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Abstract

When two parallel threads holding no locks in common acdess t
same memory location and at least one of the threads modifes t
location, a “data race” occurs, which is usually a bug. Tlapgy
describes the algorithms and strategies used by a debugmihg
called the Nondeterminator-2, which checks for data raceso-
grams coded in the Cilk multithreaded language. Like itslpces-
sor, the Nondeterminator, which checks for simple “deteaay”
races, the Nondeterminator-2 is a debugging tool, not dieeri
since it checks for data races only in the computation géegra
by a serial execution of the program on a given input.

We give an algorithm, AL-SETS, that determines whether the
computation generated by a serial execution of a Cilk progya a
given input contains a race. For a program that runs seifratiyne
T, accesse¥ shared memory locations, uses a totalndbcks,
and holds at most < n locks simultaneously, AL-SETSruns in
O(n*T a(V,V)) time andO(nkV) space, where is Tarjan’s func-
tional inverse of Ackermann’s function.

Since ALL-SETS may be too inefficient in the worst case, we
propose a much more efficient algorithm which can be used-to de
tect races in programs that obey the “umbrella” lockingigigee, a
programming methodology that is more flexible than simiiacid
plines proposed in the literature. We present an algoriBRELLY,
which detects violations of the umbrella disciplingdkT a(V,V))
time usingO(kV) space.

We also prove that any “abelian” Cilk program, one whose crit
ical sections commute, produces a determinate final statdsif
deadlock free and if it generates any computation which ta-da
race free. Thus, the Nondeterminator-2’s two algorithnms\eaify
the determinacy of a deadlock-free abelian program runom@
given input.
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cilk void foo3() {
Cilk_lock(&B);
X++;
Cilk_unlock(&B);

int x;
Cilk_lockvar A, B;

cilk void fool() {

Cilk_lock(&A); }
Cilk_lock(&B);
x += 5; cilk int main() {

Cilk_unlock(&B); Cilk_lock_init(&A);
Cilk_unlock(&A); Cilk_lock_init(&B);

} x = 0;

spawn fool();

spawn fo002();

spawn foo3();

sync;

printf("%d", x);

cilk void foo2() {
Cilk_lock(&A);
x -= 3;
Cilk_unlock(&A);

} }

Figure 1: A Cilk program with a data race. Cilk [3, 4, 6, 15, 20] is a
multithreaded parallel language based on C being develapdde MIT
Laboratory for Computer Science. Thpawn statement in a Cilk program
creates a parallel subprocedure, and shec statement provides control
synchronization to ensure that all spawned subprocedanes ¢completed.
The functionCilk_lock() acquires a specified lock, agd1lk_unlock()
releases a currently held lock.

1 Introduction

In a parallel multithreaded computationdata race exists if logi-
cally parallel threads access the same location, the twadsrhold
no locks in common, and at least one of the threads writesttoth
cation. A data race is usually a bug, because depending onHgow
threads are scheduled, the program may exhibit unexpeated,
deterministic behavior. If the two threads hold a lock in coom,
however, the nondeterminism is not usually a bug. By intodray
locks, the programmer presumably intends to allow the ldcké-
ical sections to be scheduled in either order, as long asatesgot
interleaved.

Figure lillustrates a data race in a Cilk program. The procesl
fool, f002, andfoo3 run in parallel, resulting in parallel accesses
to the shared variable. The accesses ool andfoo2 are pro-
tected by locka and hence do not form a data race. Likewise, the
accesses byool andfoo3 are protected by locB. The accesses
by foo2 andfoo3 are not protected by a common lock, however,
and therefore form a data race. If all accesses had beerciaote
by the same lock, only the value 3 would be printed, no matter h
the computation is scheduled. Because of the data raceyvhgwe
the value ofx printed bymain might be 2, 3, or 6, depending on
scheduling, since the statementsfisb2 andfoo3 are composed
of multiple machine instructions which may interleave,gibly re-
sulting in a lost update te.

Since a data race is usually a bug, automatic data-racetidetec
has been studied extensively. Static race detectors [2bcme-
times determine whether a program will ever produce a dat@ ra
when run on all possible inputs. Since static debuggersatdulty
understand the semantics of programs, however, most rtaetoles



are dynamic tools in which potential races are detectedraime

A locking discipline is a programming methodology that dic-

by executing the program on a given input. Some dynamic race tates a restriction on the use of locks. For example, manyranos

detectors perform a post-mortem analysis based on program e
cution traces [12, 18, 23, 26], while others perform an “be-ly”
analysis during program execution. On-the-fly debuggenectly
instrument memory accesses via the compiler [9, 10, 13,2129,

by binary rewriting [32], or by augmenting the machine’stuaco-
herence protocol [24, 30].

The race-detection algorithms in this paper are based didhe
determinator [13], which finds “determinacy races” in Cilkop
grams that do not use locks. The Nondeterminator executé& a C
program serially on a given input, maintaining an efficieBP*
bags” data structure to keep track of the logical seriealgdrela-
tionships between threads. For a Cilk program that runslberi
in time T and accesseg shared-memory locations, the Nonde-
terminator runs irO(Ta(V,V)) time andO(V) space, where is
Tarjan’s functional inverse of Ackermann’s function, wior all
practical purposes is at most 4.

The Nondeterminator-2, which is currently under developtme
finds data races in Cilk programs that use locks. This racectist
contains two algorithms, both of which use the same effict
bags data structure from the original Nondeterminator. fiits¢
of these algorithms, AL-SETS, is an on-the-fly algorithm which,
like most other race-detection algorithms, assumes thiataks are
held across parallel control statements, sucBgsm andsync.
The second algorithm, ®ELLY, is a faster on-the-fly algorithm,
but in addition to reporting data races as bugs, it also teEs
bugs some complex (but race-free) locking protocols.

The ALL-SETS algorithm executes a Cilk program serially on
a given input and either detects a data race in the compntatio
guarantees that none exist. For a Cilk program that runalkein
timeT, accesseg shared-memory locations, uses a total tifcks,
and holds at most < n locks simultaneously, AL-SETSruns in
O(nkT a(V,V)) time andO(nV) space. Tighter, more complicated
bounds on AL-SETswill be given in Section 2.

In previous work, Dinning and Schonberg’s “lock-coversj@
rithm [10] also detects all data races in a computation. The-A
SeTsalgorithm improves the lock-covers algorithm by genematjz
the data structures and techniques from the original Nenah#ha-
tor to produce better time and space bounds. Perkovic arehKel
[30] offer an on-the-fly race-detection algorithm that ‘pypacks”
on a cache-coherence protocol for lazy release consistanir
approach is fast (about twice the serial work, and the toos iin
parallel), but it only catches races that actually occuirdpa paral-
lel execution, not those that are logically present in thramatation.

Although the asymptotic performance bounds afLlASETSare
the best to date, they are a factombflarger in the worst case than
those for the original Nondeterminator. Th&BLLY algorithm is
asymptotically faster than 1A -SETS, and its performance bounds
are only a factor ok larger than those for the original Nondeter-
minator. For a Cilk program that runs serially in tirfie accesses
V shared-memory locations, and holds at mokicks simultane-
ously, the serial BELLY algorithm runs irO(kT a(V,V)) time and
O(kV) space. Since most programs do not hold many locks simul-
taneously, this algorithm runs in nearly linear time andcepd he
improved performance bounds come at a cost, however. Ratirer
detecting data races directlyRBLLY only detects violations of a
“locking discipline” that precludes data races.

adopt the discipline of acquiring locks in a fixed order scoesvbid
deadlock [19]. Similarly, the “umbrella” locking discipié pre-
cludes data races. It requires that each location be peatéxst the
same lock within every parallel subcomputation of the cotaton.
Threads that are in series may use different locks for theedam
cation (or possibly even none, if no parallel accesses pdout if
two threads in series are both in parallel with a third ancdedless
the same location, then all three threads must agree onla kel
for that location. If a program obeys the umbrella disciplia data
race cannot occur, because parallel accesses are alwagstedo
by the same lock. The BeLLY algorithm detects violations of the
umbrella locking discipline.

