
Chapter 14

DETECTING DATA CONCEALMENT

PROGRAMS USING PASSIVE FILE
SYSTEM ANALYSIS

M. Davis, Ri .Kennedy, K. Pyles, A. Strickler and S. Shenoi

Abstract Individuals who wish to avoid leaving evidence on computers and net

works often use programs that conceal data from conventional digital

forensic tools. This paper discusses the application of passive file system

analysis techniques to detect trace evidence left by data concealment

programs. In addition, it describes the design and operation of Seraph,

a tool th at determines whether certain encryption, steganography and

erasing programs were used to hide or destroy data.

Keywords: Data concealment programs, trace evidence, program detection

1. Introduction

Encryption, steganography and erasing tools are increasingly used by

malicious individuals to hinder forensic investigations [14] . The 2005

indictment of former Newsday CEO Robert Johnson in U.S. District

Court [22, 23J exemplifies the importance of detecting the presence of

data concealment programs on seized media. Johnson was charged with

the receipt and possession of child pornography and obstruction of justice

for destroying digital evidence. According to the indictment, he erased

thousands of illegal pornographic images using Evidence Eliminator, an

erasing program that was found on his computer.

Current methods for detecting data concealment programs are re

source intensive and time consuming. In particular, they attempt to

discover hidden data without first verifying whether or not data is actu

ally concealed [5, 11, 16J. Forensic tools, e.g., FTK, employ known file

filters to alert forensic investigators to the presence of certain utilities

on a seized computer [16J . However, they do not provide information if

Please use thefollowingformat when citing this chapter:

Davis, M., Kennedy, R., Pyles,K., Strickler.A , Shenoi, S., 2006 in International Federation for Information Processing,

Volume 222, Advances in DigitalForensics II. eds. Glide r, M., Shenoi, S.. (Boston: Springer). pp. 171- 183.

172 ADVANCES IN DIGITAL FORENSICS II

a specific utility was installed, executed and subsequently uninstalled.

Obviously, such evidence could be very valuable in legal proceedings.

Forensic investigators need tools to identify the specific programs and

techniques used to hide or erase data on a seized computer. Having made

this determination, attempts can be made to recover the data by exploit

ing known vulnerabilities in the programs and their data concealment

techniques. This paper discusses the use of passive file system analysis

techniques to detect trace evidence left by encryption, steganography

and erasing programs. In addition, it describes the design and opera

tion of Seraph, a tool that assists forensic investigators in identifying the

programs used to hide or destroy data.

2. Data Concealment Programs

This section discusses data concealment involving the use of encryp

tion, steganography and erasing tools.

2.1 Encryption Tools

Encryption tools pose unique challenges for law enforcement [19].

Such tools are increasingly used to hide legal - and illegal - information

[3] . Some encryption programs, e.g., BestCrypt [21] and Cryptainer [6],

create a secure container or vault on an allocated area of a hard drive.

Files stored in this container are accessed via a key that is usually a
password known to the user.

Another approach is to encrypt each file individually. Tools such as

Folder Lock [17] and Kryptel [13] allow users to choose from a list of pop

ular encryption algorithms and enable them to hide the encrypted files

using advanced file manipulation techniques. Other software suites, e.g.,

Microsoft Office, provide application-level encryption, allowing users to

password-protect sensitive information using various techniques , e.g.,

RC4-based encryption.

AccessData's Password Recovery Toolkit (PRTK) is often used by law

enforcement agents to recover passwords and access evidence stored in

encrypted files [1, 14, 16]. PRTK employs three methods for recovering

passwords: algorithm attacks, key space attacks and dictionary attacks.

Files encrypted with application-based encryption are usually easy to

break with PRTK, but those using file system or vault encryption are

more difficult. Using PRTK is very time consuming. To address this

problem, AccessData has created a companion utility, Distributed Net

work Attack (DNA), that engages multiple computers on a network to

break encryption. However, smaller law enforcement agencies do not

have the network resources to use DNA effectively.

Davis, et al. 173

The process of breaking encryption may be expedited by first identi

fying the specific encryption program that was used. Software utilities

such as Find Protected [2] and Encrypted File Search [8] find files en

crypted with specific protocols and programs. However, these utilities

examine every file on a system to detect the presence of encrypted data;

this is a very time-consuming process. A better approach is to identify

the specific software tool used for encryption, and exploit its vulnerabil

ities to decrypt data.

