the

given samples (Cover and Hart 1967). NN (Haykin 1998)

is an implementation of human brain networks and mostly

used to approximate the function between inputs and output.

Another popular technique for supervised learning is SVM

(Burges 1998), which is based on the concept of decision

planes that define decision boundaries. A decision plane dif-

ferentiates a set of objects based on their class memberships.

Ensemble learning has been the motivation of developing

RF (Verikas et al. 2011) that operates by constructing a mul-

titude of decision trees at training time and generating the

class label.

Power usage sequence of each process can be consid-

ered as time-series data. A wide range of methods have been

proposed to classify time-series data (Xing et al. 2010; Fu

2011). In this study, a distance based time-series classifi-

cation approach based on Dynamic Time Warping (DTW)

(Müller 2007) is used for distance measure, and KNN is used

as a classifier. Similarity distance is a key element in KNN

classification and we apply two different distances to find the

closest neighbor as follows:

• Euclidean distance: Euclidean distance or Euclidean

metric is the intuitive distance between two vectors in

Euclidean space and calculated as follow:

• Dynamic time warping (DTW): DTW is a recognized

technique for finding an optimal alignment between two

time-dependent sequences (see Fig. 1). According to

DTW’s ability to deal with time deformations and issues

associated with speed differences in time-dependent

(1)d(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)
2.

Table 1 Ransomware

MD5 hash Download date

30a03d7a5e6ec234bbb6d333e9f30ec9 14 Oct 2016

597bbb81e6409a389299aa8ded222e8b 5 Oct 2016

6315c783974743327f8d19c67c465f28 13 Oct 2016

37cd3ac4d5acda83a5512032c99ea279 12 Oct 2016

e1b9eb7415892ef6ca3fda9f304428a6 12 Oct 2016

902c4044dc7872382001e2e3e36a8c0f 11 Oct 2016

1 http://www.virustotal.com.

http://www.virustotal.com

1144 A. Azmoodeh et al.

1 3

data, it is also employed to calculate distance or simi-

larity between time series (Müller 2007). Let us denote

two sequences that display two discrete subsamples as

X = (x1,… , x
n
) and Y = (y1,… , y

m
) of length m, n � ℕ.

DTW uses a Cost Matrix C�ℝ
n×m. Each cell Ci,j indi-

cates the distance between x
i
 and yj (see Fig. 2). DTW’s

purpose is to discover an optimal alignment between X

and Y having a minimal entirely distance. As an intui-

tive explanation, an optimal alignment traverse across

a valley of low cost cells within the cost matrix C. A

warping path is specified as a sequence p = {p1,… , pL}

with pl = (nl, ml)�[1:N] × [1:M], l�[1:L] satisfying the

following conditions:

– Boundary condition: p1 = (1, 1) and pL = (N, M).

– Monotonicity condition: n
1
≤ n

2
≤ ⋯ ≤ n

L
and

m
1
≤ m

2
≤ ⋯ ≤ m

L
.

– Step size condition: pl+1 − pl = {(1, 0), (0, 1), (1, 1)}

for l�[1:L1].

The summation of all local distances of a warping path’s

elements outcomes the total cost of path and in order to find

optimal warping path p
∗, the path having minimum total

cost among all possible paths is selected. Finally, to meas-

ure similarity or distance between two sequences X and Y,

their total cost of optimal warping path are evaluated. The

total cost cp(X, Y) of a warping path p between X and Y with

respect to the local cost measure c is defined as:

(2)cp(X, Y) =

L
∑

l=1

c(xnl, yml).

The DTW distance DTW(X, Y) between X and Y is then

defined as the total cost of p∗:

Figure 3 illustrates how DTW aligns two power usage

subsamples in order to find optimal path between them for

distance calculation.

3.2 Metrics and cross-validation

Similar to the approach in (Buczak and Guven 2016), we

use the following four common performance indicators for

malware detection:

• True positive (TP): indicates that a ransomware is cor-

rectly predicted as a malicious application.