Savage et al. [32] originally suggested that efficient deingy
tools can be developed by requiring programs to obey a lgckin
discipline. Their Eraser tool enforces a simple discipiimahich
any shared variable is protected by a single lock througltioait
course of the program execution. Whenever a thread accasses
shared variable, it must acquire the designated lock. Tiecaline
precludes data races from occurring, and Eraser finds idokbf
the discipline inO(kT) time andO(kV) space. (These bounds are
for the serial work; Eraser actually runs in parallel.) Erasnly
works in a parallel environment containing several lindaieads,
however, with no nested parallelism or thread joining asisit-
ted in Cilk. In addition, since Eraser does not understaedst:
ries/parallel relationship of threads, it does not fullydarstand at
what times a variable is actually shared. Specifically, itrtgtically
guesses when the “initialization phase” of a variable endsthe
“sharing phase” begins, and thus it may miss some data races.

In comparison, our BELLY algorithm performs nearly as effi-
ciently, is guaranteed to find all violations, and imporkansup-
ports a more flexible discipline. In particular, the umtaedisci-
pline allows separate program modules to be composed iasseri
without agreement on a global lock for each location. Fomexa
ple, an application may have three phases—an initializatf@se,

a work phase, and a clean-up phase—which can be developed inde
pendently without agreeing globally on the locks used tagqatdo-
cations. If a fourth module runs in parallel with all of theseases

and accesses the same memory locations, however, the tanbrel
discipline does require that all phases agree on the lockdoh
shared location. Thus, although the umbrella disciplinenage
flexible than Eraser’s discipline, it is more restrictivathwhat a
general data-race detection algorithm, such as-SETS, permits.

Most dynamic race detectors, likeLA-SETSand BRELLY, at-
tempt to find, in the terminology of Netzer and Miller [2&p-
parent data races—those that appear to occur in a computation ac-
cording to the parallel control constructs—rather theasible data
races—those that can actually occur during program exeatutioe
distinction arises, because operations in critical sastinay affect
program control depending on the way threads are schedlitec,
an apparent data race between two threads in a given congputat
may not actually be feasible, because the computatiorf sy
change if the threads were scheduled in a different ordemceSi
the problem of exactly finding feasible data races is contjmuta
ally difficult,! attention has naturally focused on the easier (but still
difficult) problem of finding apparent data races.

1Even in simple models, finding feasible data races is NP-J2ad



For some classes of programs, however, a feasible data mace o
a given input exists if and only if an apparent data race xiist
every computation for that input. To check for a feasibleadace
in such a program, it suffices to check a single computation fo
an apparent data race. One class of programs having this prop
erty are “abelian” programs in which critical sections paied by
the same lock “commute™: intuitively, they produce the sagfie
fect regardless of scheduling. For a computation genetayea
deadlock-free abelian program running on a given input, roee
that if no data races exist in that computation, then thenarags
determinate: all schedulings produce the same final result. For
abelian programs, therefore,LA-SETS and BRELLY can verify
the determinacy of the program on a given input. Our resuits o
abelian programs formalize and generalize the claims ohiDin
and Schonberg [10, 11], who argue that for “internally deiars-
tic” programs, checking a single computation suffices tecteall
races in the program.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the A -SETsalgorithm, and Section 3 presents the
BRELLY algorithm. Section 4 gives some empirical results obtained
by using the Nondeterminator-2 in itsLA-SETS and BRELLY
modes. Section 5 defines the notion of abelian programs avepr
that data-race free abelian programs produce determinatgts.
Section 6 offers some concluding remarks.

2  The All-Sets Algorithm

In this section, we present theLA-SETsalgorithm, which detects
data races in Cilk computations that use locks. We first givees
background on Cilk and the series-parallel control stmectf its
computations. We then discuss locking in Cilk. Finally, wegent
the ALL-SETsalgorithm itself, show that it is correct, and analyze
its performance.

The computation of a Cilk program on a given input can be
viewed as a directed acyclic graph, dag, in which vertices are
instructions and edges denote ordering constraints intidmseon-
trol statements. A Cillspawn statement generates a vertex with
out-degree 2, and a Cikkync statement generates a vertex whose
in-degree is 1 plus the number of subprocedures syncingaat th
point. Normal execution of serial code results in a lineaaicof
vertices, which we call ¢ghread. A thread cannot contain parallel
control statements.

The computation dag generated by a Cilk program can itself be
represented as a binasgries-parallel parse tree, as illustrated in
Figure 2 for the program in Figure 1. In the parse tree of a Cilk
computation, leaf nodes represent threads. Each inteot is
either anS-node if the computation represented by its left subtree
logically precedes the computation represented by its sghtree,
or aP-nodeif its two subtrees’ computations are logically in paral-
lel. (We use the term “logically” to mean with respect to teeas-
parallel control, not with respect to any additional symctization
through shared variables.)

A parse tree allows the series/parallel relation between tw
threadse; ande, to be determined by examining their least com-
mon ancestor, which we denote bga(e,e). If LCA(e, &) is a
P-node, the two threads are logically in parallel, which eeate
bye || . If LCA(e1, ) is an S-node, the two threads are logically
in series, which we denote & < e, assuming tha¢; precedes
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Figure 2: The series-parallel parse tree for the Cilk program in Figur
abbreviated to show only the accesses to shared locatidBach leaf is
labeled with a code fragment that accessasith the lock set for that access
shown above the code fragment.

& in a left-to-right depth-first treewalk of the parse treeeHeries
relation< is transitive.

Release 5.1 of Cilk [6] provides the user with mutual-exidos
locks, including the commangiilk_lock () to acquire a specified
lock andCilk_unlock() to release a currently held lock. Any
number of locks may be held simultaneously. For a given lack
the sequence of instructions fromCalk_lock (&A) to its corre-
spondingCilk unlock (&A) is called acritical section, and we
say that all accesses in the critical section@aected by lock A.

We assume in this paper, as does the general literaturearlyat
lock/unlock pair is contained in a single thread, and thudihg a
lock across a parallel control construct is forbiddehe lock set

of an access is the set of locks held by the thread when thescce
occurs. Thdock set of several accesses is the intersection of their
respective lock sets.

If the lock set of two parallel accesses to the same locaton i
empty, and at least one of the accesses VgRaTE, then a data
race exists. To simplify the description and analysis of ridwee
detection algorithm, we shall use a small trick to avoid tkeee
condition for a race that “at least one of the accessesngiaE.”
The idea is to introduce take lock for read accesses called the
R-LOCK, which is implicitly acquired immediately beforereAD
and released immediately afterwards. The fake lock behfaoes
the race detector’s point of view just like a normal lock, duting
an actual computation, it is never actually acquired andassd
(since it does not actually exist). The usersf ock simplifies the
description and analysis oflA -SETS, because it allows us to state
the condition for a data race more succincifythe lock set of two
parallel accesses to the same location is empty, then a data r
exists. By this condition, a data race (correctly) does not exist for
two read accesses, since their lock set containgtheck.

