
Detecting Current Outliers: Continuous Outlier

Detection over Time-Series Data Streams

Kozue Ishida and Hiroyuki Kitagawa

1 Graduate School of Systems and Information Engineering
2 Center for Computational Sciences

University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305–8573, Japan

kozue-i@kde.cs.tsukuba.ac.jp, kitagawa@cs.tsukuba.ac.jp

Abstract. The development of sensor devices and ubiquitous comput-
ing have increased time-series data streams. With data streams, current
data arrives continuously and must be monitored. This paper presents
outlier detection over data streams by continuous monitoring. Outlier de-
tection is an important data mining issue and discovers outliers, which
have features that differ profoundly from other objects or values. Most ex-
isting outlier detection techniques, however, deal with static data, which
is computationally expensive. Specifically, for outlier detection over data
streams, real-time response is very important. Existing techniques for
static data, however, are fraught with many meaningless processes over
data streams, and the calculation cost is too high. This paper introduces
a technique that provides effective outlier detection over data streams
using differential processing, and confirms effectiveness.

Key words: outlier detection, DB-Outlier, data stream, time-series data

1 Introduction

We face an explosive increase of data, so data mining, which identifies important
information and knowledge, has become increasingly important. Outlier detec-
tion is a data mining issue; it discovers outliers with features that differ greatly
from other objects or values. Applications include fraud detection, network in-
trusion detection, and financial analysis. Various outlier detection techniques
over static data have been proposed, including the statistical-based approach [1,
2] and distance-based approach [3, 4].

The diffusion of sensor devices and improved ubiquitous computing have
brought with them an increase in time-series data streams. Because data arrives
continuously, the volume of data streams is very large. Data mining techniques
for data streams are therefore important; the same applies to outlier detection.

Examples of outlier detection over data streams are: to monitor observation
values from sensors continuously and detect outlier sensors that show values very
different from other sensors, to monitor stock price movements of individual com-
panies and detect outlier companies whose stock prices change very differently

2 K. Ishida and H. Kitagawa

Fig. 1. Arrival of a State Set SM Fig. 2. Change of Data Distribution

from those of other companies, or to monitor the location of moving objects and
detect outlier objects that are distantly-positioned from other objects.

When we have a set of objects that change state (such as observation values,
internal states, or locations) over time, and if object Oi’s state differs greatly
from other objects’ states at a given time, we can regard Oi as an outlier at the
time. In continuously monitoring of a set of objects in which the state changes
over time, we need to detect such outlier objects continuously.

Formally, when we have N objects whose state changes over time, let the
set of objects’ state at time tj , Sj = {sj

1
, ..., s

j
N}, where each state tuple s

j
i =

(aj
i1, ..., a

j
ik) describes the state of object Oi at tj . If the state of Oi, that is s

j
i ,

differs greatly from that of other objects, then we regard Oi as an outler at tj .

We look at the problem of detecting outlier objects at current time tM , where
SM arrives continuously as data streams (S1, ..., SM), as shown in Fig. 1.

A straightforward solution to the problem is to apply the existing approach
for static data, at every arrival of SM . However, the yield of such an approach
is too voluminous. Therefore, repeating the process for every time stamp is
inefficient.

In general, a state set SM is the change of the last state set SM−1. In many
cases, therefore, the differences between them are not great, as shown in Fig. 2.
In cases like this, we can detect outliers effectively in SM based on differential
calculation using the result of outlier detection for SM−1.

This paper proposes continuous outlier detection over data streams based on
distance-based outlier detection (DB-Outlier), which is the basic approach to
outlier detection. Experiments confirm effectiveness of the proposed approach.
The rest of the paper is organized as follows: Section 2 mentions related work on
outlier detection. Section 3 defines DB-Outliers and CDB-Outliers. Section 4 de-
scribes existing DB-Outlier detection methods as a preliminary to our proposal,
and Section 5 explains continuous CDB-Outlier detection, our proposed method.
Section 6 evaluates the effectiveness and efficiency of the algorithm compared
with existing algorithms. Section 7 presents conclusions and future work.

