
Detecting Data Races in Cilk Programs that Use Locks

Guang-Ien Cheng� Mingdong Feng† Charles E. Leiserson� Keith H. Randall� Andrew F. Stark�Abstract
When two parallel threads holding no locks in common access the
same memory location and at least one of the threads modifies the
location, a “data race” occurs, which is usually a bug. This paper
describes the algorithms and strategies used by a debuggingtool,
called the Nondeterminator-2, which checks for data races in pro-
grams coded in the Cilk multithreaded language. Like its predeces-
sor, the Nondeterminator, which checks for simple “determinacy”
races, the Nondeterminator-2 is a debugging tool, not a verifier,
since it checks for data races only in the computation generated
by a serial execution of the program on a given input.

We give an algorithm, ALL -SETS, that determines whether the
computation generated by a serial execution of a Cilk program on a
given input contains a race. For a program that runs seriallyin time
T, accessesV shared memory locations, uses a total ofn locks,
and holds at mostk� n locks simultaneously, ALL -SETS runs in
O(nkT α(V;V)) time andO(nkV) space, whereα is Tarjan’s func-
tional inverse of Ackermann’s function.

Since ALL -SETS may be too inefficient in the worst case, we
propose a much more efficient algorithm which can be used to de-
tect races in programs that obey the “umbrella” locking discipline, a
programming methodology that is more flexible than similar disci-
plines proposed in the literature. We present an algorithm,BRELLY,
which detects violations of the umbrella discipline inO(kT α(V;V))
time usingO(kV) space.

We also prove that any “abelian” Cilk program, one whose crit-
ical sections commute, produces a determinate final state ifit is
deadlock free and if it generates any computation which is data-
race free. Thus, the Nondeterminator-2’s two algorithms can verify
the determinacy of a deadlock-free abelian program runningon a
given input.Keywords
Algorithm, Cilk, data race, debugging, multithreading, parallel pro-
gramming, race detection.�MIT Laboratory for Computer Science, 545 Technology Square, Cambridge,
Massachusetts 02139, USA.

†Department of Information Systems and Computer Science, National University
of Singapore, 10 Lower Kent Ridge Road, Republic of Singapore 119260.

This research was supported in part by the Defense Advanced Research Projects
Agency (DARPA) under Grants N00014-94-1-0985 and F30602-97-1-0270.

To appear inProceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), Puerto Val-
larta, June 1998.

int x; cilk void foo3() {Cilk_lockvar A, B; Cilk_lock(&B);x++;cilk void foo1() { Cilk_unlock(&B);Cilk_lock(&A); }Cilk_lock(&B);x += 5; cilk int main() {Cilk_unlock(&B); Cilk_lock_init(&A);Cilk_unlock(&A); Cilk_lock_init(&B);} x = 0;spawn foo1();cilk void foo2() { spawn foo2();Cilk_lock(&A); spawn foo3();x -= 3; sync;Cilk_unlock(&A); printf("%d", x);} }
Figure 1: A Cilk program with a data race. Cilk [3, 4, 6, 15, 20] is a
multithreaded parallel language based on C being developedat the MIT
Laboratory for Computer Science. Thespawn statement in a Cilk program
creates a parallel subprocedure, and thesync statement provides control
synchronization to ensure that all spawned subprocedures have completed.
The functionCilk lock() acquires a specified lock, andCilk unlock()
releases a currently held lock.1 Introduction
In a parallel multithreaded computation, adata race exists if logi-
cally parallel threads access the same location, the two threads hold
no locks in common, and at least one of the threads writes to the lo-
cation. A data race is usually a bug, because depending on howthe
threads are scheduled, the program may exhibit unexpected,non-
deterministic behavior. If the two threads hold a lock in common,
however, the nondeterminism is not usually a bug. By introducing
locks, the programmer presumably intends to allow the locked crit-
ical sections to be scheduled in either order, as long as theyare not
interleaved.

Figure 1 illustrates a data race in a Cilk program. The proceduresfoo1, foo2, andfoo3 run in parallel, resulting in parallel accesses
to the shared variablex. The accesses byfoo1 andfoo2 are pro-
tected by lockA and hence do not form a data race. Likewise, the
accesses byfoo1 andfoo3 are protected by lockB. The accesses
by foo2 andfoo3 are not protected by a common lock, however,
and therefore form a data race. If all accesses had been protected
by the same lock, only the value 3 would be printed, no matter how
the computation is scheduled. Because of the data race, however,
the value ofx printed bymain might be 2, 3, or 6, depending on
scheduling, since the statements infoo2 andfoo3 are composed
of multiple machine instructions which may interleave, possibly re-
sulting in a lost update tox.

Since a data race is usually a bug, automatic data-race detection
has been studied extensively. Static race detectors [25] can some-
times determine whether a program will ever produce a data race
when run on all possible inputs. Since static debuggers cannot fully
understand the semantics of programs, however, most race detectors1



are dynamic tools in which potential races are detected at runtime
by executing the program on a given input. Some dynamic race
detectors perform a post-mortem analysis based on program exe-
cution traces [12, 18, 23, 26], while others perform an “on-the-fly”
analysis during program execution. On-the-fly debuggers directly
instrument memory accesses via the compiler [9, 10, 13, 14, 22, 29],
by binary rewriting [32], or by augmenting the machine’s cache co-
herence protocol [24, 30].

The race-detection algorithms in this paper are based on theNon-
determinator [13], which finds “determinacy races” in Cilk pro-
grams that do not use locks. The Nondeterminator executes a Cilk
program serially on a given input, maintaining an efficient “SP-
bags” data structure to keep track of the logical series/parallel rela-
tionships between threads. For a Cilk program that runs serially
in time T and accessesV shared-memory locations, the Nonde-
terminator runs inO(T α(V;V)) time andO(V) space, whereα is
Tarjan’s functional inverse of Ackermann’s function, which for all
practical purposes is at most 4.

The Nondeterminator-2, which is currently under development,
finds data races in Cilk programs that use locks. This race detector
contains two algorithms, both of which use the same efficientSP-
bags data structure from the original Nondeterminator. Thefirst
of these algorithms, ALL -SETS, is an on-the-fly algorithm which,
like most other race-detection algorithms, assumes that nolocks are
held across parallel control statements, such asspawn andsync.
The second algorithm, BRELLY, is a faster on-the-fly algorithm,
but in addition to reporting data races as bugs, it also reports as
bugs some complex (but race-free) locking protocols.

The ALL -SETS algorithm executes a Cilk program serially on
a given input and either detects a data race in the computation or
guarantees that none exist. For a Cilk program that runs serially in
timeT, accessesV shared-memory locations, uses a total ofn locks,
and holds at mostk� n locks simultaneously, ALL -SETS runs in
O(nkT α(V;V)) time andO(nkV) space. Tighter, more complicated
bounds on ALL -SETSwill be given in Section 2.

In previous work, Dinning and Schonberg’s “lock-covers” algo-
rithm [10] also detects all data races in a computation. The ALL -
SETSalgorithm improves the lock-covers algorithm by generalizing
the data structures and techniques from the original Nondetermina-
tor to produce better time and space bounds. Perkovic and Keleher
[30] offer an on-the-fly race-detection algorithm that “piggybacks”
on a cache-coherence protocol for lazy release consistency. Their
approach is fast (about twice the serial work, and the tool runs in
parallel), but it only catches races that actually occur during a paral-
lel execution, not those that are logically present in the computation.

Although the asymptotic performance bounds of ALL -SETSare
the best to date, they are a factor ofnk larger in the worst case than
those for the original Nondeterminator. The BRELLY algorithm is
asymptotically faster than ALL -SETS, and its performance bounds
are only a factor ofk larger than those for the original Nondeter-
minator. For a Cilk program that runs serially in timeT, accesses
V shared-memory locations, and holds at mostk locks simultane-
ously, the serial BRELLY algorithm runs inO(kT α(V;V)) time and
O(kV) space. Since most programs do not hold many locks simul-
taneously, this algorithm runs in nearly linear time and space. The
improved performance bounds come at a cost, however. Ratherthan
detecting data races directly, BRELLY only detects violations of a
“locking discipline” that precludes data races.

A locking discipline is a programming methodology that dic-
tates a restriction on the use of locks. For example, many programs
adopt the discipline of acquiring locks in a fixed order so as to avoid
deadlock [19]. Similarly, the “umbrella” locking discipline pre-
cludes data races. It requires that each location be protected by the
same lock within every parallel subcomputation of the computation.
Threads that are in series may use different locks for the same lo-
cation (or possibly even none, if no parallel accesses occur), but if
two threads in series are both in parallel with a third and allaccess
the same location, then all three threads must agree on a single lock
for that location. If a program obeys the umbrella discipline, a data
race cannot occur, because parallel accesses are always protected
by the same lock. The BRELLY algorithm detects violations of the
umbrella locking discipline.