The ALL-SETsalgorithm is based on the efficient SRAGs al-
gorithm used by the original Nondeterminator to detectrieitgacy
races in Cilk programs that do not use locks. The gB¥s algo-
rithm executes a Cilk program on a given input in serial, ddjyst
order. This execution order mirrors that of normal C progagav-
ery subcomputation that is spawned executes completetydtfe
procedure that spawned it continues. While executing togrpm,
SPBAGS maintains an SP-bags data structure based on Tarjan’s
nearly linear-time least-common-ancestors algorithnj.[BBe SP-

2The Nondeterminator-2 can still be used with programs factvthis assumption
does not hold, but the race detector prints a warning, aneé sanoes may be missed.
We are developing extensions of the Nondeterminator-Xsadien algorithms that
work properly for programs that hold locks across paralbeltml constructs.



Accesg]) in threade with lock setH

1 for each(€,H’) € lockersl]

2 do if €| eandH'NH ={}

3 then declare a data race

4  redundant— FALSE

5 for each(¢,H’) € lockersl]

6 do ifé <eandH’' D H

7 then lockersl] < lockergl] — {(¢/,H")}
8 if |leandH’ CH

9 then redundant— TRUE
10 if redundant= FALSE
11 then lockersl] < lockergl] U {(e,H)}

Figure 3: The ALL-SETsalgorithm. The operations for thgpawn, sync,
andreturn actions are unchanged from the 8Rss algorithm on which
ALL-SETSis based. Additionally, th€ilk_lock() andCilk_unlock()
functions must be instrumented to add and remove locks fheniack set
H appropriately.

bags data structure allows SAGsto determine the series/parallel
relation between the currently executing thread and anyiqusly
executed thread i@(a(V,V)) amortized time, wher¥ is the size

of shared memory. In addition, SBAGS maintains a “shadow
space” where information about previous accesses to eaatido

is kept. This information is used to determine previousateethat
have accessed the same location as the current thread. Hér a C
program that runs iff time serially and referenc&sshared mem-
ory locations, the SBAGS algorithm runs inO(T a(V,V)) time
and use®(V) space.

The ALL-SETs algorithm also uses the SP-bags data structure
to determine the series/parallel relationship betweeeatts. Its
shadow spacéckersis more complex than the shadow space of
SP-BAGS, however, because it keeps track of which locks were
held by previous accesses to the various locations. The entr
lockersl] stores a list oflockers: threads that access locatibn
each paired with the lock set that was held during the acciss.
(e,H) € lockerdl], then location is accessed by threadwhile it
holds the lock se.

As an example of what the shadow sp#mekersmay contain,
consider a threadthat performs the following:

Cilk_lock(&A); Cilk_lock(&B);
READ(I)

Cilk_unlock(&B); Cilk_unlock(&A);
Cilk_lock(&B); Cilk_lock(&C);
WRITE(I)

Cilk_unlock(&C); Cilk_unlock(&B);

For this example, the listockergl] contains two lockers—
(e, {4,B,R-LOCK}) and(e,{B,C}).

The ALL-SETsalgorithm is shown in Figure 3. Intuitively, this
algorithm records all lockers, but it is careful to prunewedant
lockers, keeping at most one locker per distinct lock setekil—3
check to see if a data race has occurred and report any viodati
Lines 5-11 then add the current locker to thekersshadow space
and prune redundant lockers.

Before proving the correctness of A-SETS, we restate two im-
portant lemmas from [13].

Lemma 1 Suppose that three threads &, and g execute in or-
der in a serial, depth-first execution of a Cilk program, anggose
that g < ey and g || e3. Then, we havex| es. [ ]

Lemma 2 (Pseudotransitivity of ||) Suppose that three threads
€1, &, and g execute in order in a serial, depth-first execution of a
Cilk program, and suppose that 8 &> and & || e3. Then, we have
e || es. L]

We now prove that the A -SETSalgorithm is correct.

Theorem 3 The ALL-SETS algorithm detects a data race in a
computation of a Cilk program running on a given input if andyo
if a data race exists in the computation.

Proof: (=) To prove that any race reported by thelASETSsal-
gorithm really exists in the computation, observe that elecker
added tdockergl] in line 11 consists of a thread and the lock set
held by that thread when it accesdesThe algorithm declares a
race when it detects in line 2 that the lock set of two paraltel
cesses (by the current threaénd one fromlockersl]) is empty,
which is exactly the condition required for a data race.

(«) Assuming a data race exists in a computation, we shall show
that a data race is reported. If a data race exists, then wehcarse
two threads; andey such thagy is the last thread befo in the
serial execution which has a data race veghIf we let H; andH»
be the lock sets held B andey, respectively, then we haeg || e
andH; NHy = {}

We first show that immediately aftef executeslockersl] con-
tains some threads that races withe,. If (e1,Hp) is added to
lockergl] in line 11, therg, is such arez. Otherwise, theedundant
flag must have been set in line 9, so there must exist a locker
(e3,Hs) € lockersl] with e3 || e andH3 C Hy. Thus, by pseudo-
transitivity (Lemma 2), we haves || e;. Moreover, sincédz C Hj
andH; NHy = {}, we haveHz N Hz = {}, and thereforess, which
belongs tdockergl], races withe,.

To complete the proof, we now show that the lockey,Hs) is
not removed frontockersl] between the times that ande;, are ex-
ecuted. Suppose to the contrary ttest Hs) is a locker that causes
(e3, H3) to be removed frontockergl ] in line 7. Then, we must have
e3 < eq andHz O Hy, and by Lemma 1, we ha || 2. Moreover,
sinceHz O Hy andHz3 N Hy = {}, we haveH, N Hy = {}, contra-
dicting the choice o€, as the last thread befoeg to race withe,.

Therefore, threade;, which races withey, still belongs to
lockergl] whene, executes, and so lines 1-3 report arace. m

In Section 1, we claimed that for a Cilk program that execirtes
time T on one processor, referencésshared memory locations,
uses a total oh locks, and holds at mo#t <« n locks simulta-
neously, the AL-SETsalgorithm can check this computation for
data races itO(nT a(V,V)) time and usingd(nkV) space. These
bounds, which are correct but weak, are improved by the iext t
orem.



Theorem 4 Consider a Cilk program that executes in time T on
one processor, references V shared memory locations, uses a
tal of n locks, and holds at most k locks simultaneously. The
ALL-SETs algorithm checks this computation for data races in
O(TL(k+a(V,V))) time and QKLV) space, where L is the maxi-
mum of the number of distinct lock sets used to access angypart
lar location.

Proof: First, observe that no two lockerslockershave the same
lock set, because the logic in lines 5-11 ensure thatdf H’, then
locker(e,H) either replace¢e’,H’) (line 7) or is considered redun-
dant (line 9). Thus, there are at masiockers in the listockergl].
Each lock set takes at mo8tk) space, so the space needed for
lockersis O(kLV). The length of the listockergl] determines the
number of series/parallel relations that are tested. Imtrst case,
we need to performl2such tests (lines 2 and 6) ant 2et oper-
ations (lines 2, 6, and 8) per access. Each series/pasieiakes
amortizedO(a(V,V)) time, and each set operation tak&) time.
Therefore, the AL-SETs algorithm runs inO(TL(k+ a(V,V)))
time. [ |

The looser bounds claimed in Section 1Q@f*T a(V,V)) time
and O(n*V) space fork < n follow becauseL < 3X o (1)
O(nk/k!). As we shall see in Section 4, however, we rarely see
the worst-case behavior given by the bounds in Theorem 4.

3 The Brelly Algorithm

The umbrella locking discipline requires all accesses topsmtic-
ular location within a given parallel subcomputation to betected
by a single lock. Subcomputations in series may each use-a dif
ferent lock, or even none, if no parallel accesses to thetitnta
occur within the subcomputation. In this section, we folgneke-
fine the umbrella discipline and present thee& LY algorithm for
detecting violations of this discipline. We prove that theeg LY
algorithm is correct and analyze its performance, which lvesvsto
be asymptotically better than that oL A-SETS.