Detecting Current Outliers: Continuous Outlier Detection over Data Streams 3

2 Related Work

Various outlier detection methods have been proposed. This section introduces
existing work on outlier detection over static data and stream data.

2.1 Outlier Detection over Static Data

The major methods of outlier detection over static data are as follows:
Statistical-based approaches [1, 2] assume that the dataset follows a statisti-

cal model. With these method we detect objects that deviate from the model as
outliers. However, statistical approaches make a lot of assumptions (e.g., distri-
bution model), and have difficulty dealing with high dimensional datasets.

Clustering approaches (e.g., CLARANS [5], DBSCAN [6], BIRCH [7], Wave
Cluster [8], CLIQUE [9]) detect outliers as by-products. In most cases, the main
objective is to find clusters in the dataset. For that reason, this method does not
focus on outlier detection.

The density-based approach [10] adopts a Local Outlier Factor (LOF) which
represents the local density of each data point’s neighborhood and declares the
degree of outlierness. The method detects objects having a high LOF as outliers.

The distance-based approach [3, 4] is a simpler and more common approach.
It merely calculates the distance between two data points; distance is a common
notion of many knowledge and technical areas. Effectiveness and importance are
shown in [3, 4].

2.2 Outlier Detection over Stream Data

Because of increased interest, varied research is underway on data streams. The
same is true for outlier detection. L. Su et al. propose outlier detection on dis-
tributed data streams [11] based on their original outlier model. K. Yamanishi
et al. propose on-line outlier detection using statistical models [12, 13].

Compared with these approaches, our proposal is simpler and more versatile
because we use the distance-based approach. Moreover, our proposed approach
features efficiency based on differential processing.

3 Definition of Outliers

3.1 DB-Outlier

A DB-Outlier is defined by E. M. Knorr et al. as follows [4]:

Definition 1. An object Oi in a dataset S is a DB(p, D)-outlier if at least fraction
p of the objects in S lie greater than distance D from Oi.

For an object Oi, the D-neighborhood of Oi contains the set of objects Oq ∈
S, where d(Oi, Oq) ≤ D. Note that d(Oi, Oq) denotes the distance between Oi

and Oq. To simplify the discussion, we use another parameter M [M = N(1−p),
N : data size of S], which is the maximum number of objects within the D-
neighborhood of an outlier. k represents the dimension of S.

4 K. Ishida and H. Kitagawa

Fig. 3. DB-Outlier, k = 2,
p = 0.9, N = 30

To clarify the definition, we show an ex-
ample in Fig. 3.1. We have 30 objects (N=30)
and parameter p = 0.9. Thus, if an object
has at most M [= 30(1 − 0.9) = 3] objects
in its D-neighborhood, which is described
as circles, then the object is a DB-Outlier.
The left object has 2(≤ M) objects in its
D-neighborhood, so it is a DB-Outlier. On
the other hand, the right object is a non-
outlier, because it has 12(> M) objects in
its D-neighborhood.

3.2 CDB-Outlier

In this paper, we call the current DB-Outlier
in a data stream “CDB-Outlier.” A data
stream can be described as a state set Sj(1 ≤
j ≤ M), which is illustrated in Fig. 1. We
then provide the definition of CDB-Outlier in Definition 2.

Definition 2. An object Oi is a DB-Outlier at time tj if tuple si
j of Oi is a

DB-Outlier in state set Sj . We call the DB-Outlier at current time tM CDB-
Outlier.

4 Algorithms for DB-Outlier Detection

This section presents DB-Outlier detection algorithms for static data [4]. We
first explain the Simple algorithm. We then show the Cell-Based algorithm for
the quick processing which is used in our proposal.

4.1 Simple Algorithm

This algorithm merely follows the definition of DB-Outlier. It applies the follow-
ing processes for all objects in dataset S.