• True negative (TN): indicates that a goodware is detected

as a non-malicious application correctly.

• False positive (FP): indicates that a goodware is mistak-

enly detected as a malicious application.

• False negative (FN): indicates that a ransomware is not

detected and labelled as a non-malicious application.

To evaluate the effectiveness of our proposed method, we

used machine learning performance evaluation metrics that

are commonly used in the literature, namely: Accuracy,

Recall, Precision and F-Measure.

Accuracy is the number of samples that a classifier cor-

rectly detects, divided by the number of all ransomware and

goodware applications:

(3)
DTW(X, Y) = cp∗(X, Y) = min{cp(X, Y)| p is an (N, M)

− warping path}.

(4)Accuracy =
TP + TN

TP + TN + FP + FN
.

Fig. 1 Alignment between two different sequences

Fig. 2 Dynamic Time Warping’s path finding

Fig. 3 Dynamic time Warping’s path finding example for power

usage sequences

1145Detecting crypto-ransomware in IoT networks based on energy consumption footprint

1 3

Precision is the ratio of predicted ransomware that are cor-

rectly labelled a malware. Thus, Precision is defined as

follows:

Recall or detection rate is the ratio of ransomware samples

that are correctly predicted, and is defined as follows:

(5)Precision =
TP

TP + FP
.

(6)Recall =
TP

TP + FN
.

F-Measure is the harmonic mean of precision and recall, and

is defined as follows:

Cross-validation (Kohavi et al. 1995) is a fundamental

technique in machine learning to assess the extent that the

findings of an experiment can be generalized into an inde-

pendent dataset. In order to evaluate the performance of the

proposed method, we used the leave-one-out cross valida-

tion. We are aware that in order to implement this validation

method, all subsamples of a sample need to be excluded

(7)F − Measure =
2 ∗ TP

2 ∗ TP + FP + FN
.

Fig. 4 Power consumption

graph for Simplocker ransom-

ware

Fig. 5 Power consumption

graph for facebook application

1146 A. Azmoodeh et al.

1 3

from the classifier training phase. All evaluations were con-

ducted using MATLAB R2015a running on a Microsoft

Windows 10 Pro personal computer powered by Intel Core

i7 2.67 GHz and 8 GB RAM.

We will evaluate the performance of the classification

algorithms in the next section.

4 Performance of classification algorithms

Table 2 displays the findings of applying classification algo-

rithms on our dataset. As previously discussed, we will now

use the leave-one-out technique for cross validation. Fig-

ures 4 and 5 illustrate the power usage graph of Simplocker

ransomware and Facebook application, respectively.

Comparison of Figs. 5 and 4 reflects a significant differ-

ence between patterns of power consumption of ransomware

versus benign applications. However, as patterns of power

consumptions are not predictable and depend on many fac-

tors such as files content, encryption algorithm etc. samples

are highly distributed in the feature space.

It appears that direct application of conventional clas-

sification algorithms namely NN, KNN and SVM, is not

promising. For example, the KNN classifier that uses DTW

as a similarity measure outperformed other techniques while

conventional KNN (with parameter setting of K = 1, 5, 10)

is ranked lowest among the classification approaches.

Since Euclidean method calculates similarity by sum-

ming distances between corresponding points of samples,

the calculated distance could be far when the position of

occurring power usage patterns varies (even if samples are

visually cognate). On the other hand, DTW attempts to align

samples based on the distance between pieces of samples

that are more similar regardless of the position of similar

energy usage pattern. Consequently, the performance of

KNN classifier is significantly influenced by the distance

criteria. The second place belongs to RF that selects subset

of features and works in splitted feature spaces instead of

using a complete feature space. These observations led us to

hypothesis that a subset of features (i.e., a specific interval

within Ransomware infection period) may improve perfor-

mance of classification techniques.

5 Proposed method

In the proposed method to overcome high distribution of

features, power usage samples are divided into subsamples

prior to using different classification techniques to identify

the subsamples’ labels.

