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Introduction

CSE-CIC-IDS2018 [1], also referred to as the 2018 dataset throughout this text, is an 

intrusion detection dataset with normal and anomalous instances of network traffic. 

Machine learning models efficiently trained on CSE-CIC-IDS2018 can detect network 

traffic capable of compromising an information system. �is dataset is the most recent 

iteration of ISCXIDS2012 [2], a scalable project designed to produce modern, realistic 

datasets. CSE-CIC-IDS2018 data originated from an extensive network of victim and 

attack machines [3], yielding an aggregate of 16,233,002 instances. Six classes of attack 

traffic (percentage distribution shown in Table 1) are represented by about 17% of these 

instances.

�e 2018 dataset has a binary class imbalance vis-à-vis the non-attack instances to the 

total number of attack instances. �e dataset is distributed over ten CSV files that are 
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downloadable from the cloud 1. Nine files consist of 79 independent variables, and the 

remaining file consists of 83 independent variables.

Machine learning is greatly facilitated by the high number of features in CSE-CIC-

IDS2018. Machine learning algorithms typically outperform traditional statistical meth-

ods in classification tasks [4, 5]. However, the threshold settings of some learners may 

not be appropriately set for imbalanced data, thus rendering these algorithms inefficient 

at distinguishing majority and minority classes in a highly imbalanced environment. 

�e learners will consequently fail to properly model the distribution of the positive 

(minority) class and become biased in favor of the negative (majority) class. �erefore, 

one must employ metrics that safeguard against this outcome. �e two metrics used in 

this study, F1-score and Area Under the Receiver Operating Characteristic (ROC) Curve 

(AUC), are suitable for evaluating classifier performance on imbalanced datasets [6, 7]. 

We note that class imbalance is more noticeable in big data as the number of majority 

class instances is disproportionately high in that environment [8, 9].

�e ensemble feature selection [10, 11] approach in this paper is tailored toward 

improving classifier performance by using a relevant subset of variables from CSE-CIC-

IDS2018. It is worth noting that feature selection also provides data clarity and reduces 

computation requirements. In our study, we utilize both supervised and filter-based [12] 

feature ranking techniques, and the last stage of our ensemble approach is the selection 

of common features from these techniques.

�e specific properties of big data can make classification more challenging for learn-

ers trained on the 2018 dataset. �ese properties include volume, variety, velocity, vari-

ability, value, and complexity [8]. Traditional methods may have difficulty handling the 

high data volume, the diversity of data formats, the speed of data originating from dif-

ferent sources, data flow inconsistencies, the filtering of important data, and data linking 

and transformation.

Classifier performance in our case study is based on the training and testing of the fol-

lowing learners: Decision Tree (DT) [13], Random Forest (RF) [14], Naive Bayes (NB) 

[15], Logistic Regression (LR) [16], Catboost [17], LightGBM [18], and XGBoost [19]. 

�ese learners are selected for their good coverage of several Machine Learning (ML) 

model families and are viewed favorably in terms of performance [20]. �e seven classi-

fiers are further discussed in "Classifier development and metrics" section.

Table 1 CSE-CIC-IDS2018 tra�c distribution

Tra�c type Distribution (%)

Benign 83.070

DDoS 7.786

DoS 4.031

Brute force 2.347

Botnet 1.763

Infiltration 0.997

Web attack 0.006

1 https ://www.unb.ca/cic/datas ets/ids-2018.html

https://www.unb.ca/cic/datasets/ids-2018.html
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To the best of our knowledge, this study is the most comprehensive analysis on CSE-

CIC-IDS2018 to date. Our work uniquely uses the 2018 dataset to investigate ensemble 

feature selection on the performance of seven classifiers. Our contribution is defined by 

our responses to three research questions: �e first question is, “Does feature selection 

impact performance of classifiers in terms of AUC and F1-score?” �e second question 

is, “Does including the Destination_Port categorical feature significantly impact perfor-

mance of LightGBM and Catboost in terms of AUC and F1-score?” And, our third ques-

tion is, “Does the choice of classifier: DT, RF, NB, LR, Catboost, LightGBM, or XGBoost, 

significantly impact performance in terms of AUC and F1-score?” �e answers to these 

research questions provide valuable and practical information for the development of an 

efficient intrusion detection model.

�e remainder of this paper is organized as follows: "Related work" provides an over-

view of literature that manipulates features of CSE-CIC-IDS2018;   "Methodology" sec-

tion describes the cleaning process of the 2018 dataset, our unique ensemble approach 

for feature selection, the classifiers and metrics used in the study, and the training and 

testing procedure for these classifiers; "Results and discussion" section presents and dis-

cusses our empirical results; "Conclusion" section concludes our paper with a summary 

of the work presented and suggestions for related future work.

Related work

In this section, we highlight studies that modify features of CSE-CIC-IDS2018 to 

improve classification results. However, to the best of our knowledge, none of these 

studies use an ensemble feature selection approach.

To address the high class imbalance of the 2018 dataset, Hua [21] uses an undersam-

pling and embedded feature selection approach with a LightGBM classifier. Undersam-

pling [22] randomly removes majority class instances to alter class distribution. During 

the data cleaning stage, missing values and useless features were removed, resulting in 

a modified set of 77 features. String labels were converted to integer labels, which were 

then one-hot encoded. In addition to LightGBM, six other learners were evaluated in 

this research work: Support Vector Machine (SVM) [23], RF, Adaboost [24], Multilayer 

Perceptron (MLP) [25], Convolutional Neural Network (CNN) [26], and Naive Bayes. 

Learners were implemented with Scikit-learn [27] and TensorFlow [28]. �e train to test 

data ratio was 70 to 30, and XGBoost was used to perform feature selection. LightGBM 

had the best performance of the group, with an optimum accuracy of 98.37% when the 

sample size was three million and the top ten features were selected. For this accuracy, 

the precision and recall were 98.14% and 98.37%, respectively. LightGBM also had the 

second fastest training time among the classifiers.

In another related work of research [29], five learners were evaluated on two datasets 

(CSE-CIC-IDS2018 and ISOT HTTP Botnet [30]) to determine the best botnet classi-

fier. �e ISOT HTTP Botnet dataset contains malicious and benign instances of Domain 

Name System (DNS) traffic. �e learners in the study include RF, DT, k-Nearest Neigh-

bor (k-NN) [31], Naive Bayes, and SVM. Feature selection was performed using various 

techniques, including the feature importance method [32] of RF. Subsequent to feature 

selection, CSE-CIC-IDS2018 had 19 independent attributes while ISOT HTTP had 20, 

with destination port number, source port number, and transport protocol among the 
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selected features. �e models were implemented with Python and Scikit-learn. About 

80% of botnet instances were used for training, where five-fold cross-validation was 

applied. �e remaining botnet instances served as the testing set. For optimization, the 

Grid Search algorithm [33] was used. With regard to CSE-CIC-IDS2018, the RF and DT 

learners scored an accuracy of 99.99%. Tied to this accuracy, the precision was 100% and 

the recall was 99.99% for both learners. �e RF and DT learners also had the highest 

accuracy for ISOT HTTP (99.94% for RF and 99.90% for DT).