Savage et al. [32] originally suggested that efficient debugging
tools can be developed by requiring programs to obey a locking
discipline. Their Eraser tool enforces a simple disciplinein which
any shared variable is protected by a single lock throughoutthe
course of the program execution. Whenever a thread accessesa
shared variable, it must acquire the designated lock. This discipline
precludes data races from occurring, and Eraser finds violations of
the discipline inO(kT) time andO(kV) space. (These bounds are
for the serial work; Eraser actually runs in parallel.) Eraser only
works in a parallel environment containing several linear threads,
however, with no nested parallelism or thread joining as is permit-
ted in Cilk. In addition, since Eraser does not understand the se-
ries/parallel relationship of threads, it does not fully understand at
what times a variable is actually shared. Specifically, it heuristically
guesses when the “initialization phase” of a variable ends and the
“sharing phase” begins, and thus it may miss some data races.

In comparison, our BRELLY algorithm performs nearly as effi-
ciently, is guaranteed to find all violations, and importantly, sup-
ports a more flexible discipline. In particular, the umbrella disci-
pline allows separate program modules to be composed in series
without agreement on a global lock for each location. For exam-
ple, an application may have three phases—an initializationphase,
a work phase, and a clean-up phase—which can be developed inde-
pendently without agreeing globally on the locks used to protect lo-
cations. If a fourth module runs in parallel with all of thesephases
and accesses the same memory locations, however, the umbrella
discipline does require that all phases agree on the lock foreach
shared location. Thus, although the umbrella discipline ismore
flexible than Eraser’s discipline, it is more restrictive than what a
general data-race detection algorithm, such as ALL -SETS, permits.

Most dynamic race detectors, like ALL -SETS and BRELLY, at-
tempt to find, in the terminology of Netzer and Miller [28],ap-
parent data races—those that appear to occur in a computation ac-
cording to the parallel control constructs—rather thanfeasible data
races—those that can actually occur during program execution. The
distinction arises, because operations in critical sections may affect
program control depending on the way threads are scheduled.Thus,
an apparent data race between two threads in a given computation
may not actually be feasible, because the computation itself may
change if the threads were scheduled in a different order. Since
the problem of exactly finding feasible data races is computation-
ally difficult,1 attention has naturally focused on the easier (but still
difficult) problem of finding apparent data races.

1Even in simple models, finding feasible data races is NP-hard[27].2



For some classes of programs, however, a feasible data race on
a given input exists if and only if an apparent data race exists in
every computation for that input. To check for a feasible data race
in such a program, it suffices to check a single computation for
an apparent data race. One class of programs having this prop-
erty are “abelian” programs in which critical sections protected by
the same lock “commute”: intuitively, they produce the sameef-
fect regardless of scheduling. For a computation generatedby a
deadlock-free abelian program running on a given input, we prove
that if no data races exist in that computation, then the program is
determinate: all schedulings produce the same final result. For
abelian programs, therefore, ALL -SETS and BRELLY can verify
the determinacy of the program on a given input. Our results on
abelian programs formalize and generalize the claims of Dinning
and Schonberg [10, 11], who argue that for “internally determinis-
tic” programs, checking a single computation suffices to detect all
races in the program.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the ALL -SETSalgorithm, and Section 3 presents the
BRELLY algorithm. Section 4 gives some empirical results obtained
by using the Nondeterminator-2 in its ALL -SETS and BRELLY

modes. Section 5 defines the notion of abelian programs and proves
that data-race free abelian programs produce determinate results.
Section 6 offers some concluding remarks.2 The All-Sets Algorithm
In this section, we present the ALL -SETSalgorithm, which detects
data races in Cilk computations that use locks. We first give some
background on Cilk and the series-parallel control structure of its
computations. We then discuss locking in Cilk. Finally, we present
the ALL -SETSalgorithm itself, show that it is correct, and analyze
its performance.

The computation of a Cilk program on a given input can be
viewed as a directed acyclic graph, ordag, in which vertices are
instructions and edges denote ordering constraints imposed by con-
trol statements. A Cilkspawn statement generates a vertex with
out-degree 2, and a Cilksync statement generates a vertex whose
in-degree is 1 plus the number of subprocedures syncing at that
point. Normal execution of serial code results in a linear chain of
vertices, which we call athread. A thread cannot contain parallel
control statements.

The computation dag generated by a Cilk program can itself be
represented as a binaryseries-parallel parse tree, as illustrated in
Figure 2 for the program in Figure 1. In the parse tree of a Cilk
computation, leaf nodes represent threads. Each internal node is
either anS-node if the computation represented by its left subtree
logically precedes the computation represented by its right subtree,
or aP-node if its two subtrees’ computations are logically in paral-
lel. (We use the term “logically” to mean with respect to the series-
parallel control, not with respect to any additional synchronization
through shared variables.)

A parse tree allows the series/parallel relation between two
threadse1 ande2 to be determined by examining their least com-
mon ancestor, which we denote byLCA(e1;e2). If LCA(e1;e2) is a
P-node, the two threads are logically in parallel, which we denote
by e1 k e2. If LCA(e1;e2) is an S-node, the two threads are logically
in series, which we denote bye1 � e2, assuming thate1 precedes

S

P

{ A,B}

S

P
x=0
{}

printf("%d",x)
{}

x+=5
{ A}
x-=3

{ B}
x++

Figure 2: The series-parallel parse tree for the Cilk program in Figure 1,
abbreviated to show only the accesses to shared locationx. Each leaf is
labeled with a code fragment that accessesx, with the lock set for that access
shown above the code fragment.

e2 in a left-to-right depth-first treewalk of the parse tree. The series
relation� is transitive.

Release 5.1 of Cilk [6] provides the user with mutual-exclusion
locks, including the commandCilk lock() to acquire a specified
lock andCilk unlock() to release a currently held lock. Any
number of locks may be held simultaneously. For a given lockA,
the sequence of instructions from aCilk lock(&A) to its corre-
spondingCilk unlock(&A) is called acritical section, and we
say that all accesses in the critical section areprotected by lock A.
We assume in this paper, as does the general literature, thatany
lock/unlock pair is contained in a single thread, and thus holding a
lock across a parallel control construct is forbidden.2 The lock set
of an access is the set of locks held by the thread when the access
occurs. Thelock set of several accesses is the intersection of their
respective lock sets.

If the lock set of two parallel accesses to the same location is
empty, and at least one of the accesses is aWRITE, then a data
race exists. To simplify the description and analysis of therace
detection algorithm, we shall use a small trick to avoid the extra
condition for a race that “at least one of the accesses is aWRITE.”
The idea is to introduce afake lock for read accesses called the
R-LOCK, which is implicitly acquired immediately before aREAD

and released immediately afterwards. The fake lock behavesfrom
the race detector’s point of view just like a normal lock, butduring
an actual computation, it is never actually acquired and released
(since it does not actually exist). The use ofR-LOCK simplifies the
description and analysis of ALL -SETS, because it allows us to state
the condition for a data race more succinctly:if the lock set of two
parallel accesses to the same location is empty, then a data race
exists.By this condition, a data race (correctly) does not exist for
two read accesses, since their lock set contains theR-LOCK.

The ALL -SETSalgorithm is based on the efficient SP-BAGS al-
gorithm used by the original Nondeterminator to detect determinacy
races in Cilk programs that do not use locks. The SP-BAGS algo-
rithm executes a Cilk program on a given input in serial, depth-first
order. This execution order mirrors that of normal C programs: ev-
ery subcomputation that is spawned executes completely before the
procedure that spawned it continues. While executing the program,
SP-BAGS maintains an SP-bags data structure based on Tarjan’s
nearly linear-time least-common-ancestors algorithm [33]. The SP-

2The Nondeterminator-2 can still be used with programs for which this assumption
does not hold, but the race detector prints a warning, and some races may be missed.
We are developing extensions of the Nondeterminator-2’s detection algorithms that
work properly for programs that hold locks across parallel control constructs.3



ACCESS(l) in threadewith lock setH

1 for eachhe0;H 0i 2 lockers[l ]
2 do if e0 k eandH 0\H = fg
3 then declare a data race

4 redundant FALSE

5 for eachhe0;H 0i 2 lockers[l ]
6 do if e0 � eandH 0 �H

7 then lockers[l ] lockers[l ]�fhe0;H 0ig
8 if e0 k eandH 0 � H

9 then redundant TRUE

10 if redundant= FALSE

11 then lockers[l ] lockers[l ][fhe;Hig
Figure 3: The ALL -SETSalgorithm. The operations for thespawn, sync,
andreturn actions are unchanged from the SP-BAGS algorithm on which
ALL -SETS is based. Additionally, theCilk lock() andCilk unlock()
functions must be instrumented to add and remove locks from the lock set
H appropriately.

bags data structure allows SP-BAGS to determine the series/parallel
relation between the currently executing thread and any previously
executed thread inO(α(V;V)) amortized time, whereV is the size
of shared memory. In addition, SP-BAGS maintains a “shadow
space” where information about previous accesses to each location
is kept. This information is used to determine previous threads that
have accessed the same location as the current thread. For a Cilk
program that runs inT time serially and referencesV shared mem-
ory locations, the SP-BAGS algorithm runs inO(T α(V;V)) time
and usesO(V) space.