To divide the power usage samples, we assume a fix

window size (interval) and move it forward from the start-

ing point of each sample (when the process has actually

started), while we append a new subsample to a set of

subsamples in each step as depicted in Fig. 6. Algorithm 1

describes the algorithm we used to receive a set of sam-

ples and a window size w and generate the subsample’s

database. Subsample (window) size is a time-value. For

example, w = 6 means that the subsample contains values

for 6 intervals of PowerTutor; therefore, its time-length is

6 × 500
ms

= 3000
ms

.

Input: Sample set S = {Sample1, Sample2, . . . , Samplen}
& window size w

Output: Subsamples set DB
DB ← {}
for i ← 1 to n do

l ← 1
while (l + w) < length(samplei) do

Append 〈Labeli, Pl, ., Pl+w〉 to DB

l ← l + 1

end

end

return DB

A label should be assigned to each and every subsample

to determine the sample class. As shown in Algorithm 2,

a classifier is trained using the subsample database DB.

The sample is then splitted into a set of subsamples and

the Sample Grinding algorithm (1) is used to identify each

subsample’s label by the trained classifier. This approach

identifies the samples class based on the pattern of most

similar item in the subsample’s database and sets its final

label by aggregating all subsamples’ labels. Figure 7 illus-

trates the training phase, and Fig. 8 depicts classification

phase of the proposed method.

Table 2 Performance of

machine learning techniques: a

comparative summary

Best (optimal) values are highlighted in bold

Accuracy (%) Recall (%) Precision (%) F-Measure (%)

KNN (K = 1) 71.85 71.11 56.14 62.75

KNN (K = 5) 72.59 72.22 57.02 63.73

KNN (K = 10) 72.22 71.11 56.64 63.05

KNN (K = 1 and DTW) 83.70 78.89 73.96 76.34

Neural network 75.93 73.33 61.68 67.01

Random forest 80.74 76.67 69.00 72.63

SVM 78.52 74.44 65.69 69.79

1147Detecting crypto-ransomware in IoT networks based on energy consumption footprint

1 3

Fig. 6 Subsampling against a

sample

Fig. 7 Training phase of the

proposed method

Fig. 8 Classification phase of

the proposed method

1148 A. Azmoodeh et al.

1 3

Input: Subsample database DB&Sample

Output: Labelǫ{R,G}
Labels ← {}
Classifier = TrainClassifier(DB)
Subsamples = Grind Sample Using Algorithm 1
i ← 1
while i < size(Subsamples) do

L ← Classifier(Subsamplei)
Append L to Labels

i ← i + 1

end

return most frequent item in Labels

In the next section, we will discuss our findings.

6 Findings and discussion

We experimented with different window sizes, ranging from

5 to 50 each an increment of 5 in each experiment. Hence,

the window size of each dataset includes subsamples with

length w.

As discussed in Sect. 5, all subsamples of each sample

should be classified. We evaluated grinded data using SVM

(see Table 5; Fig. 11), NN (see Table 6; Fig. 12), RF (see

Table 7; Fig. 13) and KNN with K = 1 classifiers. Table 3

and Fig. 9 show the result for KNN employing the Euclid-

ean distance. Similar setting was applied for KNN using

DTW distance and the findings are presented in Table 4 and

Fig. 10. In order to summarise the findings and since K = 1

is the setting with higher efficiency, other settings (K = 5, 10

) for KNN are excluded.

As shown in Fig. 14, the KNN classifier that uses DTW

distance with a subsample size of 7.5 s outperformed all

other methods in terms of detection rate 95.65% and perfor-

mance of 94.27%. Although KNN is the least sophisticated

classification approach, it outperformed other rival classifi-

cation techniques since it only relies on the formation and

distribution of goodware’s and ransomware’s subsamples.