2.2 Steganography Tools

Steganography is the process by which a message is hidden so that only

the sender and the intended recipient know of its existence. Steganog

raphy tools typically employ a graphic file (e.g., bitmap or jpeg file) as

a carrier for hidden data. A variety of algorithms and techniques can be

used to hide data within a carrier file without making noticeable changes

to the file [5, 24] .

Programs that implement steganography are widely available and are

increasingly used to conceal evidence of illegal activities. Several soft

ware tools are available for analyzing graphic files for the presence of

steganography [5, 11, 12, 25] . WetStone's Stego Suite [25], one of the

premier steganalysis tools, analyzes hard drives for evidence of known

steganography algorithms. However, Stego Suite (and other tools) an

alyze all the files on a suspect hard drive, which is a resource-intensive

operation.

2.3 Erasing Tools

Erasing tools are designed to destroy data, ideally rendering it un

readable by digital forensic tools . One popular erasing tool is Internet

Eraser Pro [9J, which eliminates all traces of Internet use; it deletes cook

ies, clears the history and wipes temporary Internet files. Such tools are

often used on shared computers, for example, to hide evidence of visits

to pornographic websites.

Erasing tools , e.g., Evidence Eliminator [18], may be used to wipe

selected files or entire drives. Indeed, it is difficult, if not impossible, to

recover evidence after such tools have been used.

Techniques employed by erasing tools vary widely [4]. Some utilities

overwrite the targeted files with random data and then delete them in

the usual fashion. Others write random data and then zero the disk

space. Still others zero the drive in multiple passes. Many tools only

make one or two passes when wiping a drive while others surpass even
the U.S. Department of Defense's erasing standard [7] . Since some tools

174 ADVANCES IN DIGITAL FORENSICS II

Figure 1. Program lifecycle.

employ weaker data destruction protocols than others, it is important

to know the program or at least the protocol used to erase data [4].

The discovery and identification of erasing tools used on a computer

can be extremely useful in criminal investigations. As in the Johnson

case [22, 23], the presence of an erasing tool could indicate that incrim

inating evidence was destroyed and possibly lead to an obstruction of

justice charge. Many erasing tools leave trace evidence of their activities

[4]. Therefore, it may be possible to determine if an erasing tool was

installed, and whether or not it was executed.

3. Program Lifecycle

The lifecycle of a software program follows a deterministic path (Fig

ure 1). Information obtained by analyzing the lifecycles of data con

cealment tools can be extremely useful in forensic investigations. This

is because the tools often leave trace evidence during various phases of

their lifecycles, e.g., when they are installed, executed or uninstalled.

For our purposes, a program's lifecycle begins when it is downloaded

from a network or a physical medium (Figure 1). Many programs include

installation packages that copy the files to the system and change registry

settings and configuration files. However, some programs must be copied

manually by the user. Both these situations cause a program to move

to the installed state.

After a program is installed, it may move to the executed state (i.e.,

when it is executed). However, a program can also be uninstalled with

out being executed.

After being executed, a program may be updated, in which case it

moves to the updated state. The updated state is similar to the installed

state, with the exception that the previous version of the program was

Davis, et ol. 175

executed. A program in the updated state may move to the executed

state or the uninstalled state.

A program moves to the uninstalled state when a utility is used to

remove it from the system. The lifecycle of a program ends when it

moves to the uninstalled state.

A program in the downloaded, installed, executed or updated states

may move to the deleted state. A program is in the deleted state when it

is manually removed from the system, whether or not an uninstallation

package exists.

Other scenarios are possible that might alter the program lifecycle.

For example, a corrupted program may require the reinstallation of a

new version of the program. Most of these scenarios can be treated as

the start of the lifecycle of a new program.

In general, the lifecycle of a program could halt in any of the aforemen

tioned states. The state of a program can be determined by examining

the evidence left on the system.

4. Potential Evidence

Practically every program generates information and leaves trace evi

dence during each stage of its lifecycle. Understanding the subtle changes

to a file system produced by a specific program (e.g., an erasing tool)

during its lifecycle and locating this trace evidence on a seized computer

can enable an investigator to determine that the program was installed,

executed or uninstalled on the computer.