Li et  al. [34], in a third related study, apply clustering and feature selection to CSE-

CIC-IDS2018. �is unsupervised learning study involves online real-time detection with 

an autoencoder classifier. An autoencoder encodes data in a way that usually results 

in dimensionality reduction [35]. For preprocessing, “Infinity” and “NaN” values were 

replaced by 0, and the data was subsequently divided into sparse and dense matrices, 

normalized by L2 regularization. A sparse matrix has a majority of elements with value 

0, while a dense matrix has a majority of elements with non-zero values. �e model 

was built within a Python environment. �e best features were selected by RF, and the 

train to test data ratio was set as 85 to 15. �e Affinity Propagation (AP) clustering [36] 

algorithm was subsequently used on 25% of the training dataset to group features into 

subsets, which were sent to the autoencoder. Recall rates for all attack types for the pro-

posed model were compared with those of another autoencoder model called Kitnet 

[37]. Several attack types for both models had a recall of 100%. Only the proposed model 

was evaluated with the AUC metric, with several attack types yielding a score of 1. Based 

on detection time results, the authors showed that their model has a faster detection 

time than KitNet.

Fitni and Ramli [38] adopt an ensemble model approach to compare seven single 

learners for integration into a classifier unit. �e seven learners are as follows: RF, Gauss-

ian Naive Bayes [39], DT, Quadratic Discriminant Analysis [40], Gradient Boosting, and 

Logistic Regression. �e models were built with Python and Scikit-learn. During pre-

processing, samples with missing values and infinity were removed. Records that were 

actually a repetition of the header rows were also removed. �e dataset was then divided 

into training and testing validation sets in an 80-20 ratio. Feature selection [41], a tech-

nique for selecting the most important features of a predictive model, was performed 

using the Spearman’s rank correlation coefficient [42] and Chi-squared test [43], result-

ing in the selection of 23 features. After the evaluation of the seven learners with these 

features, Gradient Boosting, Logistic Regression, and DT emerged as the top performers 

for use in the ensemble model. Accuracy, precision, and recall scores for this model were 

98.80%, 98.80%,and 97.10%, respectively, along with an AUC of 0.94.

Finally, D’hooge et  al. include both CICIDS2017 and CSE-CIC-IDS2018 in a study 

investigating how efficiently the results of an intrusion detection dataset can be general-

ized [44]. CICIDS2017 is the predecessor of the 2018 dataset. For performance evalua-

tion, the authors used 12 supervised learning algorithms from various families: DT, RF, 

Bag [45], gradient-boosted decision tree (GBDT), Extratree [46], Adaboost, XGBoost, 

k-NN, Ncentroid [47], linearSVC [48], RBFSVC [49], and Logistic Regression. �e mod-

els were built with the Scikit-learn and XGBoost modules in Python. �e authors used 

feature scaling, which is different from feature selection. Feature scaling attempts to 

normalize the feature space of all attributes. Results show that the tree-based classifiers 
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yielded the best performance, and among them, XGBoost ranked first with many per-

fect values for F1-score and AUC. D’hooge et  al. hinted overfitting might have been 

a problem and “further analysis” was warranted. We note that their source code indi-

cated hyperparameter values of max-depth = 35 for some of their tree-based learners. 

Such values are prone to overfitting. For intrusion detection, the authors concluded 

that a model trained on one dataset (CICIDS2017) cannot generalize to another dataset 

(CSE-CIC-IDS2018).

In summary, the related works exhibit shortcomings with nearly perfect classifica-

tion performance values typically associated with overfitting. We discovered additional 

shortcomings, such as errors in preparation (e.g. using Destination_Port as a numeric 

value instead of categorical value) and in data cleaning. Ambiguous specifications are 

also an issue with regard to reproducibility of the studies.

Methodology

Data cleaning

Removing certain fields from CSE-CIC-IDS2018 was our first step in the data cleaning 

stage. We dropped the Protocol field because it is redundant, since the Dst Port (Desti-

nation_Port) field mostly contains equivalent Protocol values for each Destination_Port 

value. We dropped the Timestamp field as we wanted the learners to not discriminate 

between attack predictions based on time, especially with more stealthy attacks in mind. 

In other words, the learners should be able to distinguish attacks regardless of whether 

they are high volume or slow and stealthy. Dropping the Timestamp field also allows us 

the convenience of combining or dividing the datasets into ways more compatible with 

our experimental frameworks.

We removed 59 records that were actually a repetition of the header rows. �ese were 

easily found and removed by filtering records based on a white list of valid label values.

�e fourth downloaded file “�uesday-20-02-2018_TrafficForML_CICFlowMeter.csv” 

was different than the other 9 files for the 2018 dataset. �is file contained 4 extra col-

umns: Flow ID, Src IP, Src Port, and Dst IP. We dropped these 4 additional fields.

Certain fields contained negative values which did not make sense, and so we dropped 

those instances with negative values for the Fwd_Header_Length, Flow_Duration, and 

Flow_IAT_Min fields. In particular, the negative values from the Fwd_Header_Length 

field occur with extreme values in other fields. �ese extreme values skew statistics that 

are sensitive to outliers.

Eight fields contained values of zero for every instance. Prior to the start of machine 

learning, we filtered out the following list of fields: 

1. Bwd_PSH_Flags

2. Bwd_URG_Flags

3. Fwd_Avg_Bytes_Bulk

4. Fwd_Avg_Packets_Bulk

5. Fwd_Avg_Bulk_Rate

6. Bwd_Avg_Bytes_Bulk

7. Bwd_Avg_Packets_Bulk

8. Bwd_Avg_Bulk_Rate
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We also excluded the Init_Win_bytes_forward and Init_Win_bytes_backward fields, 

since about half of the total instances contained negative values for these two fields. Sim-

ilarly, we did not use the Flow_Duration field as some of those values were unreasonably 

low with zero values. �e Flow Bytes/s and Flow Packets/s fields contained some “Infin-

ity” and “NaN” values (with less than 0.6% of the records containing these values). We 

dropped these instances (total of 95,760) where either Flow Bytes/s or Flow Packets/s 

contained “Infinity” or “NaN” values.

Ensemble feature selection

After data cleaning, the number of independent features in CSE-CIC-IDS2018 is 

reduced to 66. We then adopt an ensemble approach for feature selection. Ensemble 

feature selection is derived from the concept of ensemble learning, which demonstrates 

that the combination of multiple learning approaches outperforms a single approach for 

the classification of instances. �is intuitive concept has been extended from an ensem-

ble of learners to an ensemble of feature ranking techniques, where distinct feature rank-

ing methods are integrated to provide one ranking.