The performance of KNN using DTW for all evaluation met-

rics peaks at window size = 15. However, the remaining clas-

sifiers were not able to achieve an optimal performance at

the specified window size. For example, NN’s best accuracy,

precision and F-measure occurred at w = 20, while highest

recall was achieved at w = 15. The numerical results indi-

cate that subsamples are not from specified and exact data

Table 3 Evaluation metrics for different window sizes, KNN and

Euclidean distance: a comparative summary

Best (optimal) values are highlighted in bold

Window size Accuracy

(%)

Recall (%) Precision

(%)

F-Measure

(%)

5 90.67 89.86 84.93 87.32

10 92.75 94.29 86.84 90.41

15 92.23 92.86 86.67 89.66

20 91.19 90.00 86.30 88.11

25 86.53 90.00 76.83 82.89

30 87.05 91.43 77.11 83.66

35 86.01 91.43 75.29 82.58

40 81.87 94.29 68.04 79.04

45 78.24 91.43 64.00 75.29

50 78.24 91.43 64.00 75.29

Fig. 9 Evaluation Metrics for different Window Sizes, KNN and

Euclidean distance: A Comparative Summary

Table 4 Evaluation metrics for different window sizes, KNN and

DTW distance: a comparative summary

Best (optimal) values are highlighted in bold

Window size Accuracy

(%)

Recall (%) Precision

(%)

F-Measure

(%)

5 89.64 86.96 84.51 85.71

10 91.19 92.75 84.21 88.28

15 94.27 95.65 89.19 92.31

20 91.19 94.20 83.33 88.44

25 91.19 94.20 83.33 88.44

30 92.23 92.75 86.49 89.51

35 91.19 91.30 85.14 88.11

40 90.67 89.86 84.93 87.32

45 89.64 86.96 84.51 85.71

50 89.11 84.28 85.51 84.89

1149Detecting crypto-ransomware in IoT networks based on energy consumption footprint

1 3

distribution and classes have overlap sample(s) in feature

space. Therefore, KNN that seeks for most similar subsam-

ple to input data outperform other classification approaches.

Moreover, according to ability to align subsamples, DTW

can find closer energy consumption pattern and consequently

provide more accurate classification results than euclidean.

Furthermore and in practice, KNN’s requirement for con-

current distance calculations between training and testing

objects can be implemented using parallel processing (so

distances can be independently computed). Subsamples dic-

tionary can be partitioned into sperate IoT nodes and each

subsample is sent to nodes. They return a label and a similar-

ity value and the label having less similarity value is final

subsample’s label. This approach reduces the classification

time and mitigates the need for storage capacity in every

node.

7 Conclusion

With increasing prevalence of Internet-connected devices

and things in our data-centric society, ensuring the secu-

rity of IoT networks is vital. Successfully compromised IoT

nodes could hold the network to ransom (D’Orazio et al.

2017; Choo 2014). For example, in the case of ransom-

ware, denying availability to data in an IoT network could

Fig. 10 Evaluation metrics for different window sizes, KNN and

DTW distance: a comparative summary

Table 5 Evaluation metrics for different window sizes and SVM: a

comparative summary

Best (optimal) values are highlighted in bold

Window size Accuracy

(%)

Recall (%) Precision

(%)

F-Measure

(%)

5 77.72 59.42 73.21 65.60

10 88.60 85.51 83.10 84.29

15 91.19 94.20 83.33 88.44

20 89.64 82.61 87.69 85.07

25 87.56 75.36 88.14 81.25

30 81.35 55.07 88.37 67.86

35 78.24 47.83 84.62 61.11

40 78.24 47.83 84.62 61.11

45 76.17 42.03 82.86 55.77

50 76.68 42.03 85.29 56.31

Fig. 11 Evaluation metrics for different window sizes and SVM: a

comparative summary

Table 6 Evaluation metrics for different window sizes and neural

network: a comparative summary

Best (optimal) values are highlighted in bold

Window size Accuracy

(%)

Recall (%) Precision

(%)

F-Measure

(%)

5 88.08 82.61 83.82 83.21

10 88.08 84.06 82.86 83.45

15 89.64 88.41 83.56 85.92

20 90.67 86.96 86.96 86.96

25 89.64 85.51 85.51 85.51

30 89.12 85.51 84.29 84.89

35 88.08 82.61 83.82 83.21

40 86.01 81.16 80.00 80.58

45 85.49 82.61 78.08 80.28

50 86.01 82.61% 79.17 80.85

1150 A. Azmoodeh et al.

1 3

adversely affect the operation of an organisation and result

in significant financial loss and reputation damage.