Downloaded State: The primary source of evidence in this state is

the actual downloaded program. The downloaded program is typically

a compressed file (e.g., ZIP), or an executable installation package file.

Also, the downloading process itself may leave trace evidence in the In

ternet history and log files.

Installed State: After a program has entered the installed state, files

may be added to the hard drive. If the program was copied to a direc

tory from a compressed file or downloaded directly, the only evidence

is the program itself. If an installation package was used, evidence of

the installation often exists in the registry settings and entries in shared

configuration files [101 .

Executed State: Once a program has entered the executed state, sev

eral traces of its activity can be found. During its first execution the

program may ask the user for configuration information and create a file

176

11/06/2005 12:04 PM

11/01/2005 01:49 PM

11/01/2005 01:49 PM

10/28/2005 02:15 PM

11/02/2005 06:23 PM

11/03/2005 03:28 PM

11/03/2005 03:57 PM

ADVANCES IN DIGITAL FORENSICS II

95,028 VISIO.BXB-1F9B2047.pf

36,210 VPC32 .BXB-29593lrr.pf

21,570 VPD"-LU.BXB-1D1611C8.pf

30,922 WCBSMGR.BXB-2rB86B92.pf

53,510 WIHLOGON.BXB-32C57D49.pf

90,390 W I ~ B X B - 3 9 C 6 D A D 9 . p f

67,426 WIMlfORD.BXB-37r6AB09.pf

Figure 2. Windows XP Prefetch entries.

or add entries to the Windows registry. Some encryption programs cre
ate a container for the encrypted data. The presence of such a container

would indicate that an encryption program was executed. A program

could also create user files, e.g., Microsoft Word (.doc) files.

Another example is the Microsoft Windows XP Prefetch directory.

This directory, located at %Windir%\Prefetch, contains information

about executables and where they are stored on disk (Figure 2). The

Prefetch capability, which is turned on by default, enables Windows XP

to access files more efficiently. A program has an entry in the Prefetch

directory only after it has been executed [20].

Trace evidence added to a file system when a program enters the exe

cuted state helps determine that a program was actually executed. This

is more useful than knowing that the program was installed (and possi

bly never used).

Uninstalled State: A program in the uninstalled state has been re

moved from the system using an installation program or a separate util

ity. Little direct evidence remains as program files and associated folders

are removed from the disk. However, shared Windows configuration files,
e.g., win.ini and system.ini, as well as the Windows registry may still

contain traces of the program. Also, the Windows Prefetch entry is typ

ically retained.

Deleted State: Since the deleted state requires that the user manually

delete the program and associated files, it is likely that most, if not all,

the program files are removed. However, as with the uninstalled state,

it is possible to find traces of the program in shared configuration files,

registry entries and the Windows Prefetch directory. Users who manu

ally delete files also tend to miss shared files, e.g., dynamic link libraries
(DLLs) in the YoWindirY.\System directory.

Updated State: Evidence retained in the updated state is similar to

that left in the installed and executed states. If a drive is seized when a

program is in the updated state, evidence that the program was executed

Davis, et at.

Clean OS Install

Used OS Install

Installed Executed Unlnstalled

177

Figure 3. Fingerprint generation system.

prior to update should exist . However, this evidence is not from the

execution of the current version of the program. When a program is

updated, a completely new version may be installed in other folders in

the file system; this is treated as a separate program. If the program

itself or its data are updated, the behavior of the program is affected,

and new evidence may be left in the executed state.

5. Generating Program Fingerprints

A laboratory configuration for generating program fingerprints during

the various stages of its lifecycle is presented in Figure 3. One computer

was configured with a base install of Windows XP without any other

software packages. This computer was imaged and the image copied to

other identical computers to create a baseline configuration for analy

sis. Several encryption, steganography and erasing programs were down

loaded and burned on a single CD-ROM. Each program was analyzed

independently.

After installing a program on one of the test machines , the machine

was immediately switched off. This was done to limit file system activity

performed by Windows upon shutdown. The hard drive was moved

from the machine and connected to an analysis machine via a hardware

write blocker. The drive was processed and cataloged using customized

software. After this process was completed, the drive was replaced in

the test machine and the program was executed, following which the

drive was removed and re-analyzed. The drive was again returned to

the test machine and the program uninstalled, upon which the drive

was removed and analyzed one last time .