In our case study, we use seven ranking techniques to generate seven lists of features 

and subsequently process the resulting lists to select features. �e ranking techniques 

assign a number to each of the 66 usable features in the 2018 data. We use this number 

to place an ordering on the features. When we apply a feature ranking technique, we 

select, at most, the top 20 highest ranked features. Our decision to use 20 features was 

motivated by two factors. First, we wanted to select a list of features long enough that 

there would be a good chance for different rankings to have elements in common. Sec-

ond, due to hyper-parameter tuning to avoid overfitting, we set the maximum depth of 

CatBoost at 5, which causes CatBoost to construct constituent DTs that use only 14 fea-

tures. �erefore, to keep CatBoost’s ranking relevant, we settled on taking a maximum 

of 20 features from other rankers.

We employ both filter-based and supervised ranking techniques. Filter-based feature 

ranking techniques create a list of features by a statistic that we calculate for each vari-

able. Supervised feature ranking techniques leverage the structures of constituent DTs 

of ensemble classifiers to generate a feature importance list. We refer to these ordered 

lists as “rankings.” Selected features appear in at least four out of the seven ranking 

techniques.

Filter-based techniques

�e filter-based feature ranking techniques we use are based on the Information Gain 

(IG) (also known as Mutual Information) [50], Gain Ratio (GR) [51], and Chi-Squared 

(CS) [52] statistics. We use the value of the statistic calculated for each feature to filter 

the list of all features to a reduced list.

To calculate IG and GR statistics, we use the “info_gain” and “info_gain_ratio” func-

tions from the info_gain Python library. To calculate the CS statistic, we use the “chi2” 

function that is included as part of the Scikit-learn library. One may employ the same 

method to rank features of a dataset with any of these 3 functions. We do not supply 

configuration parameters to the IG, GR, or CS functions when we invoke them. Each of 

the three functions accepts two arrays of data for input. We employ all 66 usable features 
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of the 2018 dataset as the source of data for the first input array, and the “label” value 

of the 2018 data for the second input array. All three functions also return a list, l, of 

numbers where we use the value of the ith element of the list to determine its rank, r, 

relative to the values of the other elements in the list. To be concrete, we create a list l′ of 

pairs (ri, i) from l, and then sort l′ in decreasing order of ri . After sorting l′ , we truncate it 

at the 20th element. If the feature ranking technique assigns an importance of zero to a 

feature, we do not include it in the list of ranked features. For instance, we find CatBoost 

assigns an importance greater than 0 to fewer than 20 features.

Some readers may have reservations about the applicability of IG, GR, or CS to cat-

egorical or numeric features. We apply IG, GR, and CS feature selection techniques to 

CSE-CIC-IDS2018 network traffic data in a manner similar to Singh et  al. in [53]. In 

their study, Singh et  al. apply these techniques to the KDD CUP 1999 network traf-

fic dataset. �is dataset is similar to the 2018 dataset in that it contains numeric and 

categorical features. �erefore, we are comfortable applying these filter-based feature 

ranking techniques to the 2018 dataset. Table 2 contains the rankings for the three filter-

based feature ranking techniques.

�rough filter-based feature ranking, we obtain three out of the seven lists used to 

select features for our models. �e remaining four lists of features are obtained with 

supervised feature selection techniques that are discussed in the next subsection.

Supervised feature ranking techniques

For the supervised feature ranking techniques, we use the feature importance lists from 

the RF, CatBoost, XGBoost, and LightGBM Python libraries. CatBoost, LightGBM, and 

XGBoost are Python libraries of their own. �e RF implementation we use is part of the 

Table 2 Top 20 features by �lter-based ranking technique for CSE-CIC-IDS2018

CS Information gain Gain ratio

Fwd_IAT_Total Fwd_Packets_s Fwd_Packets_s

Bwd_IAT_Total Flow_Packets_s Flow_Packets_s

Bwd_IAT_Max Flow_IAT_Mean Flow_IAT_Mean

Fwd_IAT_Max Destination_Port Destination_Port

Flow_IAT_Max Bwd_Packets_s Bwd_Packets_s

Fwd_IAT_Std Flow_Bytes_s Flow_Bytes_s

Idle_Max Fwd_IAT_Mean Fwd_IAT_Mean

Idle_Mean Flow_IAT_Max Flow_IAT_Max

Idle_Min Fwd_Packet_Length_Mean Fwd_Packet_Length_Mean

Flow_IAT_Std Avg_Fwd_Segment_Size Avg_Fwd_Segment_Size

Bwd_IAT_Std Packet_Length_Std Packet_Length_Std

Bwd_IAT_Mean Fwd_Header_Length Fwd_Header_Length

Fwd_IAT_Mean Packet_Length_Variance Packet_Length_Variance

Flow_Bytes_s Total_Length_of_Fwd_Packets Total_Length_of_Fwd_Packets

Active_Max Subflow_Fwd_Bytes Subflow_Fwd_Bytes

Bwd_Packets_s Packet_Length_Mean Packet_Length_Mean

Flow_Packets_s Fwd_Packet_Length_Max Fwd_Packet_Length_Max

Flow_IAT_Mean Bwd_Packet_Length_Mean Bwd_Packet_Length_Mean

Active_Mean Avg_Bwd_Segment_Size Avg_Bwd_Segment_Size

Active_Min Total_Length_of_Bwd_Packets Total_Length_of_Bwd_Packets
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Scikit-learn Python library. Here, we discuss how we use elements in common to the 

implementations of RF, CatBoost, XGBoost, and LightGBM to employ them in ranking 

techniques.

All four libraries have classifier objects. �ese objects have initialization (constructor) 

functions. One may pass configuration options to the initialization functions. Please see 

Tables 3, 4, 5, and 6 for the configuration options we use for each classifier object. Each 

object also has a “fit” function. After the classifiers’ fit function is successfully invoked, 

the classifier object has a list attribute “feature_importances_”. We use the feature_

importances_ list in the same way we use the list of values l returned by the functions 

for filter-based ranking techniques discussed in the previous subsection. Hereafter, we 

refer to the feature selection technique of using the feature importance values from Cat-

Boost, LightGBM, XGBoost, and RF classifiers by the names of the classifiers, where not 

ambiguous.