In this paper, we presented an approach to detect ran-

somware, using their power consumption. Specifically, we

utilise the unique local fingerprint of ransomware’s energy

consumption to distinguish ransomware from non-malicious

applications. The sequence of applications’ energy con-

sumption is splitted into several sequences of power usage

subsamples, which are then classified to build aggregated

subsample’s class labels. Our set of experiments demon-

strated that our approach achieved a detection rate of 95.65%

and a precision rate of 89.19%.

Future works include prototyping the proposed approach

for deploying in a real-world IoT network, with the aims of

evaluation and refinement.

Fig. 12 Evaluation metrics for different window sizes and neural net-

work: a comparative summary

Table 7 Evaluation metrics for different window sizes and random

forest: a comparative summary

Best (optimal) values are highlighted in bold

Window size Accuracy

(%)

Recall (%) Precision

(%)

F-Measure

(%)

5 86.01 69.57 88.89 78.05

10 87.05 74.29 88.14 80.62

15 87.05 77.14 85.71 81.20

20 84.97 75.71 81.54 78.52

25 86.01 75.71 84.13 79.70

30 85.49 75.71 82.81 79.10

35 85.49 74.29 83.87 78.79

40 87.56 78.57 85.94 82.09

45 86.01 78.57 82.09 80.29

50 86.01 75.71 84.13 79.70

Fig. 13 Evaluation metrics for different window sizes and random

forest: a comparative summary

Fig. 14 Best results of each

classifier in each measurement:

a comparative summary

1151Detecting crypto-ransomware in IoT networks based on energy consumption footprint

1 3

Acknowledgements We thank VirusTotal for providing us a private

API key to access their data for constructing our dataset. This work is

partially supported by the European Council International Incoming

Fellowship (FP7-PEOPLE-2013-IIF) Grant.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea-

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give appro-

priate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.

References

Abomhara M, Kien G (2015) Cyber security and the internet of things:

vulnerabilities, threats, intruders and attacks. J Cyber Secur

4:65–88

Andronio N, Zanero S, Maggi F (2015) HelDroid: dissecting and

detecting mobile Ransomware. In: Proceedings of the 18th

international symposium on research in attacks, intrusions, and

defenses, Volume 9404. RAID 2015. Springer, New York, pp

382–404

Bertino E, Choo KKR, Georgakopolous D, Nepal S (2016) Internet

of things (iot): smart and secure service delivery. ACM Trans

Internet Technol 16(4):22:1–22:7

Buczak AL, Guven E (2016) A survey of data mining and machine

learning methods for cyber security intrusion detection. IEEE

Commun Surv Tutor 18(2):1153–1176

Burges CJ (1998) A tutorial on support vector machines for pattern

recognition. Data Min Knowl Disc 2(2):121–167

Caviglione L, Gaggero M, Lalande JF, Mazurczyk W, Urbański M

(2016) Seeing the unseen: revealing mobile malware hidden com-

munications via energy consumption and artificial intelligence.

IEEE Trans Inf Forensics Secur 11(4):799–810

Choo K-KR (2014) A conceptual interdisciplinary plug-and-play cyber

security framework. In: Kaur H, Tao X (eds) ICTs and the millen-

nium development goals: a United Nations perspective. Springer,

Boston, pp 81–99

Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE

Trans Inf Theory 13(1):21–27

Damshenas M, Dehghantanha A, Choo K-KR, Mahmud R (2015)

M0droid an android behavioral-based malware detection model.