This procedure created the base set of data pertaining to the program

during various stages in its lifecycle. Note that the updated and deleted

178 ADVANCES IN DIGITAL FORENSICS II

NISTNSRL

~

1
---+

SQL Human
---+ProceuJng Scubblng Program

Program Data
Fingerprint

i
.......

osData

Figure 4. Generating program fingerprints.

states were not analyzed because programs typically generate little new

evidence during these stages of their lifecycles.

Next, the test machines were re-imaged with the original base image

and placed in a shared laboratory for general use for a period of two

weeks. This allowed the base image to gather user and operating system

changes that were used to reduce the program lifecycle data set . After

the two-week period, the hard drives were removed from the machines

and analyzed as before.

The images from the computers in the shared laboratory provided a
large data set for programs in various stages of their lifecycles. These

images were processed using a fingerprint generation engine to remove

erroneous and redundant data, and to create fingerprints for each pro

gram during its lifecycle stages (Figure 4). The NIST National Software

Reference Library [15], the clean base image, and the used base images

were all used to process the data and create fingerprints. Each fingerprint

was manually verified before producing the final program fingerprint .

Upon analyzing the program fingerprints, it was determined that

many of the encryption, steganography and erasing programs shared

files (e.g., DLLs and installation package files) . This created a significant

challenge to matching program fingerprints accurately. For example, in

the uninstalled state, a program typically leaves a copy of the uninstall

tool, which is shared by other programs. However, it was possible to de

termine which programs were present on the system using information

such as full paths and registry settings.

Davis, et ol. 179

Progl'8m SlIItlI Matched Entrle. Fingerprint Entrle. Confidence C8tl1gory

Complete Cleanup Installed 39 42 92.86% ERASING

Complete Cleanup Run 43 46 93.48% ERASING

Eraser Installed 41 48 85.42% ERASING

Eraser Run 40 49 81.63% ERASING

TrackEraser Installed 53 55 96.36% ERASING

TrackEraser Run 53 56 94.64% ERASING

Figure 5. Results of Seraph fingerprint matching.

6. Seraph Program Detection Tool

A software tool named Seraph was created to assist forensic inves

tigators in cataloging hard drives and detecting programs of interest

based on their fingerprints. Seraph helps determine if any of the finger

printed programs are/were present on the catalogued drive . Program

fingerprints may be matched by filename, full path or MD5 hash of the

file. Each of these options produces slightly different results. Filename

matching produces a significant number of false positives. For example,

many programs include a file named readme. txt. The number of false

positives is reduced greatly when the full path information of files is con

sidered, especially when the programs are installed in default directories.

Matching MD5 hash values can be effective, but it can actually reduce

the number of features that a program will match against its fingerprint.

This is because different versions of the same program (due to changes to

executables and associated files) yield different MD5 hash values . How

ever, programs typically use the same default installation folder and file

names, allowing filename and full path matching techniques to identify

different versions of a program.

Seraph allows investigators to set a "confidence level" threshold for

fingerprint matching. Many of the fingerprinted programs share DLLs

or have files with identical names (e.g., readme. txt). By setting the

threshold, an investigator can adjust the number of features used for

fingerprint matching. When searching for uninstalled or deleted pro

grams, a lower threshold should be used as many of the files associated

with the programs have been removed. Since this can produce many

false positives, the investigator must examine the results very carefully.

Once all the options have been selected, the investigator can use

Seraph's "detect" function to match programs on the image with the

stored fingerprints (Figure 5). Within seconds, Seraph displays a list of

matched fingerprints at the specified confidence level. The investigator

can then examine the details of the fingerprint matches or create a text

report (Figure 6).

180

Seraph Report

Created on: 11-06-2005

ADVANCES IN DIGITAL FORENSICS II

Image Detail.

Image Nama: Te.t Image 3

Image Taken By : Amanda Strickler

Image Date: 9i26/2005 at 12:57:58

Option.

I'ilenama : Ye.

I'ullpath : Ye.