As discussed in the previous subsection, CSE-CIC-IDS2018 has one categorical fea-

ture: Destination_Port. We found this feature has 53,760 possible values in the 2018 

Table 3 Supervised ranking classi�er Random Forest initialization options

Parameter/Value Comment

n_estimators = 5 Prevent overfitting

max_depth = 6 Limit number maximum 
number of features ranked 
to 32

Table 4 Supervised ranking classi�er LightGBM initialization options

Parameter/Value Comment

learning_rate = 0.1 Selected to prevent overfitting

Table 5 Supervised ranking classi�er XGBoost initialization options

Parameter/Value Comment

objective = ’binary_logistic’ Specify binary classification

n_jobs = 8 Take advantage of parallel processing functionality

n_estimators = 4 Prevent overfitting

max_depth = 5 Limit maximum number of features ranked to 32

Table 6 Supervised ranking classi�er CatBoost initialization options

Parameter/Value Comment

thread_count = 8 Take advantage of 
parallel process-
ing functionality

iterations = 4 Prevent overfitting

max_depth = 5 Limit maximum 
number of 
features ranked 
to 32
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dataset. Hence, we concluded that finding an appropriate encoding technique for this 

feature is outside the scope of our study. However, CatBoost and LightGBM have built-

in support for categorical features, so we include Destination_Port as a candidate for 

ranking for CatBoost and LightGBM, but not for XGBoost or Random Forest.

All supervised ranking techniques yield 20 features, except CatBoost. Due to imple-

mentation details and the hyper-parameter settings we use, CatBoost will not construct 

DTs with a number of nodes sufficient to utilize 20 or more features in the training data. 

Hence, we find CatBoost provides rankings with fewer than 20 features. Tables 7 and 8 

contain the top 20 features in all supervised rankings, except CatBoost, which ranks only 

14 features.

We use supervised ranking techniques to generate 4 out of 7 rankings, and filter-based 

ranking techniques to generate the remaining 3 out of 7 rankings. We use the 7 rankings 

to conduct ensemble feature selection. In the following subsection, we cover the specif-

ics of our feature selection techniques.

Feature selection

After obtaining the 7 rankings, our feature selection techniques are to select features 

that appear in k out of 7 rankings, where k has the value 4, 5, 6, or 7. Hence, we have 

4 feature selection techniques, based on an ensemble of 7 feature ranking techniques. 

We refer to the set of features that appear in 4 out of 7 rankings as “feature group 1.” 

�is is our first ensemble feature selection technique. Since feature group 1 contains 

the Destination_Port categorical feature which some learners that we use cannot 

consume directly, “feature group 1A” is the set of all features in feature group 1, but 

Table 7 Top 20 CSE-CIC-IDS2018 features by  supervised ranking technique: XGBoost, 

Random Forest; due to hyper-parameter settings, CatBoost uses only 14 features

XGBoost CatBoost Random Forest

Fwd_Packet_Length_Max Destination_Port Fwd_Packet_Length_Mean

Fwd_IAT_Max Flow_IAT_Min Max_Packet_Length

Total_Length_of_Fwd_Packets Bwd_Packet_Length_Std min_seg_size_forward

Fwd_IAT_Std min_seg_size_forward Flow_IAT_Min

Fwd_Packets_s Fwd_Packet_Length_Max Fwd_Packets_s

Fwd_Header_Length Fwd_IAT_Total Total_Length_of_Fwd_Packets

Fwd_Packet_Length_Mean Fwd_Header_Length Fwd_IAT_Min

min_seg_size_forward Fwd_Packets_s Fwd_IAT_Total

Bwd_IAT_Total ACK_Flag_Count Fwd_IAT_Max

Idle_Min Fwd_IAT_Min Bwd_Packet_Length_Max

Fwd_IAT_Total Flow_Bytes_s Flow_IAT_Mean

Flow_IAT_Std Avg_Fwd_Segment_Size Fwd_Packet_Length_Max

Bwd_Packet_Length_Std Flow_IAT_Std Total_Length_of_Bwd_Packets

act_data_pkt_fwd Flow_IAT_Max Fwd_Header_Length

PSH_Flag_Count PSH_Flag_Count

Bwd_Packets_s Flow_Packets_s

Max_Packet_Length Down_Up_Ratio

RST_Flag_Count Bwd_Packets_s

ACK_Flag_Count Flow_IAT_Max

Flow_IAT_Max Flow_IAT_Std
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excluding Destination_Port. We believe Destination_Port is a valuable categorical fea-

ture, but is only usable for 5 out of 7 of our rankers (CS, IG, GR, CatBoost, and Light-

GBM). �is puts Destination_Port at a disadvantage for getting selected as a feature. 

In later experiments, we would like to know how classifiers that can handle categori-

cal features perform with or without Destination_Port. �erefore, for every set of fea-

tures that a feature selection technique produces, we add or remove Destination_Port 

as necessary to end up with two sets of features—one that has Destination_Port, and 

one that does not. For CSE-CIC-IDS2018, when we inspect the 7 rankings for features 

in common, we find 15 features in feature group 1.

We follow the naming convention similar to that of the feature selection technique 

where 4 out of 7 ranking techniques agree on a feature. Namely, if the result of a fea-

ture selection technique ends in ‘A’, we mean it does not contain Destination_Port, 

and if it does not end in ‘A’, it contains Destination_Port. Since Destination_Port does 

not appear in 5 out of 7 rankings, “feature group 2” is the result of applying the fea-

ture selection technique where 5 out of 7 rankers agree on a feature, then augmenting 

the result with Destination_Port. “Feature group 2A” is the set of features that appear 

in 5 out of 7 rankings. Similarly, we have “feature group 3”, “feature group 3A”, “feature 

group 4”, and “feature group 4A” that we form in a manner similar to feature group 

2 or feature group 2A. Feature group 3 and feature group 3A correspond to the case 

where 6 out of 7 rankings agree on a feature. Feature group 4 and feature group 4A 

correspond to the case where 7 out of 7 rankings agree on a feature. Hence, our 4 fea-

ture selection techniques net 8 groups of features depending on whether we include 

or exclude Destination_Port. Please refer to Tables 9, 10, 11, and 12 to see the result-

ing feature groups for all rounds of feature selection.

Table 8 Top 20 CSE-CIC-IDS2018 features by supervised ranking technique LightGBM

Destination_Port

Packet_Length_Std

min_seg_size_forward

Flow_IAT_Min

Fwd_Packet_Length_Std

Packet_Length_Variance

Fwd_IAT_Min

Idle_Max

Fwd_Packet_Length_Mean

Fwd_Packets_s

Bwd_Packet_Length_Mean

Flow_IAT_Max

Bwd_Packet_Length_Std

Fwd_Packet_Length_Max

Fwd_Header_Length

Fwd_IAT_Total

RST_Flag_Count

Bwd_IAT_Total

Bwd_Packets_s

Fwd_IAT_Max
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Table 9 Features appearing in  at  least 4 out  of  7 rankings of  CSE-CIC-IDS2018, referred 

to as “feature group 1”; we remove Destination_Port to form “feature group 1A”

* Indicates Destination_Port not included in feature group 1A

Fwd_Packet_Length_Mean

Fwd_Packet_Length_Max

Flow_IAT_Mean

Total_Length_of_Fwd_Packets

Bwd_Packets_s

Fwd_Packets_s

Flow_Bytes_s

Fwd_IAT_Max

Fwd_IAT_Total

Flow_IAT_Std

Flow_IAT_Max

* Destination_Port

min_seg_size_forward

Flow_Packets_s

Fwd_Header_Length

Table 10 Features appearing in at  least 5 out of 7 rankings of CSE-CIC-IDS2018, referred 

to as “feature group 2A”; we add Destination_Port to form “feature group 2”