The ALL -SETS algorithm also uses the SP-bags data structure
to determine the series/parallel relationship between threads. Its
shadow spacelockers is more complex than the shadow space of
SP-BAGS, however, because it keeps track of which locks were
held by previous accesses to the various locations. The entry
lockers[l ] stores a list oflockers: threads that access locationl ,
each paired with the lock set that was held during the access.Ifhe;Hi 2 lockers[l ], then locationl is accessed by threade while it
holds the lock setH.

As an example of what the shadow spacelockersmay contain,
consider a threade that performs the following:Cilk lock(&A); Cilk lock(&B);

READ(l)Cilk unlock(&B); Cilk unlock(&A);Cilk lock(&B); Cilk lock(&C);
WRITE(l)Cilk unlock(&C); Cilk unlock(&B);

For this example, the listlockers[l ] contains two lockers—he;fA;B;R-LOCKgi andhe;fB;Cgi.
The ALL -SETSalgorithm is shown in Figure 3. Intuitively, this

algorithm records all lockers, but it is careful to prune redundant
lockers, keeping at most one locker per distinct lock set. Lines 1–3
check to see if a data race has occurred and report any violations.
Lines 5–11 then add the current locker to thelockersshadow space
and prune redundant lockers.

Before proving the correctness of ALL -SETS, we restate two im-
portant lemmas from [13].Lemma 1 Suppose that three threads e1, e2, and e3 execute in or-
der in a serial, depth-first execution of a Cilk program, and suppose
that e1 � e2 and e1 k e3. Then, we have e2 k e3.Lemma 2 (Pseudotransitivity of k) Suppose that three threads
e1, e2, and e3 execute in order in a serial, depth-first execution of a
Cilk program, and suppose that e1 k e2 and e2 k e3. Then, we have
e1 k e3.

We now prove that the ALL -SETSalgorithm is correct.Theorem 3 The ALL -SETS algorithm detects a data race in a
computation of a Cilk program running on a given input if and only
if a data race exists in the computation.

Proof: ()) To prove that any race reported by the ALL -SETSal-
gorithm really exists in the computation, observe that every locker
added tolockers[l ] in line 11 consists of a thread and the lock set
held by that thread when it accessesl . The algorithm declares a
race when it detects in line 2 that the lock set of two parallelac-
cesses (by the current threade and one fromlockers[l ]) is empty,
which is exactly the condition required for a data race.

(() Assuming a data race exists in a computation, we shall show
that a data race is reported. If a data race exists, then we canchoose
two threadse1 ande2 such thate1 is the last thread beforee2 in the
serial execution which has a data race withe2. If we let H1 andH2
be the lock sets held bye1 ande2, respectively, then we havee1 k e2
andH1\H2 = fg.

We first show that immediately aftere1 executes,lockers[l ] con-
tains some threade3 that races withe2. If he1;H1i is added to
lockers[l ] in line 11, thene1 is such ane3. Otherwise, theredundant
flag must have been set in line 9, so there must exist a lockerhe3;H3i 2 lockers[l ] with e3 k e1 andH3 � H1. Thus, by pseudo-
transitivity (Lemma 2), we havee3 k e2. Moreover, sinceH3 � H1
andH1\H2 = fg, we haveH3\H2 = fg, and thereforee3, which
belongs tolockers[l ], races withe2.

To complete the proof, we now show that the lockerhe3;H3i is
not removed fromlockers[l ] between the times thate1 ande2 are ex-
ecuted. Suppose to the contrary thathe4;H4i is a locker that causeshe3;H3i to be removed fromlockers[l ] in line 7. Then, we must have
e3� e4 andH3�H4, and by Lemma 1, we havee4 k e2. Moreover,
sinceH3 � H4 andH3\H2 = fg, we haveH4\H2 = fg, contra-
dicting the choice ofe1 as the last thread beforee2 to race withe2.

Therefore, threade3, which races withe2, still belongs to
lockers[l ] whene2 executes, and so lines 1–3 report a race.

In Section 1, we claimed that for a Cilk program that executesin
time T on one processor, referencesV shared memory locations,
uses a total ofn locks, and holds at mostk� n locks simulta-
neously, the ALL -SETS algorithm can check this computation for
data races inO(nkT α(V;V)) time and usingO(nkV) space. These
bounds, which are correct but weak, are improved by the next the-
orem.4



Theorem 4 Consider a Cilk program that executes in time T on
one processor, references V shared memory locations, uses ato-
tal of n locks, and holds at most k locks simultaneously. The
ALL -SETS algorithm checks this computation for data races in
O(TL(k+α(V;V))) time and O(kLV) space, where L is the maxi-
mum of the number of distinct lock sets used to access any particu-
lar location.

Proof: First, observe that no two lockers inlockershave the same
lock set, because the logic in lines 5–11 ensure that ifH = H 0, then
lockerhe;Hi either replaceshe0;H 0i (line 7) or is considered redun-
dant (line 9). Thus, there are at mostL lockers in the listlockers[l ].
Each lock set takes at mostO(k) space, so the space needed for
lockersis O(kLV). The length of the listlockers[l ] determines the
number of series/parallel relations that are tested. In theworst case,
we need to perform 2L such tests (lines 2 and 6) and 2L set oper-
ations (lines 2, 6, and 8) per access. Each series/parallel test takes
amortizedO(α(V;V)) time, and each set operation takesO(k) time.
Therefore, the ALL -SETS algorithm runs inO(TL(k+ α(V;V)))
time.

The looser bounds claimed in Section 1 ofO(nkT α(V;V)) time
and O(nkV) space fork � n follow becauseL � ∑k

i=0

�n
i

� =
O(nk=k!). As we shall see in Section 4, however, we rarely see
the worst-case behavior given by the bounds in Theorem 4.3 The Brelly Algorithm
The umbrella locking discipline requires all accesses to any partic-
ular location within a given parallel subcomputation to be protected
by a single lock. Subcomputations in series may each use a dif-
ferent lock, or even none, if no parallel accesses to the location
occur within the subcomputation. In this section, we formally de-
fine the umbrella discipline and present the BRELLY algorithm for
detecting violations of this discipline. We prove that the BRELLY

algorithm is correct and analyze its performance, which we show to
be asymptotically better than that of ALL -SETS.

The umbrella discipline can be defined precisely in terms of the
parse tree of a given Cilk computation. Anumbrella of accesses to
a locationl is a subtree rooted at a P-node containing accesses tol in
both its left and right subtrees, as is illustrated in Figure4. An um-
brella of accesses tol is protected if its accesses have a nonempty
lock set andunprotected otherwise. A program obeys theumbrella
locking discipline if it contains no unprotected umbrellas. In other
words, within each umbrella of accesses to a locationl , all threads
must agree on at least one lock to protect their accesses tol .

The next theorem shows that adherence to the umbrella discipline
precludes data races from occuring.Theorem 5 A Cilk computation with a data race violates the um-
brella discipline.

Proof: Any two threads involved in a data race must have a P-
node as their least common ancestor in the parse tree, because they
operate in parallel. This P-node roots an unprotected umbrella,
since both threads access the same location and the lock setsof
the two threads are disjoint.

The umbrella discipline can also be violated by unusual, butdata-
race free, locking protocols. For instance, suppose that a location

P

P P

S

P

S

P

Figure 4: Three umbrellas of accesses to a locationl . In this parse tree,
each shaded leaf represents a thread that accessesl . Each umbrella of ac-
cesses tol is enclosed by a dashed line.

is protected by three locks and that every thread always acquires
two of the three locks before accessing the location. No single lock
protects the location, but every pair of such accesses is mutually ex-
clusive. The ALL -SETSalgorithm properly certifies this bizarre ex-
ample as race-free, whereas BRELLY detects a discipline violation.
In return for disallowing these unusual locking protocols (which in
any event are of dubious value), BRELLY checks programs asymp-
totically much faster than ALL -SETS.