For each object Oi, we calculate the distance between Oi and other objects.
Once there are more than M objects in the D-neighborhood, we stop the search
and declare Oi as a non-outlier. Otherwise, we report Oi as an outlier.

The main drawback is time complexity O(kN2). This occurs because distance
is calculated every 2 points until the object has been judged.

4.2 Cell-Based Algorithm

To skip distance calculations, the Cell-Based algorithm [4] employs a cell struc-
ture on a data space.

Detecting Current Outliers: Continuous Outlier Detection over Data Streams 5

Cell Structure Oi’s tuple s
j
i = (aj

i1, ..., a
j
ik) can be coded as a point in k-

dimensional space with axes of X1, ...,Xk. We divide this k-dimensional space
into cells whose diagonal is D

2
length (length of the side l = D

2
√

k
). Let Cx1,...,xk

describe the cell with x1-th index of X1 axis, ..., xk-th index of Xk axis.

We then define L1 neighbors and L2 neighbors of Cx1,...,xk
.

Definition 3. The L1 neighbors of Cx1,...,xk
, L1(Cx1,...,xk

) are the immediately
neighboring cells of Cx1,...,xk

, defined as follows,
L1 (Cx1,..,xk

) = {Cu1,...,uk
| |ui − xi| ≤ 1 (1 ≤ i ≤ k) ∧ Cu1,...,uk

̸= Cx1,...,xk
}.

Definition 4. The L2 neighbors of Cx1,...,xk
, L2(Cx1,...,xk

), are cells that satisfy
the following formula,

L2(Cx1,...,xk
) = {Cu1,...,uk

| |ui − xi| ≤ ⌈2
√

k⌉(1 ≤ i ≤ k) ∧ Cu1,...,uk
̸∈

L1(Cx1,...,xk
) ∧ Cu1,...,uk

̸= Cx1,...,xk
}.

Properties A.

(A1) If Oi ∈ Cx1,...,xk
, Op ∈ Cx1,...,xk

, then d(Oi, Op) ≤ D
2
.

(A2) If Oi ∈ Cx1,...,xk
, Cu1,...,uk

∈ L1(Cx1,...,xk
), and Oq ∈ Cu1,...,uk

, then
d(Oi, Oq) ≤ D.

(A3) If Oi ∈ Cx1,...,xk
, Cu1,...,uk

̸∈ L1(Cx1,...,xk
), Cu1,...,uk

̸∈ L2(Cx1,...,xk
),

Cu1,...,uk
̸= Cx1,...,xk

, and Or ∈ Cu1,...,uk
, then d(Oi, Or) > D.

As shown in Fig. 4, it is obvious that property (A1) is met. Fig. 5 illustrates
property (A2). d(Oi, Oq) is max when the two objects are located as shown in
this figure. Fig. 6 illustrates property (A3). d(Oi, Or) is minimum when the two
objects are located as shown in this figure.

Fig. 4. Property (A1) Fig. 5. Property (A2) Fig. 6. Property (A3)

Let n, n1, and n2 be the numbers of objects in Cx1,...,xk
, L1 (Cx1,...,xk

), and
L2 (Cx1,...,xk

), respectively. Then we derive properties B from properties A as
follows:

6 K. Ishida and H. Kitagawa

Properties B.

(B1) If n > M , Cx1,...,xk
contains no DB-outliers.

(B2) If n + n1 > M , Cx1,...,xk
contains no DB-outliers.

(B3) If n + n1 + n2 ≤ M , all objects in Cx1,...,xk
are DB-outliers.