J Inf Priv Secur 11(3):141–157

Damshenas M, Dehghantanha A, Mahmoud R (2013) A survey on

malware propagation, analysis, and detection. Int J Cyber Secur

Digit Forensics 2(4):10–29

Daryabar F, Dehghantanha A, Udzir NI, binti Mohd Sani NF, bin

Shamsuddin S (2012) Towards secure model for SCADA sys-

tems. In: Proceedings title: 2012 International Conference on

Cyber Security, Cyber Warfare and Digital Forensic (CyberSec),

pp 60–64

Dezfouli FN, Dehghantanha A, Eterovic-Soric B, Choo K-KR (2016)

Investigating social networking applications on smartphones

detecting facebook, twitter, linkedin and google+ artefacts on

android and ios platforms. Aust J Forensic Sci 48(4):469–488

D’Orazio CJ, Choo K-KR (2016) Circumventing iOS security mecha-

nisms for APT forensic investigations: a security taxonomy for

cloud apps. Future Gener Comput Syst. https://doi.org/10.1016/j.

future.2016.11.010

D’Orazio CJ, Choo K-KR, Yang LT (2017) Data exfiltration from inter-

net of things devices: IOS devices as case studies. IEEE Internet

Things J 4(2):524–535

Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M,

Rajarajan M (2015) Android security: a survey of issues, mal-

ware penetration, and defenses. IEEE Commun Surv Tutor

17(2):998–1022

FBI (2016) How to protecting your networks from Ransomware.

Tech. rep., USA Government. https://www.justice.gov/criminal-

ccips/file/872771/download. Accessed 10 Feb 2017

Fortino G, Trunfio P (2014) Internet of things based on smart

objects: technology, middleware and applications. Springer,

Berlin

Fu T-C (2011) A review on time series data mining. Eng Appl Artif

Intell 24(1):164–181

Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things

(IOT): a vision, architectural elements, and future directions.

Future Gener Comput Syst 29(7):1645–1660

Haykin S (1998) Neural networks: a comprehensive foundation, 2nd

edn. Prentice Hall, Upper Saddle River

Jing Q, Vasilakos AV, Wan J, Lu J, Qiu D (2014) Security of the

internet of things: perspectives and challenges. Wireless Netw

20(8):2481–2501

Kim H, Smith J, Shin KG (2008) Detecting energy-greedy anomalies

and mobile malware variants. In: Proceedings of the 6th interna-

tional conference on mobile systems, applications, and services.

ACM, pp 239–252

Kohavi R et al (1995) A study of cross-validation and bootstrap for

accuracy estimation and model selection. Ijcai 14:1137–1145

Kumar JS, Patel DR (2014) A survey on internet of things: security and

privacy issues. Int J Comput Appl 90(11):20–26

Mercaldo F, Luo X, Liao Q, Mercaldo F, Nardone V, Santone A, Visag-

gio CA (2016) Ransomware steals your phone. formal methods

rescue it. In: Formal techniques for distributed objects, compo-

nents, and systems: 36th IFIP WG 6.1 International Conference,

FORTE 2016, Held as Part of the 11th International Federated

Conference on Distributed Computing Techniques, DisCoTec

2016, Heraklion, Crete, Greece, June 6–9, 2016, Proceedings.

Vol. 9688 of Lecture Notes in Computer Science. Springer, pp

212–221

Merlo A, Migliardi M, Caviglione L (2015a) A survey on energy-aware

security mechanisms. Pervasive Mob Comput 24:77–90

Merlo A, Migliardi M, Fontanelli P (2015b) Measuring and estimating

power consumption in android to support energy-based intrusion

detection. J Comput Secur 23(5):611–637

Michalski RS, Carbonell JG, Mitchell TM (2013) Machine learning:

an artificial intelligence approach. Artificial intelligence series.

Springer, Berlin

Müller M (2007) Dynamic time warping. Springer, Berlin

O’Gorman G, McDonald G (2012) Ransomware: a growing menace.