Like ALL -SETS, the BRELLY algorithm extends the SP-BAGS

algorithm used in the original Nondeterminator and uses theR-
LOCK fake lock for read accesses (see Section 2). Figure 5 gives
pseudocode for BRELLY. Like the SP-BAGS algorithm, BRELLY

executes the program on a given input in serial depth-first order,
maintaining the SP-bags data structure so that the series/parallel
relationship between the currently executing thread and any previ-
ously executed thread can be determined quickly. Like the ALL -
SETS algorithm, BRELLY also maintains a setH of currently held
locks. In addition, BRELLY maintains two shadow spaces of shared
memory: accessor, which stores for each location the thread that
performed the last “serial access” to that location; andlocks, which
stores the lock set of that access. Each entry in theaccessorspace is
initialized to the initial thread (which logically precedes all threads
in the computation), and each entry in thelocksspace is initialized
to the empty set.

Unlike the ALL -SETS algorithm, BRELLY keeps only a single
lock set, rather than a list of lock sets, for each shared-memory lo-
cation. For a locationl , each lock inlocks[l ] potentially belongs to
the lock set of the largest umbrella of accesses tol that includes the
current thread. The BRELLY algorithm tags each lockh2 locks[l ]
with two pieces of information: a threadnonlocker[h] and a flag
alive[h]. The threadnonlocker[h] is a thread that accessesl with-
out holdingh. The flagalive[h] indicates whetherh should still be
considered to potentially belong to the lock set of the umbrella. To
allow reports of violations to be more precise, the algorithm “kills”
a lockh by settingalive[h] FALSE when it determines thath does
not belong to the lock set of the umbrella, rather than simplyre-
moving it from locks[l ].

Whenever BRELLY encounters an access by a threade to a lo-
cation l , it checks for a violation with previous accesses tol , up-
dating the shadow spaces appropriately for future reference. If
accessor[l ]� e, we say the access is aserial access, and the algo-
rithm performs lines 2–5, settinglocks[l ] H andaccessor[l ] e,
as well as updatingnonlocker[h] andalive[h] appropriately for each
h 2 H. If accessor[l ] k e, we say the access is aparallel access,
and the algorithm performs lines 6–17, killing the locks inlocks[l ]5



ACCESS(l) in threadewith lock setH

1 if accessor[l ]� e

2 then � serial access

locks[l ] H, leavingnonlocker[h] with its old

nonlocker if it was already inlocks[l ] but

settingnonlocker[h] accessor[l ] otherwise

3 for each lockh2 locks[l ]
4 do alive[h] TRUE

5 accessor[l ] e

6 else � parallel access

7 for each lockh2 locks[l ]�H

8 do if alive[h] = TRUE

9 then alive[h] FALSE

10 nonlocker[h] e

11 for each lockh2 locks[l ]\H

12 do if alive[h] = TRUE andnonlocker[h] k e

13 then alive[h] FALSE

14 if no locks inlocks[l ] are alive (orlocks[l ] = fg)
15 then report violation onl involving

eandaccessor[l ]
16 for each lockh2H \ locks[l ]
17 do report access tol without h

by nonlocker[h]
Figure 5: The BRELLY algorithm. While executing a Cilk program in
serial depth-first order, at each access to a shared-memory location l , the
code shown is executed. Not shown are the updates toH, the set of cur-
rently held set of locks, which occur whenever locks are acquired or re-
leased. To determine whether the currently executing thread is in series or
parallel with previously executed threads, BRELLY uses the SP-bags data
structure from [13].

that do not belong to the current lock setH (lines 7–10) or whose
nonlockers are in parallel with the current thread (lines 11–13). If
BRELLY discovers in line 14 that there are no locks left alive in
locks[l ] after a parallel access, it has discovered an unprotected um-
brella, and it reports a discipline violation in lines 15–17.

When reporting a violation, BRELLY specifies the locationl , the
current threade, and the threadaccessor[l ]. It may be thate and
accessor[l ] hold locks in common, in which case the algorithm uses
the nonlocker information in lines 16–17 to report threads which
accessedl without each of these locks.

Figure 6 illustrates how BRELLY works. The umbrella contain-
ing threadse1, e2, ande3 is protected by lockA but not by lock
B, which is reflected inlocks[l ] after threade3 executes. The um-
brella containinge5 ande6 is protected byB but not byA, which is
reflected inlocks[l ] after threade6 executes. During the execution
of threade6, A is killed andnonlocker[A] is set toe6, according to
the logic in lines 7–10. Whene7 executes,B remains as the only
lock alive in locks[l ] andnonlocker[B] is e4 (due to line 2 during
e5’s execution). Sincee4 k e7, lines 11–13 killB, leaving no locks
alive in locks[l ], properly reflecting the fact that no lock protects the
umbrella containing threadse4 throughe7. Consequently, the test
in line 14 causes BRELLY to declare a violation at this point.

S

P

{ A,B} S

{ A} { A,B}

P

S

{} P

{ A,B} { B}
e1

e2 e3 e5 e6

e4

{ B}
e7

thread accessor[l ] locks[l ] access type

initial e0 fg
e1 e1 fA(e0); B(e0)g serial
e2 e1 fA(e0); B(e2)g parallel
e3 e1 fA(e0); B(e2)g parallel
e4 e4 fg serial
e5 e5 fA(e4); B(e4)g serial
e6 e5 fA(e6); B(e4)g parallel
e7 e5 fA(e6); B(e4)g parallel

Figure 6: A sample execution of the BRELLY algorithm. We restrict our
attention to the algorithm’s operation on a single locationl . In the parse
tree, each leaf represents an access tol and is labeled with the thread that
performs the access (e.g.,e1) and the lock set of that access (e.g.,fA; Bg).
Umbrellas are enclosed by dashed lines. The table displays the values of
accessor[l ] and locks[l ] after each thread’s access. The nonlocker for each
lock is given in parentheses after the lock, and killed locksare underlined.
The “access type” column indicates whether the access is a parallel or serial
access.

The following two lemmas, which will be helpful in proving the
correctness of BRELLY, are stated without proof.Lemma 6 Suppose a thread e performs a serial access to location
l during an execution ofBRELLY. Then all previously executed
accesses to l logically precede e in the computation.Lemma 7 TheBRELLY algorithm maintains the invariant that for
any location l and lock h2 locks[l ], the thread nonlocker[h] is either
the initial thread or a thread that accessed l without holding h.Theorem 8 TheBRELLY algorithm detects a violation of the um-
brella discipline in a computation of a Cilk program runningon a
given input if and only if a violation exists.

Proof: We first show that BRELLY only detects actual violations
of the discipline, and then we argue that no violations are missed.
In this proof, we denote bylocks�[l ] the set of locks inlocks[l ] that
haveTRUE aliveflags.

()) Suppose that BRELLY detects a violation caused by a thread
e, and lete0 = accessor[l ] whene executes. Since we havee0 k e,
it follows that p = LCA(e0;e) roots an umbrella of accesses tol ,
becausep is a P-node and it has an access tol in both subtrees.
We shall argue that the lock setU of the umbrella rooted atp is
empty. Since BRELLY only reports violations whenlocks�[l ] = fg,
it suffices to show thatU � locks�[l ] at all times aftere0 executes.

Sincee0 is a serial access, lines 2–5 causelocks�[l ] to be the lock
set ofe0. At this point, we know thatU � locks�[l ], becauseU can
only contain locks held by every access inp’s subtree. Suppose that
a lockh is killed (and thus removed fromlocks�[l ]), either in line 9
or line 13, when some threade0 executes a parallel access between6



the times thate0 ande execute. We shall show that in both cases
h 62U , and soU � locks�[l ] is maintained.

In the first case, if threade0 kills h in line 9, it does not holdh,
and thush 62U .

In the second case, we shall show thatw, the thread stored in
nonlocker[h] whenh is killed, is a descendant ofp, which implies
thath 62U , because by Lemma 7,w accessesl without the lockh.
Assume for the purpose of contradiction thatw is not a descendant
of p. Then, we haveLCA(w;e0) = LCA(w;e0), which implies that
wk e0, becausewk e0. Now, consider whethernonlocker[h] was set
to w in line 10 or in line 2 (not counting whennonlocker[h] is left
with its old value in line 2). If line 10 setsnonlocker[h] w, then
w must execute beforee0, since otherwise,w would be a parallel
access, and lockh would have been killed in line 9 byw beforee0
executes. By Lemma 6, we therefore have the contradiction that
w� e0. If line 2 setsnonlocker[h] w, thenw performs a serial
access, which must be prior to the most recent serial access by e0.
By Lemma 6, we once again obtain the contradiction thatw� e0.

(() We now show that if a violation of the umbrella discipline
exists, then BRELLY detects a violation. If a violation exists, then
there must be an unprotected umbrella of accesses to a location l .
Of these unprotected umbrellas, letT be a maximal one in the sense
thatT is not a subtree of another umbrella of accesses tol , and let
p be the P-node that rootsT. The proof focuses on the values of
accessor[l ] andlocks[l ] just afterp’s left subtree executes.