We color cells that satisfy (B1) as red, (B2) as pink, and (B3) as yellow.
We can detect outliers in those cells without any distance calculation. Then we
identify nonempty and uncolored cells as white. The decision for cell colors is
called CCD (Cell-Color Decision). And the algorithm with CCD is as follows:

Algorithm Fig. 7 illustrates the Cell-Based algorithm. Step 2 quantizes each
object to its appropriate cell. Step 3 labels all cells containing more than M ob-
jects, red(Property (B1)). Step 4 labels uncolored cells that have red cells in L1

neighbors, pink(Property (B2)). Other cells satisfying Property (B2) are labeled
pink in step 5b. Step 5cii labels cells satisfying Property (B3) as yellow, and
reports all objects in the cells as DB-Outliers. Finally, uncolored cells (not satis-
fying Properties (B1), (B2), (B3)) are labeled as white in step 5ciii. CCD is a set
of processes shown in step 3-5ciii1. We then operate only objects in white cells
(Cω) using an object-by-object process as follows: For each object Oi ∈ Cω, we
calculate distance between Oi and each object Oq in cells ∈ L2(Cω), and count
the number of objects in its D-neighborhood. We count n + n1 in Counti in ad-
vance because all L1 neighbors are always within the D-neighborhood. Once the
number of objects in the D-neighborhood exceeds M , we declare Oi a non-outlier.
If the count remains less than or equal to M after all calculation, we report Oi

as an outlier. We call this process for each white cell (5ciii2) WCP(White-Cell
Process), and the process for each object in a white cell (5ciii2a-c) WOP(White-
Object Process).

Cell-by-cell basis decisions using Properties B help to determine whether or
not an object in the cell is an outlier, and this leads to skipping a lot of distance
calculations and reducing the process time compared with the Simple algorithm.

5 Proposed Method

This section describes continuous CDB-Outlier detection over data streams.
That means we consider the detection of DB-Outliers when a state set SM

arrives, as shown in Fig. 1.

The straightforward approach to detecting CDB-Outliers is to process DB-
Outlier detection for every state set SM . However, in most cases, the data dis-
tribution of SM is similar to that of SM−1, so processing for all objects in SM

again has many meaningless calculations. Therefore, our proposed method does
differential processing based on the change between SM−1 and SM using the
idea of the Cell-Based algorithm.

Detecting Current Outliers: Continuous Outlier Detection over Data Streams 7

1. For each cell Cq, nq ← 0
2. For each object Oi, do:

Map Oi to an appropriate cell Cq, store Oi, and increment nq.
3. For each cell Cq, if nq > M , label Cq red.
4. For each red cell Cr, do:

Label each of the L1 neighbors of Cr pink, provided the neighbor has not
already been labeled red.

5. For each non-empty uncolored cell Cw, do:
a. n1ω

← Σi∈L1(Cω)ni

b. If nω + n1ω
> M , label Cω pink.

c. Else

i. n2ω
← Σi∈L2(Cω)ni

ii. If nω + n1ω
+ n2ω

≤ M , label Cω yellow, mark all objects in Cω

as outliers.
iii. Else

1. Label Cω as white.
2. For each object Oi ∈ Cω, do:

a. Counti ← nω + n1ω

b. For each object Oq ∈ CL2
, CL2

∈ L2(Cω), if (dist(Oi, Oq) ≤ D):
Increment Counti by 1. If Counti > M , Oi cannot be an outelir,
so goto(5ciii2)

c. Mark Oi as an outlier

Fig. 7. Cell-Based Algorithm

5.1 Assumptions

We do differential processing with objects whose states changed from tM−1 to
tM (say SC-Objects(State-Change Objects)) and their current state sets ∆M (=
{(Oi, s

M
i) | 1 ≤ i ≤ N ∧ sM−1

i ̸= sM
i }). Our proposed method targets all state

sets except the initial state set (S1) of data streams. We use the original Cell-
Based algorithm for S1.

5.2 Differential Processing on an SC-Object

Fig. 8. Case[1]

To simplify the problem, we consider the case
with one SC-Object, OP . There are two ways
to change the state in the state space divided
into cells. Let “Oi ∈ Cj

x1,...,xk
” represent that cell

Cx1,...,xk
contains Oi at tj .

[1] Move to a different cell:
OP ∈ CM−1

x1,...,xk
, OP ∈ CM

x1,...,xk
,

CM−1

x1,...,xk
̸= CM

x1,...,xk
.