Sa.h: No

Con~idence Level : 30'

Program: Complete Cleanup

State: In.talled

Matched Entrie.: 39

Fingerprint Bntrie.: 42

Con~idence: 92 .86'

Category: BRAsING

I'ullpath: \Document. and Setting.\All O.er.\Start Nenu\Program.\

Compl.t. Cleanup Trial\Complete Cleanup Trial.lnk

Filename: Complete Cleanup Trial .lnk

Fingerprint File Size: 700

Fingerprint N05 Bash: . 8 9 8 d b b 3 2 d 5 c 7 . 7 9 l 4 5 ~ l b 4 a 1 7 3 2 l 2 7 3

Image S1z.: 700

Image Ba.h : .6~ca3~2~5a8476e188bbbc4629dda7

FUllpath : \Document. and Setting.\O.er\Desktop\Complete Cleanup

Trial.lnk

Filename: Complete Cleanup Trial .lnk

Fingerprint File Size: 688

Fingerprint N05 Ba.h: 2 8 b e 7 4 c l l e 7 6 5 b 9 6 7 d 5 6 6 l d c 7 8 ~ 4 l l 3 4

Image Size: 688

Image. Bash : 37d19c4380l9dbea9bde43e9bbc4b5c3

1064

7 ~ a 6 ~ 5 8 a 7 3 5 d b 4 6 d 2 l 5 c 6 8 3 b ~ c 4 b 2 6 2 d

1064

7 ~ a 6 ~ 5 8 a 7 3 5 d b 4 6 d 2 l 5 c 6 8 3 b ~ c 4 b 2 6 2 d

Fullpath : \Program l'il.s\Complete

I'ilenama : activex_t.htm

Fingerprint File Siz. :

Fingerprint N05 Bash :

:1:-'1. 81•• :

Image Bash :

Cleanup Trial\activex_t .htm

Figure 6. Seraph report.

Davis, et al.

7. Results and Discussion

181

Seraph provides an investigator with results based on program name,

state and confidence level threshold. In the example output in Figure

5, it is possible to conclude that the program Complete Cleanup may

have been executed on the system. Since the fingerprint catalog for the

executed state contains more entries than the installed state, it can be

ascertained that some files are added during program execution. Fur

thermore, the investigated drive exhibits additional matches with the

executed fingerprint. Seraph offers a "detailed analysis" option that dis

plays all matched features. This can be used to determine if a Windows

Prefetch entry or certain configuration files were added to the system,

indicating that the program had entered the executed state.

Seraph was blind tested for accuracy. Three test hard drives were

loaded with several data concealment programs at various stages of their

lifecycles. The test drives were then imaged by Seraph. Using the default

settings to search for filenames and full paths with a confidence threshold

of 30%, Seraph correctly detected 7 out of 7 random test programs in

the installed and executed states.

Upon decreasing the confidence threshold to 15%, Seraph correctly

detected 3 of 3 programs in the uninstalled state. However, Seraph did

return 8 false positives at the lower confidence level. Nevertheless, using

Seraph's "detailed analysis" option, it was possible to determine which

matches were false positives. Figure 5 shows the relevant portion of a

Seraph report that can aid in the analysis of these results .

Seraph is being tested by detectives from the Tulsa Police Depart

ment 's Cyber Crimes Unit and agents from the Oklahoma State Bureau

of Investigation. Currently, Seraph is able to detect data concealment

programs based on the existence of files. But Seraph's fingerprint entries

also contain information about changes to shared configuration files and

registry settings; the next version of Seraph will use this information to

improve the accuracy of program detection. Furthermore, the new ver

sion will incorporate several automated features to reduce the amount

of manual analysis performed by forensic investigators.

8. Conclusions

Trace evidence left by data concealment programs during various

stages of their lifecycles can be analyzed to provide valuable informa

tion, including the names and versions of the programs, and whether

they were installed, executed or uninstalled. Having established the

presence of a specific data concealment program on a seized computer,
an investigator can attempt to exploit known vulnerabilities in the pro-

182 ADVANCES IN DIGITAL FORENSICS II

gram to recover concealed or erased data. The Seraph program detection

tool uses passive file system analysis to obtain information pertaining to

the use of encryption, steganography and erasing programs. The current

version has performed reasonably well in tests and in real investigations

by two law enforcement agencies. However, more research and develop

ment efforts are needed to expand the coverage of the program detection

tool and improve its accuracy.

References

[1] Access Data, Password Recovery Toolkit (PRTK) (www.accessdata

.com/products/prtk).

[2] AKS-Labs, Find password protected files (www.aks-labs.com/solu

tions/find-password-protected.htm).