We first show that at this point,accessor[l ] is a left-descendant
of p. Assume for the purpose of contradiction thataccessor[l ] is
not a left-descendant ofp (and is therefore not a descendant ofp at
all), and letp0 = LCA(accessor[l ]; p). We know thatp0 must be a
P-node, since otherwiseaccessor[l ] would have been overwritten in
line 5 by the first access inp’s left subtree. But thenp0 roots an um-
brella which is a proper superset ofT, contradicting the maximality
of T.

Sinceaccessor[l ] belongs top’s left subtree, no access inp’s
right subtree overwriteslocks[l ], as they are all logically in parallel
with accessor[l ]. Therefore, the accesses inp’s right subtree may
only kill locks in locks[l ]. It suffices to show that by the time all
accesses inp’s right subtree execute, all locks inlocks[l ] (if any)
have been killed, thus causing a race to be declared. Leth be some
lock in locks�[l ] just after the left subtree ofp completes.

SinceT is unprotected, an access tol unprotected byh must
exist in at least one ofp’s two subtrees. If some access tol is
not protected byh in p’s right subtree, thenh is killed in line 9.
Otherwise, leteleft be the most-recently executed thread inp’s left
subtree that performs an access tol not protected byh. Lete0 be the
thread inaccessor[l ] just aftereleft executes, and leteright be the first
access tol in the right subtree ofp. We now show that in each of the
following cases, we havenonlocker[h] k eright wheneright executes,
and thush is killed in line 13.

Case 1: Threadeleft is a serial access. Just aftereleft executes,
we haveh 62 locks[l ] (by the choice ofeleft) andaccessor[l ] = eleft.
Therefore, whenh is later placed inlocks[l ] in line 2, nonlocker[h]
is set toeleft. Thus, we havenonlocker[h] = eleft k eright.

Case 2: Threadeleft is a parallel access andh 2 locks[l ] just
beforeeleft executes. Just aftere0 executes, we haveh 2 locks[l ]
and alive[h] = TRUE, sinceh 2 locks[l ] when eleft executes and
all accesses tol betweene0 andeleft are parallel and do not place
locks intolocks[l ]. By pseudotransitivity (Lemma 2),e0 k eleft and

eleft k eright impliese0 k eright. Note thate0 must be a descendant of
p, since if it were not,T would be not be a maximal umbrella of
accesses tol . Let e00 be the most recently executed thread before or
equal toeleft that kills h. In doing so,e00 setsnonlocker[h] e00 in
line 10. Now, since bothe0 andeleft belong top’s left subtree and
e00 follows e0 in the execution order and comes before or is equal
to eleft, it must be thate00 also belongs top’s left subtree. Conse-
quently, we havenonlocker[h] = e00 k eright.

Case 3: Threadeleft is a parallel access andh 62 locks[l ] just be-
foreeleft executes. Whenh is later added tolocks[l ], itsnonlocker[h]
is set toe0. As above, by pseudotransitivity,e0 k eleft andeleft k eright
impliesnonlocker[h] = e0 k eright.

In each of these cases,nonlocker[h] k eright still holds wheneright
executes, sinceeleft, by assumption, is the most recent thread to
accessl without h in p’s left subtree. Thus,h is killed in line 13
wheneright executes.Theorem 9 On a Cilk program which on a given input executes
serially in time T, uses V shared-memory locations, and holds
at most k locks simultaneously, theBRELLY algorithm runs in
O(kT α(V;V)) time and O(kV) space.

Proof: The total space is dominated by thelocksshadow space.
For any locationl , the BRELLY algorithm stores at mostk locks in
locks[l ] at any time, since locks are placed inlocks[l ] only in line 2
andjHj � k. Hence, the total space isO(kV).

Each loop in Figure 5 takesO(k) time if lock sets are kept in
sorted order, excluding the checking ofnonlocker[h] k e in line 12,
which dominates the asymptotic running time of the algorithm. The
total number of timesnonlocker[h] k e is checked over the course of
the program is at mostkT, requiringO(kT α(V;V)) time.4 Experimental Results
We are in the process of implementing both the ALL -SETS and
BRELLY algorithms as part of the Nondeterminator-2 debugging
tool. Our experiences are therefore highly preliminary. Inthis sec-
tion, we describe our initial results from running these twoalgo-
rithms on four Cilk programs that use locks. Our implementations
of ALL -SETSand BRELLY have not yet been optimized, and so bet-
ter performance than what we report here is likely to be possible.

According to Theorem 4, the factor by which ALL -SETS slows
down a program is roughlyΘ(Lk) in the worst case, whereL is the
maximum number of distinct lock sets used by the program when
accessing any particular location, andk is the maximum number of
locks held by a thread at one time. According to Theorem 9, the
worst-case slowdown factor for BRELLY is aboutΘ(k). In order
to compare our experimental results with the theoretical bounds,
we characterize our four test programs in terms of the parametersk
andL:3maxflow: A maximum-flow code based on Goldberg’s push-
relabel method [16]. Each vertex in the graph contains a lock. Par-
allel threads perform simple operations asynchronously ongraph
edges and vertices. To operate on a vertexu, a thread acquiresu’s
lock, and to operate on an edge(u;v), the thread acquires bothu’s

3These characterizations do not count the implicit “fake”R-LOCK used by the de-
tection algorithms.7



Parameters Time (sec.) Slowdown
program input k L orig. ALL . BR. ALL . BR.maxflow sp. 1K 2 32 0.05 30 3 590 66

sp. 4K 2 64 0.2 484 14 2421 68
d. 256 2 256 0.2 263 15 1315 78
d. 512 2 512 2.0 7578 136 3789 68n-body 1K 1 1 0.6 47 47 79 78
2K 1 1 1.6 122 119 76 74bucket 100K 1 1 0.3 22 22 74 73rad iter. 1 2 65 1.2 109 45 91 37
iter. 2 2 94 1.0 179 45 179 45
iter. 5 2 168 2.8 773 94 276 33
iter. 13 2 528 9.1 13123 559 1442 61

Figure 7: Timings of our implementations on a variety of programs and
inputs. (The input parameters are given as sparse/dense andnumber of ver-
tices formaxflow, number of bodies forn-body, number of elements forbucket, and iteration number forrad.) The parameterL is the maximum
number of distinct lock sets used while accessing any particular location,
andk is the maximum number of locks held simultaneously. Runningtimes
for the original optimized code, for ALL -SETS, and for BRELLY are given,
as well as the slowdowns of ALL -SETS and BRELLY as compared to the
original running time.

lock andv’s lock (making sure not to introduce a deadlock). Thus,
for this application, the maximum number of locks held by a thread
is k= 2, andL is at most the maximum degree of any vertex.n-body: An n-body gravity simulation using the Barnes-Hut al-
gorithm [1]. In one phase of the program, parallel threads race to
build various parts of an “octtree” data structure. Each part is pro-
tected by an associated lock, and the first thread to acquire that lock
builds that part of the structure. As the program never holdsmore
than one lock at a time, we havek= L = 1.bucket: A bucket sort [7, Section 9.4]. Parallel threads acquire
the lock associated with a bucket before adding elements to it. This
algorithm is analogous to the typical way a hash table is accessed
in parallel. For this program, we havek= L = 1.rad: A 3-dimensional radiosity renderer running on a “maze”
scene. The original 75-source-file C code was developed in Bel-
gium by Bekaert et. al. [2]. We used Cilk to parallelize its scene
geometry calculations. Each surface in the scene has its ownlock,
as does each “patch” of the surface. In order to lock a patch, the sur-
face lock must also be acquired, so thatk= 2, andL is the maximum
number of patches per surface, which increases at each iteration as
the rendering is refined.

Figure 7 shows the preliminary results of our experiments onthe
test codes. These results indicate that the performance of ALL -
SETS is indeed dependent on the parameterL. Essentially no per-
formance difference exists between ALL -SETSand BRELLY when
L = 1, but ALL -SETSgets progressively worse asL increases. On
all of our test programs, BRELLY runs fast enough to be useful as
a debugging tool. In some cases, ALL -SETS is as fast, but in other
cases, the overhead of ALL -SETS is too extreme (iteration 13 ofrad takes over 3.5 hours) to allow interactive debugging.5 Abelian Programs
By checking a single computation for the absence of determinacy
races, the original Nondeterminator can guarantee that a Cilk pro-
gram without locking is determinate: it always produces thesame

int x, y; cilk void bar1() {Cilk_lockvar A; Cilk_lock(&A);x++;cilk int main() { if (x == 1)Cilk_lock_init(&A); y = 3;x = 0; Cilk_unlock(&A);spawn bar1(); }spawn bar2();sync; cilk void bar2() {printf("%d", y); Cilk_lock(&A);} x++;Cilk_unlock(&A);y = 4;}
Figure 8: A Cilk program that generates a computation with an infeasible
data race on the variabley.

answer (when run on the same input). To date, no similar claimhas
been made by any data-race detector for programs with locks.We
cannot make a general claim either, but in this section, we introduce
a class of nondeterministic programs for which a determinacy claim
can be made. We prove that the absence of data races in a single
computation of a deadlock-free “abelian” program implies that the
program (when run on the same input) is determinate. As a con-
sequence, ALL -SETS and BRELLY can verify the determinacy of
abelian programs from examining a single computation. We donot
claim that abelian programs form an important class in any practical
sense. Rather, we find it remarkable that a guarantee of determinacy
can be made for any nontrivial class of nondeterministic programs.