OP influences cells at tM−1 and tM and their L1

and L2 neighbors, which is described as colored
area in Fig. 8. Since n of CM−1

x1,...,xk
and CM

x1,...,xk

change and influence those cells.

8 K. Ishida and H. Kitagawa

[2] Move in the same cell:
OP ∈ CM−1

x1,...,xk
, OP ∈ CM

x1,...,xk
, CM−1

x1,...,xk
= CM

x1,...,xk
.

Because n of CM
x1,...,xk

does not change, red, pink, and yellow cells within L2

neighbor are not influenced. It influences only white cells within the L2 neighbor.
There are two cases:

[2a] There are white cells in L2(C
M
x1,...,xk

).

[2b] CM
x1,...,xk

itself is a white cell.

Fig. 9. Case[2a] Fig. 10. Case[2b]

Fig. 9 illustrates the case [2a], and Cω represents a white cell in L2(C
M
x1,...,xk

).
Oq ∈ Cω can be influenced because OP can enter or exit Oq’s D-neighborhood.
In case [2b], as shown in Fig. 10, the area of OP ’s D-neighborhood will change,
and OP influences outlier decision of OP .

5.3 Target Cells for Re-Outlier Detection

Actually, there are more than one SC-Objects from tM−1 to tM . Therefore, we
expand the above idea to more than one SC-Objects. We identify the target cells
to reprocess, and classify them taking into account overlaps of each SC-Object’s
process. For example, the area of influence for case [1] contains that of case [2].
Targeted cells are the following 4 types.

Type A : Cells containing SC-Objects which have moved to or from another
cell, at tM (CM−1 and CM in Fig. 8), namely
TypeA = {Cx1,...,xk

| (1 ≤ i ≤ N) ∧ ((Oi ∈ CM−1

x1,...,xk
∧ Oi ̸∈ CM

x1,...,xk
) ∨

(Oi ̸∈ CM−1

x1,...,xk
) ∧ Oi ∈ CM

x1,...,xk
))}.

Type B : Cells of L1 and L2 neighbors of Type A (Colored cells, in Fig.
8), except for those classified as Type A cells, namely
TypeB = {Cx1,...,xk

| (Cu1,...,uk
∈ L1(Cx1,...,xk

) ∧ Cu1,...,uk
∈ TypeA) ∨

(Cu1,...,uk
∈ L2(Cx1,...,xk

) ∧ Cu1,...,uk
∈ TypeA) ∧ Cx1,...,xk

̸∈ TypeA}.

Detecting Current Outliers: Continuous Outlier Detection over Data Streams 9

Type C : White cells that are in the L2 neighbor of the cells that contain
SC-Objects having moved within the same cell (Cω in Fig. 9), except for
those classified as Type A and B cells, namely
TypeC = {Cx1,...,xk

| Cu1,...,uk
∈ L2(Cx1,...,xk

) ∧ (1 ≤ i ≤ N) ∧ (Oi ∈
CM−1

u1,...,uk
∧ Oi ∈ CM

u1,...,uk
∧ CM−1

u1,...,uk
= CM

u1,...,uk
∧ sM−1

i ̸= sM
i) ∧ color(Cx1,...,xk

)
= white ∧ Cx1,...,xk

̸∈ TypeA ∪ TypeB}.

Type D : White cells that contain SC-Objects that have moved within the
same cell (CM in Fig. 10), except for those classified as Type A, B and C
cells, namely
TypeD = {Cx1,...,xk

| (1 ≤ i ≤ N) ∧ (Oi ∈ CM−1

x1,...,xk
∧ Oi ∈ CM

x1,...,xk
∧

CM−1

x1,...,xk
= CM

x1,...,xk
∧ sM−1

i ̸= sM
i) ∧ color(Cx1,...,xk

) = white ∧ Cx1,...,xk

̸∈ TypeA ∪ TypeB ∪ TypeC}.

5.4 Algorithm

We only process the target cells with the proposed algorithm, shown in Fig. 11.
The input is a set of SC-Objects and its state at tM , ∆M (= {(Oi, s

M
i) | (1 ≤

i ≤ N) ∧ sM−1

i ̸= sM
i }). The output is CDB-Outliers.