Tech. rep., Symantec Corporation. http://www.symantec.com/

content/en/us/enterprise/media/security_response/whitepapers/

ransomware-a-growing-menace.pdf. Accessed 12 Feb 2017

Pajouh HH, Javidan R, Khayami R, Ali D, Choo K-KR (2016) A

two-layer dimension reduction and two-tier classification model

for anomaly-based intrusion detection in IoT backbone net-

works. IEEE Trans Emerg Top Comput. https://doi.org/10.1109/

TETC.2016.2633228

Potlapally NR, Ravi S, Raghunathan A, Jha NK (2006) A study of the

energy consumption characteristics of cryptographic algorithms

and security protocols. IEEE Trans Mob Comput 5(2):128–143

Sgandurra D, Muñoz-González L, Mohsen R, Lupu EC (2016) Auto-

mated dynamic analysis of ransomware: Benefits, limitations and

use for detection. arXiv:1609.03020 (preprint)

Shaerpour K, Dehghantanha A, Mahmod R (2013) Trends in android

malware detection. J Digit Forensics Secur Law 8(3):21–40

Sicari S, Rizzardi A, Grieco LA, Coen-Porisini A (2015) Security,

privacy and trust in internet of things: the road ahead. Comput

Netw 76:146–164

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.future.2016.11.010
https://doi.org/10.1016/j.future.2016.11.010
https://www.justice.gov/criminal-ccips/file/872771/download
https://www.justice.gov/criminal-ccips/file/872771/download
http://www.symantec.com/content/en/us/enterprise/media/security%5fresponse/whitepapers/ransomware-a-growing-menace.pdf
http://www.symantec.com/content/en/us/enterprise/media/security%5fresponse/whitepapers/ransomware-a-growing-menace.pdf
http://www.symantec.com/content/en/us/enterprise/media/security%5fresponse/whitepapers/ransomware-a-growing-menace.pdf
https://doi.org/10.1109/TETC.2016.2633228
https://doi.org/10.1109/TETC.2016.2633228
http://arxiv.org/abs/1609.03020

1152 A. Azmoodeh et al.

1 3

Song S, Kim B, Lee S (2016) The effective ransomware prevention

technique using process monitoring on android platform. Mob

Inf Syst 2016:3–11

Suarez-Tangil G, Tapiador JE, Peris-Lopez P, Ribagorda A (2014) Evo-

lution, detection and analysis of malware for smart devices. IEEE

Commun Surv Tutor 16(2):961–987

Tankard C (2015) The security issues of the internet of things. Comput

Fraud Secur 2015(9):11–14

Teing Y-Y, Dehghantanha A, Choo K-KR, Yang LT (2017) Forensic

investigation of P2P cloud storage services and backbone for IoT

networks: BitTorrent Sync as a case study. Comput Electr Eng

58:350–363. https://doi.org/10.1016/j.compeleceng.2016.08.020

Verikas A, Gelzinis A, Bacauskiene M (2011) Mining data with ran-

dom forests: a survey and results of new tests. Pattern Recogn

44(2):330–349

Watson S, Dehghantanha A (2016) Digital forensics: the missing

piece of the internet of things promise. Comput Fraud Secur

2016(6):5–8

Xing Z, Pei J, Keogh E (2010) A brief survey on sequence classifica-

tion. ACM SIGKDD Explor Newsl 12(1):40–48

Yang H, Tang R (2016) Power consumption based android malware

detection. J Electr Comput Eng 2016:1–7

Yang Z (2012) Powertutor—a power monitor for android-based mobile

platforms. Tech. rep., EECS, University of Michigan. http://

ziyang.eecs.umich.edu/projects/powertutor. Accessed 25 Jan 2017

https://doi.org/10.1016/j.compeleceng.2016.08.020
http://ziyang.eecs.umich.edu/projects/powertutor
http://ziyang.eecs.umich.edu/projects/powertutor

	Detecting crypto-ransomware in IoT networks based on energy consumption footprint
	Abstract
	1 Introduction
	2 Related literature
	3 Research methodology
	3.1 Classification
	3.2 Metrics and cross-validation

	4 Performance of classification algorithms
	5 Proposed method
	6 Findings and discussion
	7 Conclusion
	Acknowledgements
	References