Locking introduces nondeterminism intentionally, allowing
many different computations to arise from the same program,some
of which may have data races and some of which may not. Since
ALL -SETSand BRELLY examine only one computation, they can-
not detect data races that appear in other computations. More sub-
tlely, the data races that these algorithms do detect might actually
be infeasible, never occurring in an actual program execution.

Figure 8 shows a program that exhibits an infeasible data race. In
the computation generated whenbar1 obtains lockA beforebar2,
a data race exists between the two updates toy. In the scheduling
wherebar2 obtains lockA first, however,bar1’s update toy never
occurs. In other words, no scheduling exists in which the twoup-
dates toy happen simultaneously, and in fact, the final value ofy is
always 4. Thus, the computation generated by the serial depth-first
scheduling, which is the one examined by ALL -SETSand BRELLY,
contains an infeasible data race.

Deducing from a single computation that the program in Figure 8
is determinate appears difficult. But not all programs are sohard to
understand. For example, the program from Figure 1 exhibitsa
race no matter how it is scheduled, and therefore, ALL -SETS and
BRELLY can always find a race. Moreover, if all accesses tox in
the program were protected by the same lock, no data races would
exist in any computation. For such a program, checking a single
computation for the absence of races suffices to guarantee that the
program is determinate. The reason we can verify the determinacy
of this program from a single computation is because it has “com-
muting” critical sections.

The critical sections in the program in Figure 1 obey the follow-
ing strict definition of commutativity: Two critical sectionsR1 and
R2 commute if, beginning with any (reachable) program stateS, the
execution ofR1 followed byR2 yields the same stateS0 as the ex-8



ecution ofR2 followed by R1; and furthermore, in both execution
orders, each critical section must execute the identical sequence of
instructions on the identical memory locations. Thus, not only must
the program state remain the same, the same accesses to shared
memory must occur, although the values returned by those accesses
may differ. The program in Figure 1 also exhibits “properly nested
locking.” Locks areproperly nested if any thread which acquires a
lock A and then a lockB releasesB before releasingA. We say that
a program isabelian if any pair of parallel critical sections that are
protected by the same lock commute, and all locks in the program
are properly nested. The program in Figure 1 is an example of an
abelian program.

The idea that critical sections should commute is natural. Apro-
grammer presumably locks two critical sections with the same lock
not only because he intends them to be atomic, but because he in-
tends them to “do the same thing” no matter in what order they
are executed. The programmer’s notion of commutativity is usually
less restrictive, however, than what our definition allows.First, both
execution orders of two critical sections may produce distinct pro-
gram states that the programmer nevertheless views as equivalent.
Our definition insists that the program states be identical.Second,
even if they leave identical program states, the two execution orders
may cause different memory locations to be accessed. Our defini-
tion demands that the same memory locations be accessed.

In practice, therefore, most programs are not abelian, but abelian
programs nevertheless form a nontrivial class of nondeterministic
programs that can be checked for determinacy. For example, all
programs that use locking to accumulate values atomically,such
as a histogram program, fall into this class. Although abelian pro-
grams form an arguably small class in practice, the guarantees of
determinacy that ALL -SETSand BRELLY provide for them are not
provided by any other existing race-detectors foranyclass of lock-
employing programs. It is an open question whether a more gen-
eral class of nondeterministic programs exists for which anefficient
race-detector can offer a provable guarantee of determinacy.

In order to study the determinacy of abelian programs, we first
give a formal multithreaded machine model that more precisely de-
scribes an actual execution of a Cilk program. We view the ab-
stract execution machine for Cilk as a (sequentially consistent [21])
shared memory together with a collection ofinterpreters, each with
some private state. (See [5, 8, 17] for examples of multithreaded
implementations similar to this model.) Interpreters are dynami-
cally created during execution by eachspawn statement. Theith
such child of an interpreter is given a uniqueinterpreter name by
appendingi to its parent’s name.

When an instruction isexecuted by an interpreter, it maps the
current state of the multithreaded machine to a new state. Anin-
terpreter whose next instruction cannot be executed is saidto be
blocked. If all interpreters are blocked, the machine isdeadlocked.

Although a multithreaded execution may proceed in parallel, we
consider a serialization of the execution in which only one inter-
preter executes at a time, but the instructions of the different inter-
preters may be interleaved.4 The initial state of the machine con-
sists of a single interpreter whose program counter points to the
first instruction of the program. At each step, a nondeterministic
choice among the current nonblocked interpreters is made, and the

4The fact that any parallel execution can be simulated in thisfashion is a conse-
quence of our choice of sequential consistency as the memorymodel.

instruction pointed to by its program counter is executed. The re-
sulting sequence of instructions is referred to as anexecution of the
program.

When an instruction executes in a run of a program, it affects
the state of the machine in a particular way. To formalize theef-
fect of an instruction execution, we define aninstantiation of an
instruction to be a 3-tuple consisting of an instructionI , the shared
memory locationl on whichI operates (if any), and the name of the
interpreter that executesI . We assume that the instantiation of an
instruction is a deterministic function of the machine state.

We define aregion to be either a single instantiation other than
a LOCK or UNLOCK instruction, or a sequence of instantiations that
comprise a critical section (including theLOCK and UNLOCK in-
stantiations themselves).5 Every instantiation belongs to at least
one region and may belong to many. Since a region is a sequence
of instantiations, it is determined by a particular execution of the
program and not by the program code alone. We define thenesting
count of a regionR to be the maximum number of locks that are
acquired inRand held simultaneously at some point inR.

The execution of a program can alternatively be viewed as se-
quence of instantiations, rather than instructions, and aninstan-
tiation sequence can always be generated from an instruction se-
quence. We formally define acomputation as a dag in which the
vertices are instantiations and the edges denote synchronization.
Edges go from each instantiation to the next instantiation executed
by the same interpreter, from each spawn instantiation to the first
instantiation executed by the spawned interpreter, and from the last
instantiation of each interpreter to the next sync instantiation exe-
cuted by its parent interpreter.

We can now give a more precise definition of a data race. A
data race exists in a computation if two logically parallel instanti-
ations access the same memory location without holding the same
lock, and at least one of the accesses is aWRITE. Since a memory
location is a component of each instantiation, it is unambiguous
what it means for two instantiations to access the same memory
location. In contrast, if the computation were constructedso that
the nodes were instructions, it would not be apparent from the dag
alone whether two nodes reference the same memory location.

A scheduling of a computationG is a sequence of instantiations
forming a permutation of the vertex set ofG. This sequence must
satisfy the ordering constraints of the dag, as well as have the prop-
erty that any twoLOCK instantiations that acquire the same lock are
separated by anUNLOCK of that lock in between. If any scheduling
of any prefix ofG can be extended to a scheduling ofG, we say that
G is deadlock free. Not every scheduling ofG corresponds to some
actual execution of the program. If a scheduling does correspond to
an actual execution as defined by the machine model, we call that
scheduling atrue scheduling of G; otherwise it is afalse schedul-
ing. Since we are only concerned with the final memory states of
true schedulings, we define two schedulings ofG to beequivalent
if both are false, or both are true and have the same final memory
state. An alternate definition of commutativity, then, is that two re-
gionsR1 andR2 commute if, beginning with any reachable machine
stateS, the instantiation sequencesR1R2 andR2R1 are equivalent.

Our study of the determinacy of abelian programs will proceed
as follows. Starting with a data-race free, deadlock-free computa-

5The instantiations within a critical section must be serially related in the dag, as
we disallow parallel control constructs while locks are held.9



tion G resulting from the execution of an abelian program, we first
prove that adjacent regions in a scheduling ofG can be commuted.
Second, we show that regions which are spread out in a scheduling
of G can be grouped together. Third, we prove that all schedulings
of G are true and yield the same final memory state. Finally, we
prove that all executions of the abelian program generate the same
computation and hence the same final memory state.Lemma 10 (Reordering) Let G be a data-race free, deadlock-
free computation resulting from the execution of an abelianpro-
gram. Let X be some scheduling of G. If regions R1 and R2 ap-
pear adjacent in X, i.e., X= X1R1R2X2, and R1 k R2, then the two
schedulings X1R1R2X2 and X1R2R1X2 are equivalent.