* Indicates Destination_Port not included in feature group 2A

Fwd_Packets_s

Fwd_Header_Length

Fwd_Packet_Length_Mean

Fwd_IAT_Total

Flow_IAT_Max

Bwd_Packets_s

Fwd_Packet_Length_Max

* Destination_Port

Table 11 Features appearing in at  least 6 out of 7 rankings of CSE-CIC-IDS2018, referred 

to as “feature group 3A”; we add Destination_Port to form “feature group 3”

* Indicates Destination_Port not included in feature group 3A

Fwd_Packets_s

Fwd_Header_Length

Flow_IAT_Max

Bwd_Packets_s

Fwd_Packet_Length_Max

* Destination_Port

Table 12 Features appearing in  at  7 out  of  7 rankings of  CSE-CIC-IDS2018, referred 

to as “feature group 4A”; we add Destination_Port to form “feature group 4A”

* Indicates Destination_Port not included in feature group 4A

Flow_IAT_Max

* Destination_Port
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After selecting features listed in Tables 9, 10, 11, and 12, the datasets are suitable for 

training and testing classifiers. �e reader should not attach any significance to the 

order of features in Tables 9, 10, 11, and  12.

We create a total of 11 datasets. Four are the result of applying the four feature 

selection techniques, and another four are the result of adding or removing the Des-

tination_Port categorical feature as needed. In order to assess the impact of feature 

selection, we require two more datasets, one that contains all 66 usable features, and 

a similar dataset with all features except Destination_Port. We call these datasets “all 

features” and “all features A”, respectively. Finally, we have one dataset that contains 

only the Destination_Port feature, which we call “Destination_Port only”. In the next 

subsection we review classifiers that we train and test with the 2018 dataset.

Classi�er development and metrics

Classi�er development

After feature selection, we use the resulting datasets as input to 7 classifiers: DT, 

RF, NB, LR, CatBoost, XGBoost, and LightGBM. A DT is a simple representation 

of observed data. �e tree can be easily visualized, with nodes or leaves represent-

ing class labels and branches representing observations. RF is an ensemble approach 

building multiple decision trees. �e classification results are calculated by combin-

ing the results of the individual trees, typically using majority voting. NB uses Bayes’ 

theorem of conditional probability to determine the probability that an instance 

belongs to a particular class. It is considered “naive” because of the strong assump-

tion of independence between features. LR uses a sigmoidal, or logistic, function to 

generate values from [0,1] that can be interpreted as class probabilities. LR is similar 

to linear regression but uses a different hypothesis class to predict class membership. 

CatBoost, XGBoost, and LightGBM are GBDTs [54], an ensemble of DTs sequentially 

trained. Catboost uses Ordered Boosting, which imposes an order on the samples that 

CatBoost uses to fit constituent decision trees. XGBoost uses a sparsity-aware algo-

rithm and a weighted quantile sketch. Sparsity is the quality of having many missing 

or zero values, while a weighted quantile sketch uses approximate tree learning [55] 

to support merge and prune operations. LightGBM uses Gradient-based One-Side 

Sampling and Exclusive Feature Bundling to handle large numbers of data instances 

and features. One-Side Sampling ignores a substantial portion of data instances with 

small gradients, while Exclusive Feature Bundling groups mutually exclusive features 

to reduce variable count.

As stated in the discussion on feature ranking, LightGBM and CatBoost handle 

encoding of categorical features automatically, so we take advantage of that, and use 

Destination_Port as a feature for LightGBM and CatBoost. Since we pass the array 

of features to LightGBM as a Pandas DataFrame [56], we indicate to LightGBM that 

Destination_Port is a categorical feature by setting the data type of the Destination_

Port column to “category”. In order to direct CatBoost to treat Destination_Port as a 

categorical feature, when we call the CatBoost classifier’s initialization (constructor) 

function, we set the cat_features parameter to the value of a one-element list contain-

ing the string “Destination_Port”.
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We do one set of experiments where Destination_Port is the only feature. For these 

experiments we use CatBoost, LightGBM, and Scikit-learn’s NB classifier for cate-

gorical data, CategoricalNB [57].

Before we train and test our classifiers, we initialize them with certain parameters. 

The settings of these parameters were selected based on experimentation. We list 

these initialization parameters in Tables  13, 14, 15, 16, and 17. We do not provide 

tables for initialization parameters for Naive Bayes or Logistic regression construc-

tors because we did not set any for those two classifiers.

Table 13 LightGBM classi�er initialization options

Parameter/Value Comment

bagging_fraction = 0.01 Faster training and 
prevent overfit-
ting;

bagging_freq = 10 Necessary to 
specify along 
with bagging_
fraction

max_bin = 32 Prevent overfitting

Table 14 XGBoost classi�er initialization options

Parameter/Value Comment

objective = ’binary_logistic’ Specify objective 
function for 
binary classifica-
tion

n_jobs = 8 Take advantage of 
parallel process-
ing functionality

n_estimators = 4 Prevent overfitting

max_depth = 5 Prevent overfitting

Table 15 Supervised ranking classi�er Random Forest initialization options

Parameter/Value Comment

n_estimators = 5 Prevent overfitting

max_depth = 6 Prevent overfitting

Table 16 Supervised ranking classi�er CatBoost initialization options

Parameter/Value Comment

thread_count = 8 Take advantage of 
parallel processing 
functionality

iterations = 4 Prevent overfitting

max_depth = 5 Prevent overfitting
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Classi�er metrics

Our work records the confusion matrix (Table 18) for a binary classification problem, 

where the class of interest is usually the minority class and the opposite class is the 

majority class, i.e. positives and negatives, respectively. A related list of simple perfor-

mance metrics [58] is explained as follows:

• True Positive (TP) is the number of positive samples correctly identified as posi-

tive.

• True Negative (TN) is the number of negative samples correctly identified as neg-

ative.

• False Positive (FP), also known as Type I error, is the number of negative instances 

incorrectly identified as positive.

• False Negative (FN), also known as Type II error, is the number of positive 

instances incorrectly identified as negative.

Based on these fundamental metrics, other performance metrics are derived as 

follows:

• Recall, also known as True Positive Rate (TPR) or sensitivity, is equal to 

TP/(TP + FN ).

• Precision, also known as positive predictive value, is equal to TP/(TP + FP).

• Specificity, also known as True Negative Rate (TNR), is equal to TN/( TN + FP ).

In our study, we used more than one performance metric to better understand the 

challenge of evaluating machine learning models with severely imbalanced data. �e 

metrics are explained below:

• F1-score (traditional), also known as the harmonic mean of precision and recall, is 

equal to 2 · Precision · Recall/(Precision + Recall).