The umbrella discipline can be defined precisely in term$ief t
parse tree of a given Cilk computation. Ambrella of accesses to
alocationl is a subtree rooted at a P-node containing acces$s to
both its left and right subtrees, as is illustrated in Fighirdn um-
brella of accesses fais protected if its accesses have a nonempty
lock set andinprotected otherwise. A program obeys thienbrella
locking disciplineif it contains no unprotected umbrellas. In other
words, within each umbrella of accesses to a locdtj@ll threads
must agree on at least one lock to protect their accesses to

The next theorem shows that adherence to the umbrella liezip
precludes data races from occuring.

Theorem 5 A Cilk computation with a data race violates the um-
brella discipline.

Proof: Any two threads involved in a data race must have a P-
node as their least common ancestor in the parse tree, lectteys
operate in parallel. This P-node roots an unprotected utabre
since both threads access the same location and the lockfsets
the two threads are disjoint. [ |

The umbrella discipline can also be violated by unusualdbta-
race free, locking protocols. For instance, suppose thatatibn

Figure 4: Three umbrellas of accesses to a locationn this parse tree,
each shaded leaf represents a thread that accesEesh umbrella of ac-
cesses tbis enclosed by a dashed line.

is protected by three locks and that every thread alwaysirsqu
two of the three locks before accessing the location. Ndsilogk
protects the location, but every pair of such accesses igattyiex-
clusive. The AL-SeTsalgorithm properly certifies this bizarre ex-
ample as race-free, whereag®B Ly detects a discipline violation.
In return for disallowing these unusual locking protocaeidich in
any event are of dubious value)RBLLY checks programs asymp-
totically much faster than AL-SETS.

Like ALL-SETS, the BRELLY algorithm extends the SBAGS
algorithm used in the original Nondeterminator and usesrhe
Lock fake lock for read accesses (see Section 2). Figure 5 gives
pseudocode for BELLY. Like the SPBAGS algorithm, BRELLY
executes the program on a given input in serial depth-firdérpr
maintaining the SP-bags data structure so that the seaiad4l
relationship between the currently executing thread adoaevi-
ously executed thread can be determined quickly. Like the-A
SETsalgorithm, BRELLY also maintains a séi of currently held
locks. In addition, RELLY maintains two shadow spaces of shared
memory: accessoy which stores for each location the thread that
performed the last “serial access” to that location; kxatts which
stores the lock set of that access. Each entry iatitessospace is
initialized to the initial thread (which logically precesiall threads
in the computation), and each entry in lbeksspace is initialized
to the empty set.

Unlike the ALL-SETs algorithm, BRELLY keeps only a single
lock set, rather than a list of lock sets, for each shared-ongmho-
cation. For a locatioh, each lock inockgl] potentially belongs to
the lock set of the largest umbrella of accessdghat includes the
current thread. The BeLLY algorithm tags each lock € lockd]]
with two pieces of information: a threawbnlockefh] and a flag
alivelh]. The threachonlockefh] is a thread that accesskesvith-
out holdingh. The flagalive[h] indicates whetheh should still be
considered to potentially belong to the lock set of the uridordo
allow reports of violations to be more precise, the algonitkills”
alockh by settingalive[h] < FALSEwhen it determines th&tdoes
not belong to the lock set of the umbrella, rather than sinnply
moving it fromlockg]l].

Whenever BRELLY encounters an access by a thredd a lo-
cationl, it checks for a violation with previous accessed,tap-
dating the shadow spaces appropriately for future referené
accessoll] < e, we say the access issarial access, and the algo-
rithm performs lines 2-5, settirigcks|] «+— H andaccessoft] < e,
as well as updatingonlockerh] andalive[h| appropriately for each
he H. If accessoji] || e, we say the access isparallel access,
and the algorithm performs lines 6-17, killing the lockdaokg! ]



AccEesg]l) in threade with lock setH

1 ifaccessoi] <e
2 then > serial access
locks]] < H, leavingnonlockefh] with its old
nonlocker if it was already ifockdl] but
settingnonlockefh] <— accessojl] otherwise

3 for each lockh € lockq] ]

4 do alivelh] «— TRUE

5 accessofl] « e

6 else > parallel access

7 for each lockh € lockgl] —H

8 do if alivelh] = TRUE

9 then alive[h] < FALSE
10 nonlockefh] < e
11 for each lockh € lockgl]NH
12 do if alivelh] = TRUE andnonlockefh] || e
13 then alive[h] < FALSE
14 if no locks inlocksl] are alive (oockgl] = {})
15 then report violation on involving

e andaccessoj |

16 for each lockh € H Nlockgl]
17 do report access tbwithouth

by nonlockefh]

Figure 5. The BrRELLY algorithm. While executing a Cilk program in
serial depth-first order, at each access to a shared-memaatidnl, the
code shown is executed. Not shown are the updatés, tine set of cur-
rently held set of locks, which occur whenever locks are meduor re-
leased. To determine whether the currently executing thiea series or
parallel with previously executed threadsRB.LY uses the SP-bags data
structure from [13].

that do not belong to the current lock $¢t(lines 7—10) or whose
nonlockers are in parallel with the current thread (lines1B). If
BRELLY discovers in line 14 that there are no locks left alive in
lockdl] after a parallel access, it has discovered an unprotected um
brella, and it reports a discipline violation in lines 15-17

When reporting a violation, BELLY specifies the locatioh the
current threade, and the threadccessofl]. It may be thate and
accessoll] hold locks in common, in which case the algorithm uses
the nonlocker information in lines 16—17 to report threadsciv
accessetlwithout each of these locks.

Figure 6 illustrates how BELLY works. The umbrella contain-
ing threadse;, e, ande; is protected by locka but not by lock
B, which is reflected idockdl] after threades executes. The um-
brella containingss andeg is protected bys but not byA, which is
reflected inlockql] after threadss executes. During the execution
of threadeg, A is killed andnonlockefA] is set toes, according to
the logic in lines 7-10. When; executesp remains as the only
lock alive inlockgl] and nonlockefs] is e4 (due to line 2 during
e5's execution). Sincey || e7, lines 11-13 kills, leaving no locks
alive inlockdl], properly reflecting the fact that no lock protects the
umbrella containing threads throughe;. Consequently, the test
in line 14 causes BELLY to declare a violation at this point.
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thread | accessqft] lockgl] access type
initial | ep {

& e {A(e0),B(en)}  serial

€ S {A(e0),B(€2)} parallel

& e {A(e0),B(e2)} parallel

& € {} serial

=S (=3 {A(e4),B(e4)} serial

& & {A(es),B(e4)} parallel

& & {A(es),B(e4)} parallel

Figure 6: A sample execution of the ®ELLY algorithm. We restrict our
attention to the algorithm’s operation on a single locatiorin the parse
tree, each leaf represents an accedsand is labeled with the thread that
performs the access (e.g1) and the lock set of that access (e{n,B}).
Umbrellas are enclosed by dashed lines. The table dispteysaiues of
accessoll| andlockg]] after each thread’s access. The nonlocker for each
lock is given in parentheses after the lock, and killed loaies underlined.
The “access type” column indicates whether the access isfigdar serial
access.

The following two lemmas, which will be helpful in provingeh
correctness of BELLY, are stated without proof.

Lemma 6 Suppose athread e performs a serial access to location
| during an execution oBRELLY. Then all previously executed
accesses to | logically precede e in the computation. [ |

Lemma 7 TheBRELLY algorithm maintains the invariant that for
any location | and lock k& lockdl], the thread nonlockeh] is either
the initial thread or a thread that accessed | without holgiln =

Theorem 8 TheBRELLY algorithm detects a violation of the um-
brella discipline in a computation of a Cilk program runniog a
given input if and only if a violation exists.