Step 1 updates cells that contain SC-Objects at time tM . If the cell CM of
OP at tM differs from CM−1 at tM−1, then step 1a labels both cells, A(Case [1]).
If there are white cells Cω ∈ L2(C

M), then step 1bi labels Cω, C(Case [2a]). If
the color of CM is white, then step 1bii labels CM , D(Case [2b]). Step 2 labels
cells in L1 and L2 neighbor of Type A cells, B, and updates their n1 and n2.
We have now targeted the cells to be reprocessed. We then classify the targeted
cells based on labels A, B, C and D. Cells labeled A are in Type A, cells labeled
B except for Type A cells are in Type B, cells labeled C except for Types A and
B cells are in Type C, cells labeled D except for Types A, B, and C cells are in
Type D. Step 3 does Re-CCD as shown in Fig. 12. Re-CCD differs from CCD
because it does not count objects in cells of L1 and L2 neighbors, and uses only
existing or updated n, n1 and n2. It also leads to reduced processing. Step 4
processes WCP, mentioned in the original Cell-Based algorithm (4.2), over Type
C cells. Step 5 processes WOP over SC-Objects in Type D cells.The objects in
yellow cells and outlier objects in white cells are output as CDB-Outliers.

6 Experiments and Results

Experiments with 2-dimensional (2-D) synthetic data and 3-dimensional (3-D)
real data confirm improved processing time for the proposed method.

All of our tests were run on a Microsoft Windows Vista machine with an
AMD Athlon(tm) 64× 2 Dual Core Processor 3800+ 2GHz CPU and 1982MB
of main memory. We implemented the software with Java 1.6.0 02.

This section explains the comparative approaches, describes the datasets,
and provides the results and discussions.

10 K. Ishida and H. Kitagawa

Input: ∆M

Output: CDB-Outliers
1. For each (OP , sM

P) ∈ ∆M , do: identify cell CM at tM

a. If(CM ̸= CM−1):
i. Store OP in CM , and update n of CM .
ii. Delete OP from CM−1, and update n of CM−1.
iii. Label CM and CM−1, A.

b. Else:
i. If there are white cells (Cω) in L2(C

M), label Cω C.
ii. If color(CM) = white, label CM D.

2. For each cell CA of Type A, do:
a. For each cell CL1 ∈ L1(C

M), do:
i. Update n1.
ii. Label CL1 B.

b. For each cell CL2 ∈ L2(C
M), do:

i. Update n2.
ii. Label CL2 B.

3. For each cell CAB of Type A or B, do: Re-CCD.
4. For each cell CC of Type C, do: WCP.
5. For each cell CD of Type D, do:

a. For each SC-Object OP ∈ CD, do: WOP.

Fig. 11. Proposed Algorithm (tM−1 → tM)

1. If n > M , color red.
2. Else if n + n1 > M , color pink.
3. Else if n + n1 + n2 ≤ M , color yellow.
4. Else, do: WCP, color white.

Fig. 12. Re-CCD

6.1 Comparative Approaches

We compared our proposed method with two DB-Outlier methods.

CM(Cell-Based Method): A method that executes the Cell-Based algorithm for
every time stamp.
SM(Simple Method): A method that executes the minimal process of the Simple
algorithm with ∆M . It processes only SC-Objects and the neighbor objects that
can be influenced by SC-Objects.

Applying the original Simple algorithm for every time stamp takes huge com-
putation time and is beyond comparison. Hence, we do not show the comparison.