• AUC  is equal to the area under the Receiver Operating Characteristic (ROC) 

curve, which graphically shows recall versus (1-specificity) across all classifier 

Table 17 Supervised ranking classi�er Decision Tree initialization options

Parameter/Value Comment

max_depth = 5 Prevent overfitting

Table 18 Confusion matrix

Actual class Predicted class

Positive Negative

Positive True Positive (TP) False Negative 
(FN) (Type II 
error)

Negative False Positive (FP) (Type I error) True Negative (TN)
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decision thresholds. From this curve, the AUC obtained is a single value that 

ranges from 0 to 1, with a perfect classifier having a value of 1.

Classi�er training and testing

We train and test all classifiers using stratified fivefold cross-validation (CV). For 

training and testing any model, we use the “label” column of CSE-CIC-IDS2018 as 

the label. For each of the datasets that are appropriate for the classifiers, we do 10 

iterations of 5-fold CV for all classifiers. Only CatBoost and LightGBM have built 

in support for categorical features, so all datasets are appropriate for CatBoost and 

LightGBM. However, we felt finding the optimal encoding technique as a preproc-

essing step is out of scope for this work, so it is not appropriate for NB, LR, DT, RF 

or XGBoost to be trained and tested with datasets that contain the Destination_Port 

categorical feature. We are interested in models that use solely the Destination_Port, 

and therefore we perform some experiments with the CategoricalNB classifier. Cate-

goricalNB is appropriate for datasets that contain only categorical features; therefore, 

“Destination_Port only” dataset is appropriate for CategoricalNB.

For each unique combination of dataset and classifier, since we do ten iterations of 

fivefold CV, we record 50 measurements of AUC and F1-score values. �e AUC and 

F1-score figures we report are mean values of 50 measurements. After training and test-

ing all models with the various datasets, we group the performance metrics according 

to experimental factors at different levels, to perform ANalysis Of VAriance (ANOVA) 

[59] tests. When the outcomes of the ANOVA tests indicate that factors explain vari-

ance in performance metrics, we perform Tukey’s Honestly Significant Difference (HSD) 

[60] tests to determine which levels of factors are significantly different, and which are 

associated with highest mean AUC and F-1 score values. We then use the outcomes of 

the ANOVA and Tukey’s HSD tests to answer research questions Q1, Q2, and Q3. �e 

first results we report are the mean AUC and F1-scores for CatBoost, LightGBM, and 

CategoricalNB with their respective datasets. We present these results in Table 19. We 

report results on ANOVA and Tukey’s HSD tests in the next section, but mention them 

here since the data in the tables below are used in the tests later.

For reasons given earlier, we do not train or test CategoricalNB on datasets with 

numeric and categorical features. However, it is appropriate to train and test Cat-

Boost and LightGBM with datasets consisting of categorical and numeric features. 

We report the outcome of the first such experiments in Table 20.

Table 19 Mean performance of  CatBoost, LightGBM and  CategoricalNB in  terms of  AUC 

and F1-score on a one-feature dataset of Destination_Port only

Best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

Classi�er AUC SD AUC F1-Score SD F1

CatBoost 0.9073306 0.0002258 0.7357801 0.0003923

LightGBM 0.9073228 0.0002276 0.7357771 0.0003934

CNB 0.9073425 0.0002269 0.7357834 0.0003924
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Table 20 Mean performance of  CatBoost and  LightGBM in  terms of  AUC and  F1-score 

on datasets with features from feature group 1

Best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

Classi�er Feature group 1

AUC SD AUC F1 SD F1

CatBoost 0.95306 0.00360 0.93301 0.00327

LightGBM 0.96694 0.00107 0.95880 0.00066

Table 21 Mean performance of  CatBoost and  LightGBM in  terms of  AUC and  F1-score 

on datasets with features from feature group 2

Best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

Classi�er Feature group 2

AUC SD AUC F1 SD F1

CatBoost 0.94956 0.00167 0.92466 0.00308

LightGBM 0.96728 0.00118 0.95681 0.00104

Table 22 Mean performance of  CatBoost and  LightGBM in  terms of  AUC and  F1-score 

on datasets with features from feature group 3

best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

Classi�er Feature group 3

AUC SD AUC F1 SD F1

CatBoost 0.94010 0.01376 0.92074 0.01270

LightGBM 0.96722 0.00038 0.95585 0.00126

Table 23 Mean performance of  CatBoost and  LightGBM in  terms of  AUC and  F1-score 

on datasets with features from feature group 4

Best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

Classi�er Feature group 4

AUC SD AUC F1 SD F1

CatBoost 0.94169 0.00056 0.91140 0.00058

LightGBM 0.94208 0.00046 0.90989 0.00085

Table 24 Mean performance of  CatBoost and  LightGBM in  terms of  AUC and  F1-score 

on datasets with features from feature group all features

Best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

All features

CatBoost 0.96389 0.00108 0.95054 0.00187

LightGBM 0.96890 0.00019 0.96134 0.00021
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In Tables 21, 22, 23 and 24 we report the results of further experiments involving Cat-

Boost and LightGBM. In these tables, we train and test models on data with features in 

feature groups 2, 3, 4, and all features.

In Tables 25, 26, 27, 28 and 29 we report performance of the 7 classifiers CatBoost, 

LightGBM, DT, LR, NB, RF, and XGBoost as we train and test them on datasets with 

Table 25 Mean performance of  7 classi�ers in  terms of  AUC and  F1-score on  datasets 

with features from feature group 1A

Best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

Classi�er Feature group 1A

AUC SD AUC F1 SD F1

CatBoost 0.94200 0.00870 0.91650 0.01075

LightGBM 0.96147 0.00087 0.94690 0.00062

Decision Tree 0.90891 0.00022 0.88583 0.00031

Logistic Regression 0.66772 0.00134 0.49471 0.00288

Naive Bayes 0.56711 0.00023 0.24319 0.00061

Random Forest 0.95132 0.00782 0.92949 0.00845

XGBoost 0.95385 0.00020 0.93647 0.00032

Table 26 Mean performance of  7 classi�ers in  terms of  AUC and  F1-score on  datasets 

with features from feature group 2A

Best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

Classi�er Feature group 2A

AUC SD AUC F1 SD F1

CatBoost 0.89547 0.01241 0.86477 0.01188

LightGBM 0.95883 0.00157 0.94159 0.00127

Decision Tree 0.89876 0.00026 0.86111 0.00032

Logistic Regression 0.55609 0.00018 0.20412 0.00056

Naive Bayes 0.56993 0.00018 0.24736 0.00055

Random Forest 0.93240 0.02058 0.90543 0.02154

XGBoost 0.94174 0.00116 0.91419 0.00057

Table 27 Mean performance of  7 classi�ers in  terms of  AUC and  F1-score on  datasets 

with features from feature group 3A

Best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

Classi�er Feature group 3A

AUC SD AUC F1 SD F1

CatBoost 0.88616 0.00304 0.85593 0.00363

LightGBM 0.95832 0.00088 0.93869 0.00152

Decision Tree 0.88518 0.01677 0.83763 0.01621

Logistic Regression 0.55352 0.00021 0.19546 0.00066

Naive Bayes 0.56753 0.00287 0.24000 0.00887

Random Forest 0.93496 0.01585 0.90416 0.01719

XGBoost 0.94780 0.00020 0.91189 0.00031
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features from feature groups 1A through 4A, and feature group all features A. Since 

these datasets do not contain the Destination_Port categorical feature, more classifiers 

are available for us to experiment with.