Proof: We prove the lemma by double induction on the nesting
count of the regions. Our inductive hypotheses is the theorem as
stated for regionsR1 of nesting counti and regionsR2 of nesting
count j .

Base case:i = 0. ThenR1 is a single instantiation. SinceR1 and
R2 are adjacent inX and are parallel, no instantiation ofR2 can be
guarded by a lock that guardsR1, because any lock held atR1 is not
released until afterR2. Therefore, sinceG is data-race free, either
R1 andR2 access different memory locations orR1 is a READ and
R2 does not write to the location read byR1. In either case, the
instantiations of each ofR1 andR2 do not affect the behavior of the
other, so they can be executed in either order without affecting the
final memory state.

Base case:j = 0. Symmetric with above.
Inductive step: In general,R1 of count i � 1 has the form

LOCK(A) � � �UNLOCK(A), and R2 of count j � 1 has the form
LOCK(B) � � �UNLOCK(B). If A = B, thenR1 andR2 commute by
the definition of abelian. Otherwise, there are three possible cases.

Case 1: LockA appears inR2, and lockB appears inR1. This sit-
uation cannot occur, because it implies thatG is not deadlock free,
a contradiction. To construct a deadlock scheduling, we schedule
X1 followed by the instantiations ofR1 up to (but not including)
the firstLOCK(B). Then, we schedule the instantiations ofR2 un-
til a deadlock is reached, which must occur, sinceR2 contains a
LOCK(A) (although the deadlock may occur before this instantia-
tion is reached).

Case 2: LockA does not appear inR2. We start with the se-
quenceX1R1R2X2 and commute pieces ofR1 one at a time withR2:
first, the instantiationUNLOCK(A), then the (immediate) subregions
of R1, and finally the instantiationLOCK(A). The instantiations
LOCK(A) andUNLOCK(A) commute withR2, becauseA does not
appear anywhere inR2. Each subregion ofR1 commutes withR2
by the inductive hypothesis, because each subregion has lower nest-
ing count thanR1. After commuting all ofR1 pastR2, we have an
equivalent executionX1R2R1X2.

Case 3: LockB does not appear inR1. Symmetric to Case 2.Lemma 11 (Region grouping) Let G be a data-race free,
deadlock-free computation resulting from the execution ofan
abelian program. Let X be some scheduling of G. Then, there ex-
ists an equivalent scheduling X0 of G in which the instantiations of
every region are contiguous.

Proof: We shall createX0 by grouping the regions inX one at
a time. Each grouping operation will not destroy the grouping of
already grouped regions, so eventually all regions will be grouped.

LetRbe a noncontiguous region inX that completely overlaps no
other noncontiguous regions inX. Since regionR is noncontiguous,
other regions parallel withR must overlapR in X. We first remove
all overlapping regions which have exactly one endpoint (anend-
point is the boundingLOCK or UNLOCK of a region) inR, where by
“in” R, we mean appearing inX between the endpoints ofR. We
shall show how to remove regions which have only theirUNLOCK

in R. The technique for removing regions with only theirLOCK in
R is symmetric.

Consider the partially overlapping regionS with the leftmost
UNLOCK in R. Then all subregions ofS which have any instanti-
ations insideR are completely insideR and are therefore contigu-
ous. We removeS by moving each of its (immediate) subregions
in R to just left of R using commuting operations. LetS1 be the
leftmost subregion ofS which is also inR. We can commuteS1
with every instructionI to its left until it is just past the start ofR.
There are three cases for the type of instructionI . If I is not a
LOCK or UNLOCK, it commutes withS1 by Lemma 10 because it
is a region in parallel withS1. If I = LOCK(B) for some lockB,
thenS1 commutes withI , becauseS1 cannot containLOCK(B) or
UNLOCK(B). If I = UNLOCK(B), then there must exist a match-
ing LOCK(B) insideR, becauseS is chosen to be the region with
the leftmostUNLOCK without a matchingLOCK. Since there is a
matchingLOCK in R, the region defined by theLOCK/UNLOCK pair
must be contiguous by the choice ofR. Therefore, we can commute
S1 with this whole region at once using Lemma 10.

We can continue to commuteS1 to the left until it is just before
the start ofR. Repeat for all other subregions ofS, left to right.
Finally, theUNLOCK at the end ofScan be moved to just beforeR,
because no otherLOCK or UNLOCK of that same lock appears inR
up to thatUNLOCK.

Repeat this process for each region overlappingR that has only
an UNLOCK in R. Then, remove all regions which have only their
LOCK in Rby pushing them to just afterRusing similar techniques.
Finally, when there are no more unmatchedLOCK or UNLOCK in-
stantiations inR, we can remove any remaining overlapping regions
by pushing them in either direction to just before or just afterR. The
regionR is now contiguous.

Repeating for each region, we obtain an executionX0 equivalent
to X in which each region is contiguous.Lemma 12 Let G be a data-race free, deadlock-free computation
resulting from the execution of an abelian program. Then every
scheduling of G is true and yields the same final memory state.

Proof: Let X be the execution that generatesG. ThenX is a true
scheduling ofG. We wish to show that any schedulingY of G is
true. We shall construct a set of equivalent schedulings ofG that
contain the schedulingsX andY, thus proving the lemma.

We construct this set using Lemma 11. LetX0 andY0 be the
schedulings ofG with contiguous regions which are obtained by
applying Lemma 11 toX andY, respectively. FromX0 andY0, we
can commute whole regions using Lemma 10 to put their threads
in the serial depth-first order specified byG, obtaining schedulings
X00 andY00. We haveX00 =Y00, because a computation has only one
serial depth-first scheduling. Thus, all schedulingsX, X0, X00 =Y00,
Y0, andY are equivalent. SinceX is a true scheduling, so isY, and
both have the same final memory state.10



Theorem 13 An abelian Cilk program that produces a deadlock-
free computation with no data races is determinate.

Proof: Let X be an execution of an abelian program that gener-
ates a data-race free, deadlock-free computationG. Let Y be an
arbitrary execution of the same program. LetH be the computation
generated byY, and letHi be the prefix ofH that is generated by the
first i instantiations ofY. If Hi is a prefix ofG for all i, thenH = G,
and therefore, by Lemma 12, executionsX andY have the same
final memory state. Otherwise, assume for contradiction that i0 is
the largest value ofi for which Hi is a prefix ofG. Suppose that
the (i0+ 1)st instantiation ofY is executed by an interpreter with
nameη. We shall derive a contradiction through the creation of a
new schedulingZ of G. We constructZ by starting with the firsti0
instantiations ofY, and next adding the successor ofHi0 in G that is
executed by interpreterη. We then completeZ by adding, one by
one, any nonblocked instantiation from the remaining portion ofG.
One such instantiation always exists becauseG is deadlock free. By
Lemma 12, the schedulingZ that results is a true scheduling ofG.
We thus have two true schedulings which are identical in the first i0
instantiations but which differ in the(i0+1)st instantiation. In both
schedulings the(i0+1)st instantiation is executed by interpreterη.
But, the state of the machine is the same in bothY andZ after the
first i0 instantiations, which means that the(i0+1)st instantiation
must be the same for both, which is a contradiction.

We state without proof one more lemma, which allows us to show
that ALL -SETS and BRELLY can give a guarantee of determinacy
for deadlock-free abelian programs.Lemma 14 Let G be a computation generated by a deadlock-free
abelian program. If G is data-race free, then it is deadlock free.Corollary 15 If the ALL -SETSalgorithm detects no data races in
an execution of a deadlock-free abelian Cilk program, then the pro-
gram running on the same input is determinate.

Proof: Combine Theorems 3 and 13 and Lemma 14.Corollary 16 If theBRELLY algorithm detects no violations of the
umbrella discipline in an execution of a deadlock-free abelian Cilk
program, then the program run on the same input is determinate.

Proof: Combine Theorems 5, 8, and 13 and Lemma 14.6 Conclusion
Although ALL -SETS and BRELLY are fast race-detection algo-
rithms, many practical questions remain as to how to use these al-
gorithms to debug real programs. In this section, we discussour
early experiences in using the Nondeterminator-2, which currently
provides both algorithms as options, to debug Cilk programs.

A key decision by Cilk programmers is whether to adopt the um-
brella locking discipline. A programmer might first debug with
ALL -SETS, but unless he has adopted the umbrella discipline, he
will be unable to fall back on BRELLY if A LL -SETSseems too slow.
We recommend that programmers use the umbrella discipline ini-
tially, which is good programming practice in any event, andonly
use ALL -SETS if they are forced to drop the discipline.