[3] C. Brown, Detecting and collecting whole disk encryption media,

presented at the Department of Defense Cyber Crime Conference,

Palm Harbor, Florida, 2006.

[4] P. Burke and P. Craiger, Assessing trace evidence left by secure

deletion programs, in Advances in Digital Forensics II, M. Olivier

and S. Shenoi (Eds .), Springer, New York, pp. 185-195, 2006.

[5] K. Curran and K. Bailey, An evaluation of image-based steganog

raphy methods, International Journal of Digital Evidence vol. 2(2),

2003.

[6] Cypherix, Cryptainer LE (www.cypherix.com/cryptainerle) .

[7] Defense Security Service, National Industrial Security Program Op

erating Manual (NISPOM), DoD 5220.22-M, U.S. Department of

Defense (www.dss.mil/isec/nispom_0195.pdf). 1995.

[8] Free Downloads Center, Encrypted Files Search 1.2 (www.freedown

loadscenter.com/Utilities/Misc.Encryptlon.Utilities/Encrypted.Fi

les.Search.html).

[9] Giant Internet, Internet Eraser Pro (www.interneteraser.net).

[10] InstallShield, Creating registry keys (helpnet.installshield.com/robo

/projects/helplibdevstudi09/IHelpRegistryKeys.htm).

[11] J . Jackson, G. Gunsch, G. Lamont and R. Claypoole, Blind stega

nography detection using a computational immune system: A work

in progress, International Journal of Digital Evidence, vol. 1(4),

2003.

[12] G. Kessler, An overview of steganography for the computer forensics

examiner, Forensic Science Communications, vol. 6(3), 2004.

Davis, et al. 183

[13] Kryptel, Kryptel Encryption Suite (www.kryptel.com/products/

kryptel) .

[14] K. Mandia, C. Prosise and M. Pepe, Incident Response and

Computer Forensics, McGraw-Hill/Osborne, Emeryville, Califor

nia, 2003.

[15] National Institute of Standards and Technology (NIST), National

Software Reference Library (NSRL), Information Technology Lab

oratory, National Institute of Standards and Technology, Gaithers

burg, Maryland (www.nsrl.nist.gov).

[16] B. Nelson, A. Phillips, F . Enfinger and C. Steuart, Guide to Com

puter Forensics and Investigations, Thompson Course Technology,

Boston, Massachusetts, 2004.

[17] NewSoftwares.net, Folder Lock (www.newsoftwares.net/folderlock).

[18J Robin Hood Software, Evidence Eliminator (www.evidence-elimin

ator.com/product.dzw).

[19] J . Seigfried, C. Siedsma, B. Countryman and C. Hosmer, Examining

the encryption threat, International Journal of Digital Evidence,

vol. 2(3), 2004.

[20] J. Sheesley, Use XP's Prefetch feature to improve system perfor

mance, TechRepublic (techrepublic.com.com/5100-1035_11-51657

73.html?tag=e064#), 2004.

[21] Softpedia, Bestcrypt 7.20.2 (www.softpedia.com/get/Security/Encr

ypting/BestCrypt.shtml), 2005.

[22] U.S. District Court (Southern District of New York), United States

of America v. Robert Johnson (files.findlaw.com/news.findlaw.com

/hdocs/docs/chldprn/usjhnsn62805ind.pdf), June 28, 2005.

[23] U.S. Immigration and Customs Enforcement, U.S. charges ex

CEO with using the Internet for child pornography and with ob

struction of justice (www.ice.gov/graphics/news/newsreleases/arti
cIes/050628newyork.htm), June 28, 2005.

[24] P. Wayner, Disappearing Cryptography: Information Hiding, Ste

ganography and Watermarking, Morgan Kauffman, San Francisco,

California, 2002.

[25] WetStone Technologies, Stego Suite (www.wetstonetech.com).

	Chapter 14 DETECTING DATA CONCEALMENT PROGRAMS USING PASSIVE FILE SYSTEM ANALYSIS
	1. Introduction
	2. Data Concealment Programs
	2.1 Encryption Tools
	2.2 Steganography Tools
	2.3 Erasing Tools

	3. Program Lifecycle
	4. Potential Evidence
	5. Generating Program Fingerprints
	6. Seraph Program Detection Tool
	7. Results and Discussion
	8. Conclusions
	References