6.2 Datasets

MO Data (2-D) We use moving objects’ data streams (MO data) generated by
the Mobi-REAL3 simulator. Fig. 13 describes the distribution of moving objects
3 http://www.mobireal.net/index.html

Detecting Current Outliers: Continuous Outlier Detection over Data Streams 11

at a given time, and each point represents each moving object. We set passes for
moving objects: dense at the skirt area and sparse at the central area. Therefore,
objects passing the central area are detected as CDB-Outliers. We use the x and y
coordinates for each object per time unit (1sec) as 2-D datasets. The area of this
simulation is 700 × 700[m2]. Parameters are: the number of objects is 10000, the
(SC-Objects)/(all objects) per time unit is 50[%], the average of moved distance
of the SC-Objects per time unit is 1.5[m], D = 15[m], and p = 0.9995.

Stock Data (3-D) We use daily stock dataset (Dec., 2007, Japan) [14] as a
3-D real dataset. We detect brands that behave very differently from others.
This dataset consists of the band, closing stock price, and completed amount
and changes per day. To reduce the non-uniformity of each attribute, we assign
weights as band ×103, (closing stock price) ×102. Fig. 14 shows data distribution
at a given time. The data has 4039 objects. The average of (SC-Objects)/(all
objects) per time unit is 83% .

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700

Fig. 13. MO Data

 0
 5

 10
 15

 20 5
 10

 15
 20

 25

 0
 5
 10
 15
 20
 25

Compreted amount

Stock data

Band Closing price

Compreted amount
Completed amount

10
Closing price

Fig. 14. Stock Data (×105)

6.3 Results and Discussions

We compared the processing time for the proposed method (PM) and compar-
ative method (CM, SM), and evaluated the relationship with each parameter.

MO data (2-D) Figs. 15-20 shows results of MO data. In 2-D cases, SM takes
too long (around 30000(ms)) to process a dataset per 1000(ms), so we can say
that SM is not appropriate at all. Thus, we evaluate only CM and PM in 2-D
experiments. Fig. 15 shows time versus the ratio of SC-Objects in all objects per
second. Even if the ratio of SC-Objects reaches 100%, PM takes less time than
CM, about 70% of CM. This occurs because, even if all objects change in state,
not all objects move to different cells. Further, CM counts objects in L1 and
L2 neighbors every time. Fig. 16 shows the relationship between time and the
number of all objects. Both methods take more time as the number increases.
PM exceeds CM in all cases. Fig. 17 shows time versus the average of moved

12 K. Ishida and H. Kitagawa

distance of SC-Objects. With this result, we cannot see clear relation to each
other. Fig. 18 illustrates the correlation between time and p. CM and PM shorten
time as p grows. When p is large, the difference between CM and PM becomes
large. In Fig. 19, we change D. At around D = 30, PM time approximately
equals to CM. This occurs because, as shown in Fig. 20, the sum of reprocessed
cells in PM is almost equal to the sum of all cells around D = 30. Actually, there
are no CDB-Outliers for D > 25.

From the results, in many cases, PM is effective for continuous processing in 2-
D datasets. However, if reprocessed cells in PM increase, PM loses its advantage.

Stock Data (3-D) Fig. 21 shows the relationship between time and D, where
p = 0.997. It is obvious that CM is profoundly affected by D, and if we have small
D, the process time is very long. With 3-D data, the number of all cells is bigger
than that of 2-D data. Moreover, the number of cells in L1 and L2 neighbors
is also bigger. Therefore the calculation cost is higher. On the other hand, PM
is little influenced by D, since we use differential calculation. Fig. 22 is the
relationship between process time and p, where D = 200×105. SM is profoundly
affected by p, because the smaller the p, the bigger the M . Therefore, distance
calculations until “the object is not an outlier” increase. On the other hand, PM
and CM are not significantly influenced because of cell-by-cell decisions.

PM can maintain the advantage of the cell-by-cell process with 3-D datasets.
Therefore, PM takes shorter than CM and SM. With those results, we can say
PM is also effective for 3-D datasets.