The Nondeterminator-2 reports any apparent data race as a
bug. As we have seen, however, some data races are infeasi-
ble. We have experimented with ways that the user can inform the
Nondeterminator-2 that certain races are infeasible, so that the de-
bugger can avoid reporting them. One approach we have tried is to
allow the user to “turn off” the Nondeterminator-2 in certain pieces
of code using compiler pragmas and other linguistic mechanisms.
Unfortunately, turning off the Nondeterminator-2 requires the user
to check for data races manually between the ignored accesses and
all other accesses in the program. A better strategy has beento give
the user fake locks—locks that are acquired and released onlyin
debugging mode, as in the implicitR-LOCK fake lock. The user can
then protect accesses involved in apparent but infeasible races using
a common fake lock. Fake locks reduce the number of false reports
made by the Nondeterminator-2, and they require the user to man-
ually check for data races only between critical sections locked by
the same fake lock.

Another cause of false reports is “publishing.” One thread allo-
cates a heap object, initializes it, and then “publishes” itby atom-
ically making a field in a global data structure point to the new
object so that the object is now available to other threads. If a logi-
cally parallel thread now accesses the object in parallel through the
global data structure, an apparent data race occurs betweenthe ini-
tialization of the object and the access after it was published. Fake
locks do not seem to help much, because it is hard for the initializer
to know all the other threads that may later access the object, and
we do not wish to suppress data races among those later accesses.
We do not yet have a good solution for this problem.

With the BRELLY algorithm, some programs may generate many
violations of the umbrella discipline that are not caused byac-
tual data races. We have implemented several heuristics in the
Nondeterminator-2’s BRELLY mode to report straightforward data
races and hide violations that are not real data races whenever pos-
sible.

False reports are not a problem when the program being de-
bugged is abelian, but programmers would like to know whether
an ostensibly abelian program is actually abelian. Dinningand
Schonberg give a conservative compile-time algorithm to check if
a program is “internally deterministic” [10], and we have given
thought to how the abelian property might likewise be conserva-
tively checked. The parallelizing compiler techniques of Rinard
and Diniz [31] may be applicable.

We are currently investigating versions of ALL -SETS and
BRELLY that correctly detect races even when parallelism is al-
lowed within critical sections. A more ambitious goal is to detect
potential deadlocks by dynamically detecting the user’s accordance
with a flexible locking discipline that precludes deadlocks.Acknowledgments
Thanks to Arvind of MIT for helpful discussions about locking.
Thanks to the other members of the Cilk group for their support.
We are also indebted to the SPAA reviewers for their extensive com-
ments on the submitted draft.

11



References
[1] J. Barnes and P. Hut. A hierarchicalO(N logN) force-calculation al-

gorithm. Nature, 324:446–449, 1986.
[2] Philippe Bekaert, Frank Suykens de Laet, and Philip Dutre. Ren-

derpark, 1997. Available on the Internet fromhttp://www.cs.kuleuven.ac./cwis/research/graphics/RENDERPARK/.
[3] Robert D. Blumofe. Executing Multithreaded Programs Efficiently.

PhD thesis, Department of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology, September 1995.

[4] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk:An
efficient multithreaded runtime system.Journal of Parallel and Dis-
tributed Computing, 37(1):55–69, August 1996.

[5] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk:An
efficient multithreaded runtime system. InProceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 207–216, Santa Barbara, California,
July 1995.

[6] Cilk-5.1 Reference Manual. Available on the Internet from http://theory.lcs.mit.edu/~cilk.
[7] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-

troduction to Algorithms. The MIT Press, Cambridge, Massachusetts,
1990.

[8] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von
Eicken, and John Wawrzynek. Fine-grain parallelism with minimal
hardware support: A compiler-controlled threaded abstract machine.
In Proceedings of the Fourth International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), pages 164–175, Santa Clara, California, April 1991.

[9] Anne Dinning and Edith Schonberg. An empirical comparison of
monitoring algorithms for access anomaly detection. InProceedings
of the Second ACM SIGPLAN Symposium on Principles & Practiceof
Parallel Programming (PPoPP), pages 1–10. ACM Press, 1990.

[10] Anne Dinning and Edith Schonberg. Detecting access anomalies in
programs with critical sections. InProceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, pages 85–96. ACM
Press, May 1991.

[11] Anne Carolyn Dinning.Detecting Nondeterminism in Shared Memory
Parallel Programs. PhD thesis, Department of Computer Science,
New York University, July 1990.

[12] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Eventsynchro-
nization analysis for debugging parallel programs. InSupercomputing
’91, pages 580–588, November 1991.

[13] Mingdong Feng and Charles E. Leiserson. Efficient detection of de-
terminacy races in Cilk programs. InProceedings of the Ninth Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA),
pages 1–11, Newport, Rhode Island, June 1997.

[14] Yaacov Fenster. Detecting parallel access anomalies.Master’s thesis,
Hebrew University, March 1998.

[15] Matteo Frigo, Keith H. Randall, and Charles E. Leiserson. The im-
plementation of the Cilk-5 multithreaded language. InProceedings of
the ACM SIGPLAN ’98 Conference on Programming Language De-
sign and Implementation (PLDI), Montreal, Canada, June 1998. To
appear.

[16] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the
maximum flow problem. InProceedings of the Eighteenth Annual
ACM Symposium on Theory of Computing, pages 136–146, Berkeley,
California, 28–30 May 1986.

[17] Michael Halbherr, Yuli Zhou, and Chris F. Joerg. MIMD-style parallel
programming with continuation-passing threads. InProceedings of
the 2nd International Workshop on Massive Parallelism: Hardware,
Software, and Applications, Capri, Italy, September 1994.

[18] David P. Helmbold, Charles E. McDowell, and Jian-ZhongWang. An-
alyzing traces with anonymous synchronization. InProceedings of the
1990 International Conference on Parallel Processing, pages II70–
II77, August 1990.

[19] Richard C. Holt. Some deadlock properties of computer systems.
Computing Surveys, 4(3):179–196, September 1972.

[20] Christopher F. Joerg.The Cilk System for Parallel Multithreaded Com-
puting. PhD thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, January 1996.

[21] Leslie Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs.IEEE Transactions on Com-
puters, C-28(9):690–691, September 1979.

[22] John Mellor-Crummey. On-the-fly detection of data races for pro-
grams with nested fork-join parallelism. InProceedings of Supercom-
puting’91, pages 24–33. IEEE Computer Society Press, 1991.

[23] Barton P. Miller and Jong-Deok Choi. A mechanism for efficient de-
bugging of parallel programs. InProceedings of the 1988 ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 135–144, Atlanta, Georgia, June 1988.

[24] Sang Lyul Min and Jong-Deok Choi. An efficient cache-based ac-
cess anomaly detection scheme. InProceedings of the Fourth Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 235–244, Palo Alto,
California, April 1991.

[25] Greg Nelson, K. Rustan M. Leino, James B. Saxe, and Raymie
Stata. Extended static checking home page, 1996. Available
on the Internet fromhttp://www.research.digital.com/SRC/esc/Esc.html.

[26] Robert H. B. Netzer and Sanjoy Ghosh. Efficient race condition de-
tection for shared-memory programs with post/wait synchronization.
In Proceedings of the 1992 International Conference on Parallel Pro-
cessing, St. Charles, Illinois, August 1992.

[27] Robert H. B. Netzer and Barton P. Miller. On the complexity of event
ordering for shared-memory parallel program executions. In Pro-
ceedings of the 1990 International Conference on Parallel Processing,
pages II: 93–97, August 1990.

[28] Robert H. B. Netzer and Barton P. Miller. What are race conditions?
ACM Letters on Programming Languages and Systems, 1(1):74–88,
March 1992.

[29] Itzhak Nudler and Larry Rudolph. Tools for the efficientdevelopment
of efficient parallel programs. InProceedings of the First Israeli Con-
ference on Computer Systems Engineering, May 1986.

[30] Dejan Perković and Peter Keleher. Online data-race detection via co-
herency guarantees. InProceedings of the Second USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), Seat-
tle, Washington, October 1996.

[31] Martin C. Rinard and Pedro C. Diniz. Commutativity analysis: A new
analysis framework for parallelizing compilers. InProceedings of the
1996 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 54–67, Philadelphia, Pennsylva-
nia, May 1996.

[32] Stefan Savage, Michael Burrows, Greg Nelson, Patric Sobalvarro,
and Thomas Anderson. Eraser: A dynamic race detector for multi-
threaded programs. InProceedings of the Sixteenth ACM Symposium
on Operating Systems Principles (SOSP), October 1997.

[33] Robert Endre Tarjan. Applications of path compressionon bal-
anced trees.Journal of the Association for Computing Machinery,
26(4):690–715, October 1979.

12