Proof: We first show that BELLY only detects actual violations
of the discipline, and then we argue that no violations aresed.
In this proof, we denote blpcks'[l] the set of locks idockgl] that
haveTRUE alive flags.
(=) Suppose that BELLY detects a violation caused by a thread
e and letey = accessojl] whene executes. Since we haeg || e,
it follows that p = LCA(ep,€) roots an umbrella of accesseslto
becausep is a P-node and it has an accesd 1o both subtrees.
We shall argue that the lock set of the umbrella rooted ap is
empty. Since BRELLY only reports violations whelocks (1] = {},
it suffices to show thatl C locks'[I] at all times aftery executes.
Sincegy is a serial access, lines 2-5 calseks ||| to be the lock
set ofep. At this point, we know thaty C locks'[l], becaus&) can
only contain locks held by every accessia subtree. Suppose that
alockhis killed (and thus removed frotocks'[1]), either in line 9
or line 13, when some threafi executes a parallel access between



the times thaty ande execute. We shall show that in both cases
h¢U, and sdJ C locks'[l] is maintained.

In the first case, if thread kills hin line 9, it does not holdh,
and thush ¢ U.

In the second case, we shall show thatthe thread stored in
nonlockefh] whenhis killed, is a descendant qf, which implies
thath ¢ U, because by Lemma W accesses without the lockh.
Assume for the purpose of contradiction thais not a descendant
of p. Then, we haveca(w,ey) = LCA(w,€), which implies that
w || &g, becausev || €. Now, consider whetheronlockefh] was set
tow in line 10 or in line 2 (not counting whenonlockerh] is left
with its old value in line 2). If line 10 setsonlockefh] < w, then
w must execute beforey, since otherwisew would be a parallel
access, and lock would have been killed in line 9 by beforee
executes. By Lemma 6, we therefore have the contradictiah th
W < ep. If line 2 setsnonlockefh] <— w, thenw performs a serial
access, which must be prior to the most recent serial acgess b
By Lemma 6, we once again obtain the contradiction ¥hat e.

(<) We now show that if a violation of the umbrella discipline
exists, then RELLY detects a violation. If a violation exists, then
there must be an unprotected umbrella of accesses to adotati
Of these unprotected umbrellas, Tebe a maximal one in the sense
thatT is not a subtree of another umbrella of accessésdad let
p be the P-node that roofs. The proof focuses on the values of
accessojl| andlockdl] just afterp’s left subtree executes.

We first show that at this poingccessalt] is a left-descendant
of p. Assume for the purpose of contradiction tlhatessajl] is
not a left-descendant qf (and is therefore not a descendanpait
all), and letp’ = Lca(accessajl], p). We know thatp’ must be a
P-node, since otherwisecessojl ] would have been overwritten in
line 5 by the first access ip's left subtree. But thep’ roots an um-
brella which is a proper supersetDf contradicting the maximality
of T.

Sinceaccessojl] belongs top’s left subtree, no access ipis
right subtree overwritelockdl], as they are all logically in parallel
with accessoji]. Therefore, the accessesjis right subtree may
only kill locks in locks]]. It suffices to show that by the time all
accesses ip's right subtree execute, all locks lackg|] (if any)
have been killed, thus causing a race to be declaredh hetsome
lock inlocks [I] just after the left subtree qf completes.

SinceT is unprotected, an access ltaunprotected byh must
exist in at least one of's two subtrees. If some accessltds
not protected byh in p’s right subtree, them is killed in line 9.
Otherwise, leget be the most-recently executed threadis left
subtree that performs an access ot protected by. Let€e be the
thread inaccessofl] just aftergef; executes, and lefign be the first
access tbin the right subtree op. We now show that in each of the
following cases, we haveonlockefh] || &ight Whenegn: executes,
and thushis killed in line 13.

Case 1: Threa@yet is a serial access. Just aftgg executes,
we haveh ¢ lockgl] (by the choice oBgs;) andaccessoll| = gt
Therefore, wherh is later placed ifocksl] in line 2, nonlockefh]
is set togest. Thus, we haveonlockefh] = et || &right-

Case 2: Threaaes is a parallel access arfue lockdl] just
beforeees; executes. Just aftef executes, we havi € lockg]l]
and alive[h] = TRUE, sinceh € lockgl] when gt executes and
all accesses tbbetweeng andegy; are parallel and do not place
locks intolockgl]. By pseudotransitivity (Lemma 2§ || gest and

8eft || Eight implies€ || &ignt. Note thate’ must be a descendant of
p, since if it were not,T would be not be a maximal umbrella of
accesses th Let€’ be the most recently executed thread before or
equal togef that killsh. In doing sog’ setsnonlockerth] < €" in

line 10. Now, since botle andeggs; belong top’s left subtree and

¢’ follows € in the execution order and comes before or is equal
to geft, it must be tha€’ also belongs t@'s left subtree. Conse-
quently, we hav@onlocketh] = €' || &ignt.

Case 3: Thread is a parallel access arlZ lockdl] just be-
fore gef executes. Whehis later added téocks] ], its nonlockefh]
is set toe. As above, by pseudotransitivit, || @ert andeer || &ight
impliesnonlockefh] = € || &ignt.

In each of these casamnlockerfh] || &ight still holds whengsight
executes, sinceef, by assumption, is the most recent thread to
accesd without h in p's left subtree. Thush is killed in line 13
whenegn: executes. [ ]

Theorem 9 On a Cilk program which on a given input executes
serially in time T, uses V shared-memory locations, and shold
at most k locks simultaneously, tlBRELLY algorithm runs in
O(KT a(V,V)) time and @kV) space.

Proof: The total space is dominated by tloeks shadow space.
For any location, the BRELLY algorithm stores at mostlocks in
locksl] at any time, since locks are placeddatks|] only in line 2
and|H| < k. Hence, the total space &kV).

Each loop in Figure 5 take®(k) time if lock sets are kept in
sorted order, excluding the checkingrafnlockefh] || ein line 12,
which dominates the asymptotic running time of the alganitirhe
total number of timesonlockefh] || eis checked over the course of
the program is at mo$tT, requiringO(kT a(V,V)) time. [ |

4 Experimental Results

We are in the process of implementing both theLASETS and
BRELLY algorithms as part of the Nondeterminator-2 debugging
tool. Our experiences are therefore highly preliminarythis sec-
tion, we describe our initial results from running these &igo-
rithms on four Cilk programs that use locks. Our implemeatet
of ALL-SETsand BRELLY have not yet been optimized, and so bet-
ter performance than what we report here is likely to be jpbssi

According to Theorem 4, the factor by whichLA-SETS slows
down a program is roughl@(LKk) in the worst case, wheteis the
maximum number of distinct lock sets used by the program when
accessing any particular location, dnid the maximum number of
locks held by a thread at one time. According to Theorem 9, the
worst-case slowdown factor forfELLY is about®(k). In order
to compare our experimental results with the theoreticainks,
we characterize our four test programs in terms of the paesie
andL:3

maxflow: A maximum-flow code based on Goldberg's push-
relabel method [16]. Each vertex in the graph contains a |Bek-
allel threads perform simple operations asynchronouslygraph
edges and vertices. To operate on a vettex thread acquires’s
lock, and to operate on an ed@g V), the thread acquires botls

3These characterizations do not count the implicit “fake’ock used by the de-
tection algorithms.