 0

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70 80 90 100

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

Ratio of moving objects[%]

PM
CM

Fig. 15. MO Data: Time versus SC-
Objects/All Objects

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

Sum of objects(10^4)

PM
CM

Fig. 16. MO Data: Time versus the Num-
ber of All Objects

7 Conclusions and Future Work

In this paper, we have proposed continuous outlier detection over data streams.
We employ DB-Outlier, and based on the Cell-Based algorithm for quick pro-
cessing, we provide an effective algorithm using differential processing over data

Detecting Current Outliers: Continuous Outlier Detection over Data Streams 13

 0

 50

 100

 150

 200

 250

 300

 5 10 15 20 25 30

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

Moved distance[m]

PM
CM

Fig. 17. MO Data: Time versus the Aver-
age Moved Distance

 0

 50

 100

 150

 200

 250

 300

 0.999 0.9992 0.9994 0.9996 0.9998 1

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

p

PM
CM

Fig. 18. MO Data: Time versus p

 0

 50

 100

 150

 200

 250

 300

 10 15 20 25 30 35

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

D[m]

PM
CM

Fig. 19. MO Data: Time versus D

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 5 10 15 20 25 30 35

T
h
e

n
u
m
b
e
r

o
f

c
e
l
l
s

D[m]

All
TypeA+B+C+D

Fig. 20. MO Data: Number of Reprocessed
Cells versus D

 0

 10000

 20000

 30000

 40000

 50000

 60000

 100 150 200 250 300 350 400

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

D(10^5)

PM
CM
SM

Fig. 21. Stock data: Time versus D

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.995 0.996 0.997 0.998 0.999 1

P
r
o
c
e
s
s

t
i
m
e
[
m
s
]

p

PM
CM
SM

Fig. 22. Stock Data: Time versus p

14 K. Ishida and H. Kitagawa

streams. We evaluated our proposed method with synthetic and real datasets,
and showed its advantage over naive methods. Extensions to cope with high di-
mensional data and dynamic data streams are interesting future research issues.

Acknowledgment. This research has been supported in part by the Grant-in-
Aid for Scientific Research from MEXT (# 19024006).

References

1. Barret, V., Lewis, T.: Outliers in Statistical Data. Wiley, Chichester, (2001)
2. Eskin, E.: Anomaly Detection over Noisy Data using Learned Probability Distri-

butions. ICML, pp. 255–262. (2000)
3. Knorr, E.M., Ng, R.T.: Finding Intensional Knowledge of Distance-Based Outliers.

VLDB, pp. 211–222. (1999)
4. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-Based Outliers: Algorithms and

Applications. VLDB J. 8(3-4), pp. 237–253. (2000)
5. Ng, R.T., Han, J.: Efficient and Effective Clustering Methods for Spatial Data

Mining. VLDB, pp. 144–155. (1994)
6. Ester, M., Kriegel, H.P., Xu, X.: A Database Interface for Clustering in Large

Spatial Databases. KDD, pp. 94–99. (1995)
7. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An Efficient Data Clustering

Method for Very Large Databases. SIGMOD, pp. 103–114. (1996)
8. Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: A Multi-Resolution

Clustering Approach for Very Large Spatial Databases. VLDB, pp. 428–439. (1998)
9. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic Subspace Clus-

tering of High Dimensional Data for Data Mining Applications. SIGMOD, pp.
94–105. (1998)

10. Breunig, M.M., Kriegel,H.P., Ng, R.T., Sander, J.: LOF: Identifying Density-Based
Local Outliers. SIGMOD, pp. 93–104. (2000)

11. Su, L., Han, W., Yang, S., Zou, P., Jia, Y.: Continuous Adaptive Outlier Detection
on Distributed Data Streams. HPCC, pp. 74–85. (2007)

12. Yamanishi, K., Takeuchi, J., Williams, G., Milne, P.: On-line Unsupervised Outlier
Detection using Finite Mixtures with Discounting Learning Algorithms. KDD, pp.
320–324. (2000)

13. Yamanishi, K., Takeuchi, J.: Discovering Outlier Filtering Rules from Unlabeled
Data: Combining a Supervised Learner with an Unsupervised Learner. KDD, pp.
389–394. (2001)

14. ITicker, http://homepage1.nifty.com/hdatelier/