Results and discussion

We inspect Tables 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 and 29, then use the same data we 

used to obtain the mean values in them to conduct ANOVA and Tukey’s HSD tests to 

answer research questions Q1, Q2, and Q3. �e confidence levels we use for all tests is 

99%. For ANOVA tests, we build models where the dependent variable is the experiment 

outcome (AUC or F1-score), and the independent variables (classifier, feature selection 

technique, etc.) are factors in the experiments. �erefore, we include box plots of data 

used to build the models for ANOVA to aid in understanding groupings the Tukey’s 

HSD tests identify.

Research Question Q1: Does feature selection impact performance of classifiers in 

terms of AUC and F1-score?

Our first step in answering Q1 is to inspect Tables  20, 21, 22, 23, 24, 25, 26, 27, 28 

and 29. In Table 20, we see the LightGBM model yields an AUC value of 0.96694 and 

an F1-score of 0.95880 when trained on the 15 features (including Destination_Port) 

from feature group 1. However, in Table 24, we see that, when trained with all features, 

Table 28 Mean performance of  7 classi�ers in  terms of  AUC and  F1-score on  datasets 

with features from feature group 4A

Best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

Classi�er Feature group 4A

AUC SD AUC F1 SD F1

CatBoost 0.62869 0.00346 0.40433 0.00786

LightGBM 0.62282 0.00243 0.38899 0.00566

Decision Tree 0.64309 0.00031 0.42947 0.00059

Logistic Regression 0.50000 0.00000 0.00000 0.00000

Naive Bayes 0.50000 0.00000 0.00000 0.00000

Random Forest 0.65889 0.00030 0.46665 0.00061

XGBoost 0.64208 0.00030 0.42912 0.00065

Table 29 Mean performance of  7 classi�ers in  terms of  AUC and  F1-score on  datasets 

with features from feature group all features A

Best metrics are highlighted in italics; SD AUC is the standard deviation of AUC and SD F1 is the standard deviation of the 

F1-score

Classi�er All features A

AUC SD AUC F1 SD F1

CatBoost 0.95602 0.00271 0.93653 0.002

Decision Tree 0.91190 0.00030 0.88740 0.000

LightGBM 0.95192 0.00616 0.92988 0.007

Naive Bayes 0.55359 0.00038 0.31448 0.000

Random Forest 0.95522 0.00474 0.93234 0.004

LightGBM 0.91324 0.00024 0.88905 0.000
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LightGBM yields an AUC value of 0.96890 and an F1-score of 0.96134. We see analogous 

patterns of similar or better performance for other classifiers in Tables 20, 21, 22, 23, 24, 

25, 26, 27, 28 and 29 for other classifiers and datasets.

�erefore, we perform two-factor ANOVA tests with classifiers and datasets as the 

factors, and AUC or F1-score as the dependent variable. In all cases, with one excep-

tion, the p-values for the ANOVA tests are zero, so we conclude that classifier and data-

set are significant factors affecting the outcome of experiments. �e exception is for 

experiments involving the dataset with one feature of Destination_Port only. For this 

one-feature dataset, the classifier choice is not significant. We report the results of these 

experiments with the one-feature Destination_Port only dataset in Table 19, where we 

are forced to report results to 8 decimal places instead of the usual 5 to show any differ-

ence in performance when we use different classifiers. Otherwise, Tukey’s HSD tests are 

appropriate for both classifier and dataset factors.

The dataset factor (feature group 1, 1A, etc.) in an experiment is equivalent to the 

application of a feature selection technique. In order to get a sense of the impact of 

feature selection and classifier choice, we conduct Tukey’s HSD tests at a 99% confi-

dence level for the dataset and classifier factors in order to gauge the effect of feature 

selection. We see in Figs. 1 and 3 that performance in terms of AUC and F1-score is 

influenced by the classifier. Reflected in Figs. 2 and 4, and according to the group-

ings the Tukey’s HSD test yields, there is no significant difference performance in 

terms of AUC for group a, which consists of the feature selection technique where 

Fig. 1 Box plots of AUC grouped by classifier; here datasets do not include destination port; Tukey’s HSD 

test indicates LightGBM, Random Forest and XGBoost in group a, CatBoost, Decision Tree in group b, Logistic 

Regression in group c and Naive Bayes in group d (factors in the same group are not significantly different)



Page 20 of 29Leevy et al. J Big Data            (2021) 8:38 

Fig. 2 Box plots of AUC grouped by feature group/selection technique; here datasets do not include 

destination port; Tukey’s HSD test indicates feature groups/selection techniques 1A, all features A in group a, 

2A 3A in group b and 4A in group c

Fig. 3 Box plots of F1-score grouped by classifier; here datasets do not include destination port; Tukey’s HSD 

test indicates LightGBM, Random Forest, XGBoost in group a, CatBoost and Decision Tree in group b, Logistic 

Regression in group c, Naive Bayes in group d
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we use features 4 out of 7 classifiers agree on (feature group 1A), and when we use 

all features (feature group all features A). This is an ideal result since it implies we 

obtain similar performance with a smaller dataset. However, in terms of F1-score, 

we do not obtain the ideal result, but one where performance in terms of F1-score 

is similar. We see in Fig.  4 that the F1-scores for classifiers trained on all features 

in feature group 1A are very close to the F1-scores that classifiers trained with data 

from feature group 1 yield. In fact, the adjusted p-value for the Tukey’s HSD test 

for the difference in F1-score for feature groups 1 and all features is 0.0100414. We 

cite this adjusted p-value as another reason to claim that performance in terms of 

F1-score for classifiers trained with feature group 1A is similar, or better than the 

performance of classifiers trained with all features from CSE-CIC-IDS2018. How-

ever, results for the feature selection techniques 2, 3, 4, 2A, 3A, or 4A do not show 

the same conclusion.