Parameters Time (sec.) Slowdown
program | input k L | orig. ALL. BR.|ALL. BR.
maxflow | sp. 1K 2 32| 0.05 30 3| 590 66

sp.4K 2 64| 0.2 484 14| 2421 68
d. 256 2 256| 0.2 263 15| 1315 78
d. 512 2 512 2.0 7578 136 3789 68
n-body | 1K 1 1|06 a7 47 79 78
2K 1 1116 122 119 76 74
bucket | 100K 1 1| 0.3 22 22 74 73
rad iter. 1 2 65| 1.2 109 45 91 37
iter. 2 2 94| 1.0 179 45| 179 45
iter. 5 2 168| 2.8 773 94| 276 33
iter. 13 2 528/ 9.1 13123 559 1442 61

Figure 7: Timings of our implementations on a variety of programs and
inputs. (The input parameters are given as sparse/denseuanizer of ver-
tices formaxflow, number of bodies fon-body, number of elements for
bucket, and iteration number farad.) The parametek is the maximum
number of distinct lock sets used while accessing any peatidocation,
andk is the maximum number of locks held simultaneously. Runtimgs

for the original optimized code, for A -SETS, and for BRELLY are given,

as well as the slowdowns of 1A -SETsand BRELLY as compared to the
original running time.

lock andv’s lock (making sure not to introduce a deadlock). Thus,
for this application, the maximum number of locks held byra#u
is k=2, andL is at most the maximum degree of any vertex.
n-body: An n-body gravity simulation using the Barnes-Hut al-
gorithm [1]. In one phase of the program, parallel threads ta
build various parts of an “octtree” data structure. Each jsgoro-
tected by an associated lock, and the first thread to acduatédck
builds that part of the structure. As the program never hoidse
than one lock at a time, we hakte=L = 1.

bucket: A bucket sort [7, Section 9.4]. Parallel threads acquire
the lock associated with a bucket before adding elementsThis
algorithm is analogous to the typical way a hash table is ek
in parallel. For this program, we hate= L = 1.

rad: A 3-dimensional radiosity renderer running on a “maze”
scene. The original 75-source-file C code was developed in Be
gium by Bekaert et. al. [2]. We used Cilk to parallelize iteise
geometry calculations. Each surface in the scene has itdamkn
as does each “patch” of the surface. In order to lock a patersur-
face lock must also be acquired, so tkat 2, andL is the maximum
number of patches per surface, which increases at eactidtees
the rendering is refined.

Figure 7 shows the preliminary results of our experimentthen
test codes. These results indicate that the performanceLof A
SETSis indeed dependent on the paraméteEssentially no per-
formance difference exists betweenlASETSand BRELLY when
L =1, but ALL-SETS(Qets progressively worse ddncreases. On
all of our test programs, BELLY runs fast enough to be useful as
a debugging tool. In some cases,IASETSIs as fast, but in other
cases, the overhead ofLA-SETS s too extreme (iteration 13 of
rad takes over 3.5 hours) to allow interactive debugging.

5 Abelian Programs

By checking a single computation for the absence of detexoyin
races, the original Nondeterminator can guarantee thaltkgo@i-
gram without locking is determinate: it always producesdame

int x, y; cilk void bari() {
Cilk_lockvar A; Cilk_lock(&A);
X++;
cilk int main() { if (x == 1)
Cilk_lock_init(&A); y = 3;
x = 0; Cilk_unlock(&A);
spawn barl(); }
spawn bar2();
sync; cilk void bar2() {
printf("%d", y); Cilk_lock(&A);
¥ X++;
Cilk_unlock(&A);
y =4

}

Figure8: A Cilk program that generates a computation with an infdasib
data race on the variable

answer (when run on the same input). To date, no similar dhaisn
been made by any data-race detector for programs with ldtkes.
cannot make a general claim either, but in this section, tvednce

a class of nondeterministic programs for which a deternyicm

can be made. We prove that the absence of data races in a single
computation of a deadlock-free “abelian” program impliestithe
program (when run on the same input) is determinate. As a con-
sequence, AL-SETSand BRELLY can verify the determinacy of
abelian programs from examining a single computation. Weato
claim that abelian programs form an important class in aagtpal
sense. Rather, we find it remarkable that a guarantee ohdiegsry

can be made for any nontrivial class of nondeterministigmms.

Locking introduces nondeterminism intentionally, allogi
many different computations to arise from the same progsame
of which may have data races and some of which may not. Since
ALL-SETsand BRELLY examine only one computation, they can-
not detect data races that appear in other computationse M-
tlely, the data races that these algorithms do detect mightbdy
be infeasible, never occurring in an actual program exenulti

Figure 8 shows a program that exhibits an infeasible data tac
the computation generated whiear1 obtains lockA beforebar2,

a data race exists between the two updates tim the scheduling
wherebar2 obtains locka first, howeverpari1’s update toy never
occurs. In other words, no scheduling exists in which the tyo
dates toy happen simultaneously, and in fact, the final valug tf
always 4. Thus, the computation generated by the seriahdapt
scheduling, which is the one examined bylASETSand BRELLY,
contains an infeasible data race.

Deducing from a single computation that the program in Fegur
is determinate appears difficult. But not all programs arkasd to
understand. For example, the program from Figure 1 exhibits
race no matter how it is scheduled, and thereforel, ASETS and
BRELLY can always find a race. Moreover, if all accesses o
the program were protected by the same lock, no data racdd wou
exist in any computation. For such a program, checking desing
computation for the absence of races suffices to guarana¢ehh
program is determinate. The reason we can verify the deteayi
of this program from a single computation is because it ham*c
muting” critical sections.

The critical sections in the program in Figure 1 obey theofa!
ing strict definition of commutativity: Two critical sectisR; and
R commuteif, beginning with any (reachable) program stSt¢he
execution ofR; followed by R, yields the same stat® as the ex-



ecution ofR, followed by R;; and furthermore, in both execution
orders, each critical section must execute the identicplesece of
instructions on the identical memory locations. Thus, mby enust

instruction pointed to by its program counter is executele Te-
sulting sequence of instructions is referred to asxaaution of the
program.

the program state remain the same, the same accesses td share When an instruction executes in a run of a program, it affects

memory must occur, although the values returned by thossaes
may differ. The program in Figure 1 also exhibits “propergsted
locking.” Locks areproperly nested if any thread which acquires a
lock A and then a locle releases before releasing. We say that

a program isabelian if any pair of parallel critical sections that are
protected by the same lock commute, and all locks in the progr
are properly nested. The program in Figure 1 is an exampl@e of a
abelian program.

The idea that critical sections should commute is naturadrcA
grammer presumably locks two critical sections with the s#ak
not only because he intends them to be atomic, but because he i
tends them to “do the same thing” no matter in what order they
are executed. The programmer’s notion of commutativitysisally
less restrictive, however, than what our definition allofisst, both
execution orders of two critical sections may produce @icstpro-
gram states that the programmer nevertheless views asatantiv
Our definition insists that the program states be identiSakond,
even if they leave identical program states, the two exenwiders
may cause different memory locations to be accessed. Ouni-defi
tion demands that the same memory locations be accessed.

In practice, therefore, most programs are not abelian, ieltan
programs nevertheless form a nontrivial class of nondetestic
programs that can be checked for determinacy. For examible, a
programs that use locking to accumulate values atomicsligh
as a histogram program, fall into this class. Although aefiro-
grams form an arguably small class in practice, the guagané
determinacy that AL-SETSand BRELLY provide for them are not
provided by any other existing race-detectorsdoy class of lock-
employing programs. It is an open question whether a more gen
eral class of nondeterministic programs exists for whickfinient
race-detector can offer a provable guarantee of determinac

In order to study the determinacy of abelian programs, weé firs
give a formal multithreaded machine model that more précide-
scribes an actual execution of a Cilk program. We view the ab-
stract execution machine for Cilk as a (sequentially caestg21])
shared memory together with a collectiorimter preters, each with
some private state. (See [5, 8, 17] for examples of multithee
implementations similar to this model.) Interpreters ayaaini-
cally created during execution by easpawn statement. Théth
such child of an interpreter is given a uniqurterpreter name by
appending to its parent’s name.

When an instruction igxecuted by an interpreter, it maps the
current state of the multithreaded machine to a new stateinAn
terpreter whose next instruction cannot be executed is tsaliee
blocked. If all interpreters are blocked, the machinelédl ocked.

Although a multithreaded execution may proceed in parallel
consider a serialization of the execution in which only ontei-
preter executes at a time, but the instructions of the diffeinter-
preters may be interleavddThe initial state of the machine con-
sists of a single interpreter whose program counter pomtthe
first instruction of the program. At each step, a nondeteistin
choice among the current nonblocked interpreters is mamtkthee

4The fact that any parallel execution can be simulated inftghion is a conse-
quence of our choice of sequential consistency as the memaodg|.

the state of the machine in a particular way. To formalizeghe
fect of an instruction execution, we define imrstantiation of an
instruction to be a 3-tuple consisting of an instructipthe shared
memory locationt on whichl operates (if any), and the name of the
interpreter that executds We assume that the instantiation of an
instruction is a deterministic function of the machine estat

We define aregion to be either a single instantiation other than
aLOCK or UNLOCK instruction, or a sequence of instantiations that
comprise a critical section (including thedck and UNLOCK in-
stantiations themselve8).Every instantiation belongs to at least
one region and may belong to many. Since a region is a sequence
of instantiations, it is determined by a particular exemutof the
program and not by the program code alone. We definadkténg
count of a regionR to be the maximum number of locks that are
acquired inR and held simultaneously at some poinRn

The execution of a program can alternatively be viewed as se-
gquence of instantiations, rather than instructions, andnatan-
tiation sequence can always be generated from an instnusée
gquence. We formally define @mputation as a dag in which the
vertices are instantiations and the edges denote synehtani.
Edges go from each instantiation to the next instantiati@teted
by the same interpreter, from each spawn instantiationdditht
instantiation executed by the spawned interpreter, and fhe last
instantiation of each interpreter to the next sync inssdiain exe-
cuted by its parent interpreter.

We can now give a more precise definition of a data race.
data race exists in a computation if two logically parallel instanti-
ations access the same memory location without holdingahees
lock, and at least one of the accesses\grRaTE. Since a memory
location is a component of each instantiation, it is unamdbig
what it means for two instantiations to access the same nmyemor
location. In contrast, if the computation were construcedhat
the nodes were instructions, it would not be apparent fraerdtg
alone whether two nodes reference the same memory location.

A scheduling of a computatiorG is a sequence of instantiations
forming a permutation of the vertex set@f This sequence must
satisfy the ordering constraints of the dag, as well as Havgrtop-
erty that any twa.ocK instantiations that acquire the same lock are
separated by anNLOCK of that lock in between. If any scheduling
of any prefix ofG can be extended to a scheduling@®fwe say that
G is deadlock free. Not every scheduling d& corresponds to some
actual execution of the program. If a scheduling does cpoms to
an actual execution as defined by the machine model, we ell th
scheduling arue scheduling of G; otherwise it is dalse schedul-
ing. Since we are only concerned with the final memory states of
true schedulings, we define two schedulingssab beequivalent
if both are false, or both are true and have the same final memor
state. An alternate definition of commutativity, then, iatttwo re-
gionsR; andR, commute if, beginning with any reachable machine
stateS, the instantiation sequencBsR, andRyR; are equivalent.

Our study of the determinacy of abelian programs will pracee
as follows. Starting with a data-race free, deadlock-fremmuta-

A

5The instantiations within a critical section must be sérielated in the dag, as
we disallow parallel control constructs while locks arechel



tion G resulting from the execution of an abelian program, we first
prove that adjacent regions in a schedulingsafan be commuted.
Second, we show that regions which are spread out in a séhgdul
of G can be grouped together. Third, we prove that all schedslling
of G are true and yield the same final memory state. Finally, we
prove that all executions of the abelian program generatsame
computation and hence the same final memory state.

Lemma 10 (Reordering) Let G be a data-race free, deadlock-
free computation resulting from the execution of an abefiao
gram. Let X be some scheduling of G. If regionsaRd R ap-
pear adjacent in X, i.e., X X;R;RxXp, and R || Ry, then the two
schedulings 3R R>Xo and X% RoR1 X, are equivalent.

Proof: We prove the lemma by double induction on the nesting
count of the regions. Our inductive hypotheses is the tieas
stated for region®; of nesting count and regionsR, of nesting
countj.

Base casei. = 0. ThenR; is a single instantiation. Sind& and
R, are adjacent ixX and are parallel, no instantiation B can be
guarded by a lock that guarég, because any lock held Bi is not
released until afteR,. Therefore, sinc& is data-race free, either
R; andR, access different memory locationsRy is aREAD and
R, does not write to the location read ®¢. In either case, the
instantiations of each d®; andR, do not affect the behavior of the
other, so they can be executed in either order without affgcthe
final memory state.

Base casej = 0. Symmetric with above.

Inductive step: In generalR; of counti > 1 has the form
LOCK(A)---UNLOCK(A), and Ry, of count j > 1 has the form
LOCK(B)---UNLOCK(B). If A =B, thenR; andR, commute by
the definition of abelian. Otherwise, there are three ptessiises.

Case 1: Lockn appears iRy, and locks appears ifR;. This sit-
uation cannot occur, because it implies t@ats not deadlock free,
a contradiction. To construct a deadlock scheduling, wedale
X; followed by the instantiations dR; up to (but not including)
the firstLock(B). Then, we schedule the instantiationsRafun-
til a deadlock is reached, which must occur, sifecontains a
LOCK(A) (although the deadlock may occur before this instantia-
tion is reached).

Case 2: Locka does not appear iR,. We start with the se-
quenceX;RiR>Xo and commute pieces 8% one at a time withRy:
first, the instantiatiowNLOCK(A), then the (immediate) subregions
of Ry, and finally the instantiationock(A). The instantiations
LOCK(A) anduNLOCK(A) commute withR,, becausex does not
appear anywhere iR,. Each subregion oR; commutes withRp
by the inductive hypothesis, because each subregion has ie@st-
ing count tharR;. After commuting all ofR; pastR,, we have an
equivalent executioX; RoR1 Xs.

Case 3: Locks does not appear iR;. Symmetric to Case 2.m

Lemma 11 (Region grouping) Let G be a data-race free,
deadlock-free computation resulting from the executionaof

abelian program. Let X be some scheduling of G. Then, there ex

ists an equivalent scheduling Xf G in which the instantiations of
every region are contiguous.

Proof: We shall createX’ by grouping the regions iiX one at
a time. Each grouping operation will not destroy the grogpirf
already grouped regions, so eventually all regions will tmiged.
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LetRbe a noncontiguous region ¥ithat completely overlaps no
other noncontiguous regionsXh Since regiorRis noncontiguous,
other regions parallel witR must overlagR in X. We first remove
all overlapping regions which have exactly one endpointejad-
point is the boundingock or UNLOCK of a region) inR, where by
“in” R, we mean appearing ¥ between the endpoints & We
shall show how to remove regions which have only theit ock
in R. The technique for removing regions with only the@ck in
Ris symmetric.