Only CatBoost and LightGBM have built-in support for categorical features. �ere-

fore, we deem it out of scope to address encoding techniques for the Destination_Port 

categorical feature in the 2018 dataset. As a result, we perform separate experiments 

to assess the impact of feature selection to further answer research question Q1. We 

conduct ANOVA to determine if the classifier and feature selection technique have an 

impact on the results for AUC and F1-score. Since p-values for the classifier and feature 

selection technique factors are nearly zero for the ANOVA tests, we conduct Tukey’s 

HSD tests to check the levels for factors that yield the best performance. Box plots of 

results, grouped by factors analyzed in ANOVA and HSD tests, are depicted in Figs. 5, 6, 

7 and 8.

In Figs. 5 and 7, we see the performance of LightGBM or CatBoost trained on fea-

ture group 1 is similar to the performance of LightGBM or CatBoost trained on all 

Fig. 4 Box plots of F1-score grouped by feature group/selection technique; here datasets do not include 

destination port; Tukey’s HSD test indicates all features A in group a, 1A in group b, 2A in group c, 3A in group 

c and 4A in group d
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features. Moving on to performance grouped by feature selection technique, we see 

in Figs.  6 and 8 that for models trained with feature group 1, the Tukey’s HSD test 

yields a mean AUC of approximately 0.95999. For models trained with all features, the 

Fig. 5 Box plots of AUC values grouped by classifier; here datasets include destination port; Tukey’s HSD test 

indicates each factor (classifier) is in its own group

Fig. 6 Box plots of AUC grouped by feature group/selection technique; here datasets include destination 

port; Tukey’s HSD test indicates feature selection techniques 1 and 2 are not significantly different, and other 

techniques are in groups of their own
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Tukey’s HSD test yields a mean AUC of 0.96640 (a difference of 0.00641). Likewise, 

the mean F1-scores for CatBoost and LightGBM are similar for models trained on 

feature group 1 and all features. In this case the Tukey’s HSD adjusted mean F1-score 

Fig. 7 Box plots of F1-score grouped by classifier; here datasets include destination port; Tukey’s HSD test 

indicates each factor (classifier) is in its own group

Fig. 8 Box plots of F1-score grouped by feature group/ selection technique; here datasets include 

destination port; Tukey’s HSD test indicates feature selection techniques 2 and 3 are not significantly different, 

other techniques are in groups by themselves
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is 0.94591 for models trained with data from feature group 1, and 0.95594 for models 

trained with all features (a difference of 0.0103).

Research Question Q1 Answer: Yes, our ensemble feature selection technique 

yields performance similar to, or better than, using all features. More specifically, the 

variant of our technique where 4 out of 7 classifiers agree on a feature is the crite-

rion for feature selection that yields performance similar to, or better than, using all 

features.

Research question Q2: Does including the Destination_Port categorical feature 

significantly impact performance of LightGBM and CatBoost in terms of AUC and 

F1-score?

To answer research question Q2, we use results of experiments where classifier: Cat-

Boost or LightGBM, is a factor, and the datasets’ having, or not having the Destination_

Port feature is another factor. We perform ANOVA tests on the results of experiments 

grouped by these factors. �e p-values associated with classifier and dataset factors for 

the ANOVA tests are both zero. �erefore, Tukey’s HSD tests are appropriate. We report 

the results of those tests in Figs. 9, 10, 11 and  12.

It is interesting to note that the ranges of values of both AUC and F1-score are smaller 

when we use a dataset that includes destination port. So, not only do the ANOVA and 

HSD tests confirm that including Destination_Port is a significant factor in the perfor-

mance of models for identifying attacks, but our results here also show greater stability 

in the values of results. �ese results enable us to answer our second research question.

Research question Q2 Answer: Yes, including the Destination_Port feature has a sig-

nificant impact on performance in terms of AUC and F1-score.

Research question Q3: Does the choice of classifier: RF, DT, NB, LR, CatBoost, Light-

GBM, or XGBoost, significantly impact performance in terms of AUC and F1-score?

Fig. 9 Box plots of AUC grouped by classifier; Tukey’s HSD test indicates classifiers are significantly different
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To answer the third research question, we note that all ANOVA tests we conduct 

show that classifier is a significant factor in experiments—the p-values associated 

with the classifier factor are 0. So, we perform Tukey’s HSD tests to determine how 

classifiers may be grouped in terms of their performance. �e groupings enable a 

Fig. 10 Box plots of AUC grouped by whether the dataset contains the Destination Port feature; Tukey’s HSD 

test indicates including Destination Port produces significantly different results

Fig. 11 Box plots of performance in terms of F1-score grouped by classifier; Tukey’s HSD test indicates 

classifiers are significantly different
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conclusion to be drawn on how the choice of classifier impacts the outcome of an 

experiment. We refer to groupings we report from conducting Tukey’s HSD tests in 

Figs. 1, 3, 5, 7, 9, and 11. Taking a closer look at Figures 1 and 3, we see that our HSD 

test results indicate that some classifiers do not have significantly different perfor-

mance. For example, in Fig. 1 we report that the classifier performance of LightGBM, 

RF, and XGBoost in terms of AUC is not significantly different. However, the same 

HSD test indicates seven classifiers fall into four distinct groups. In Figs. 5, 7, 9, and 

11, the Tukey’s HSD test results reported indicate the classifier is an important fac-

tor in the outcome of experiments, in terms of AUC or F1-Score. We also note that 

LightGBM is consistently in the group that the HSD test identifies with the best value 

of AUC or F1-Score in all cases.

Research question Q3 Answer: Yes, the choice of classifier significantly impacts 

performance.

Conclusion

�e results in Tables  19 through 24, as well as the results from Tukey’s HSD tests 

depicted in Figs. 1 through 11, and the answer to research question Q1 show that the 

feature selection technique that produces feature group 1A performs similar to or better 

than using all features. �ese results demonstrate that our ensemble feature selection 

technique should be used with classifiers to detect anomalies in CSE-CIC-IDS2018, since 

training a model with the reduced feature set consumes fewer computing resources.

We may also draw conclusions from the results of the ANOVA and Tukey’s HSD tests 

to answer research questions Q2 and Q3. Test results for research question Q2 indicate 

that Destination_Port is a useful feature for classifiers. Hence, we conclude one should 

encode it for use with a classifier, if the classifier does not handle categorical features 

automatically. Test results for research question Q3 reveal that LightGBM performs 

Fig. 12 Box plots of F1-score grouped by whether the dataset contains the Destination Port feature; Tukey’s 

HSD test indicates including Destination Port produces significantly different results
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similar to, or better than, any other classifier of CSE-CIC-IDS2018, even when we do not 

use Destination_Port as a feature for LightGBM.

Since our current study is limited to comparing CatBoost and LightGBM when we 

include Destination_Port as a categorical feature, we have an opportunity for future 

research to investigate whether another classifier might yield better performance in 

conjunction with a technique for encoding Destination_Port. �ere is also an opportu-

nity to evaluate classifier performance with other network intrusion detection datasets. 

Another subject we have not broached here that deserves attention deals with tech-

niques for addressing class imbalance, such as Random Undersampling (RUS) [61].
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