Consider the partially overlapping regidwith the leftmost
UNLOCK in R. Then all subregions d8 which have any instanti-
ations insideR are completely insid® and are therefore contigu-
ous. We removeéS by moving each of its (immediate) subregions
in R to just left of R using commuting operations. L& be the
leftmost subregion o6 which is also inR. We can commuté&;
with every instructiorl to its left until it is just past the start d®.
There are three cases for the type of instructionif | is not a
LOCK or UNLOCK, it commutes withS; by Lemma 10 because it
is a region in parallel witls;. If | = Lock(B) for some locks,
thenS; commutes witH, becauses; cannot containock(B) or
UNLOCK(B). If I = uNLOCK(B), then there must exist a match-
ing LOCK(B) inside R, becauses is chosen to be the region with
the leftmostuNnLocCk without a matching.ock. Since there is a
matchingLock in R, the region defined by theoCck/UNLOCK pair
must be contiguous by the choiceRfTherefore, we can commute
S, with this whole region at once using Lemma 10.

We can continue to commufg to the left until it is just before
the start ofR. Repeat for all other subregions 8f left to right.
Finally, theunLocCKk at the end ofScan be moved to just befof®
because no otherock or uNLOCK of that same lock appears i
up to thatuNLOCK.

Repeat this process for each region overlapgtripat has only
anuNLockK in R. Then, remove all regions which have only their
LOCK in Rby pushing them to just aft& using similar techniques.
Finally, when there are no more unmatchemck or UNLOCK in-
stantiations irR, we can remove any remaining overlapping regions
by pushing them in either direction to just before or justei® The
regionR is now contiguous.

Repeating for each region, we obtain an execuk6equivalent
to X in which each region is contiguous. [ |

Lemma 12 Let G be a data-race free, deadlock-free computation
resulting from the execution of an abelian program. Themeve
scheduling of G is true and yields the same final memory state.

Proof: Let X be the execution that generateés ThenX is a true
scheduling ofG. We wish to show that any schedulifvgof G is
true. We shall construct a set of equivalent schedulings tfat
contain the schedulings andY, thus proving the lemma.

We construct this set using Lemma 11. D€tandY’ be the
schedulings ofG with contiguous regions which are obtained by
applying Lemma 11 tX andY, respectively. FronX" andY’, we
can commute whole regions using Lemma 10 to put their threads
in the serial depth-first order specified 8y obtaining schedulings
X" andY”. We haveX” = Y", because a computation has only one
serial depth-first scheduling. Thus, all scheduliXgx’, X" =Y",

Y', andY are equivalent. SincX is a true scheduling, so ¥, and
both have the same final memory state. [ |



Theorem 13 An abelian Cilk program that produces a deadlock-
free computation with no data races is determinate.

Proof: Let X be an execution of an abelian program that gener-
ates a data-race free, deadlock-free computaBoriLet Y be an
arbitrary execution of the same program. bHebe the computation
generated by, and letH; be the prefix oH that is generated by the
firsti instantiations o¥ . If H; is a prefix ofG for all i, thenH = G,
and therefore, by Lemma 12, executiodsandY have the same
final memory state. Otherwise, assume for contradictiohithis
the largest value off for which H; is a prefix of G. Suppose that
the (ig + 1)st instantiation ofY is executed by an interpreter with
namen. We shall derive a contradiction through the creation of a
new scheduling of G. We construcZ by starting with the firsig
instantiations o¥, and next adding the successotyf in G that is
executed by interpretar. We then complet& by adding, one by
one, any nonblocked instantiation from the remaining partf G.
One such instantiation always exists becaBsgdeadlock free. By
Lemma 12, the schedulingthat results is a true scheduling Gf
We thus have two true schedulings which are identical in tiséi §
instantiations but which differ in th@g + 1)st instantiation. In both
schedulings théip+ 1)st instantiation is executed by interpreter
But, the state of the machine is the same in Bo#ndZ after the
first i instantiations, which means that tfig + 1)st instantiation
must be the same for both, which is a contradiction. [ |

We state without proof one more lemma, which allows us to show
that ALL-SETSand BRELLY can give a guarantee of determinacy
for deadlock-free abelian programs.

Lemma 14 Let G be a computation generated by a deadlock-free
abelian program. If G is data-race free, then it is deadladef m

Corollary 15 If the ALL-SETSalgorithm detects no data races in
an execution of a deadlock-free abelian Cilk program, thengro-
gram running on the same input is determinate.

Proof: Combine Theorems 3 and 13 and Lemma 14. [ ]

Corollary 16 Ifthe BRELLY algorithm detects no violations of the
umbrella discipline in an execution of a deadlock-free &reCilk
program, then the program run on the same input is deterrainat

Proof: Combine Theorems 5, 8, and 13 and Lemma 14. m

6 Conclusion

Although ALL-SETSs and BRELLY are fast race-detection algo-
rithms, many practical questions remain as to how to usestaks
gorithms to debug real programs. In this section, we disouss
early experiences in using the Nondeterminator-2, whichectly
provides both algorithms as options, to debug Cilk programs

A key decision by Cilk programmers is whether to adopt the um-
brella locking discipline. A programmer might first debugtlwi
ALL-SETS, but unless he has adopted the umbrella discipline, he
will be unable to fall back on BELLY if A LL-SETSseems too slow.
We recommend that programmers use the umbrella discipiine i
tially, which is good programming practice in any event, anty
use ALL-SETSIf they are forced to drop the discipline.
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The Nondeterminator-2 reports any apparent data race as a
bug. As we have seen, however, some data races are infeasi-
ble. We have experimented with ways that the user can infbem t
Nondeterminator-2 that certain races are infeasible, abtkie de-
bugger can avoid reporting them. One approach we have #ited i
allow the user to “turn off” the Nondeterminator-2 in centpieces
of code using compiler pragmas and other linguistic mecmasi
Unfortunately, turning off the Nondeterminator-2 reqgsitee user
to check for data races manually between the ignored accasse
all other accesses in the program. A better strategy hastbegre
the user fake locks—locks that are acquired and releasedimnly
debugging mode, as in the impligitLock fake lock. The user can
then protect accesses involved in apparent but infeasibésrusing
a common fake lock. Fake locks reduce the number of falsetepo
made by the Nondeterminator-2, and they require the useate m
ually check for data races only between critical section&dd by
the same fake lock.

Another cause of false reports is “publishing.” One threlbat a
cates a heap object, initializes it, and then “publishe$&yiatom-
ically making a field in a global data structure point to thevne
object so that the object is now available to other threddsldgi-
cally parallel thread now accesses the object in paralteutyh the
global data structure, an apparent data race occurs betivean-
tialization of the object and the access after it was pubtistFake
locks do not seem to help much, because it is hard for thelizitir
to know all the other threads that may later access the olgadt
we do not wish to suppress data races among those later escess
We do not yet have a good solution for this problem.

With the BRELLY algorithm, some programs may generate many
violations of the umbrella discipline that are not causedaby
tual data races. We have implemented several heuristickein t
Nondeterminator-2’s BELLY mode to report straightforward data
races and hide violations that are not real data races whepes-
sible.

False reports are not a problem when the program being de-
bugged is abelian, but programmers would like to know whethe
an ostensibly abelian program is actually abelian. Dinrang
Schonberg give a conservative compile-time algorithm teckhif
a program is “internally deterministic” [10], and we havevag
thought to how the abelian property might likewise be coveser
tively checked. The parallelizing compiler techniques dafidrd
and Diniz [31] may be applicable.

We are currently investigating versions of LA-SETS and
BRELLY that correctly detect races even when parallelism is al-
lowed within critical sections. A more ambitious goal is tetekct
potential deadlocks by dynamically detecting the usert®etance
with a flexible locking discipline that precludes deadlacks
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