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ABSTRACT
We previously developed a social mechanism for distributed repu-
tation management, in which an agent combines testimonies from
several witnesses to determine its ratings of another agent. How-
ever, that approach does not fully protect against spurious ratings
generated by malicious agents. This paper focuses on the problem
of deception in testimony propagation and aggregation. We intro-
duce some models of deception and study how to efficiently detect
deceptive agents following those models. Our approach involves a
novel application of the well-known weighted majority technique
to belief function and their aggregation. We describe simulation
experiments to study the number of apparently accurate witnesses
found in different settings, the number of witnesses on prediction
accuracy, and the evolution of trust networks.

Keywords
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1. INTRODUCTION
Reputation management is attracting much attention in the multi-

agent systems community [11, 12, 13, 15, 19, 20]. We consider the
problem of distributed reputation management in large distributed
systems of autonomous and heterogeneous agents. In such systems,
it is generally inadvisable to assume that there are universally ac-
cepted trustworthy authorities who can declare the trustworthiness
of different agents. Consequently, agents must rely on social mech-
anisms for accessing the reputation of other, unknown agents.

The basic idea is that the agents should help each other weed out
undesirable (selfish, antisocial, or unreliable) participants. In our
setting, the agents are in principle equal. They form ratings of oth-
ers that they interact with. But to evaluate the trustworthiness of a
given party, especially prior to any frequent direct interactions, the
agents must rely on incorporating the knowledge of other agents—
termedwitnesses—who have interacted with the same party. The

∗This research was supported by the National Science Foundation
under grant ITR-0081742.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

right witnesses cannot be found through any central mechanism ei-
ther, so the agents must rely on a social mechanism for that purpose.
Our method of choice is through referrals generated by agents who
are directly acquainted with a potential witness. In other words,
we use referrals to find witnesses and then combine the witnesses’
testimonies to evaluate the party of interest. The testimonies are
based on direct, independent observations, not on communications
from others. As a consequence, we are assured that the testimonies
can be combined without any risk of double counting of evidence.
Double counting of evidence is risky in a distributed system, be-
cause it leads to rumors: agents holding opinions about others, just
because they heard them from someone.

We developed an evidential model of reputation management
based on the Dempster-Shafer theory of evidence. To do so effec-
tively presupposes certain representation and reasoning capabilities
on the part of each agent. Each agent has a set ofacquaintances, a
subset of which are identified as itsneighbors. The neighbors are
the agents that the given agent would contact and the agents that it
would refer others to. An agent maintains a model of each acquain-
tance. This model includes the acquaintance’s abilities to act in a
trustworthy manner and to refer to other trustworthy agents, respec-
tively. The first ability we termexpertiseand the second ability we
termsociability. Each agent may modify its models of its acquain-
tances, potentially based on its direct interactions with the given
acquaintance, based on interactions with agents referred to by the
acquaintance, and based on ratings of this acquaintances received
from other agents. More importantly, in our approach, agents can
adaptively choose their neighbors, which they do every so often
from among their current acquaintances.

The above approach helps find agents who receive high ratings
from others. However, like other reputation approaches, the above
approach does not fully protect against spurious ratings generated
by malicious agents. This is because we assume that all witness are
honest and always reveal their real ratings in their testimonies. The
requesting agent does not consider the reputation of the witnesses
and simply aggregates all available ratings. However, sometimes
the witnesses may exaggerate positive or negative ratings, or offer
testimonies that are outright false.

This paper studies deception as it may occur in rating aggrega-
tion. What makes the problem nontrivial are the following require-
ments. One, we wish the basic mechanism to aggregate testimonies
as above so as to avoid the effect of rumors. Two, we would like to
continue to use Dempster-Shafer belief functions to represent testi-
monies so as to capture uncertainty as well as rating. To do so, this
paper develops a variant of the weighted majority algorithm applied
to belief functions. It considers some simple models of deception
and studies how to detect corresponding deceptions.

The rest of this paper is organized as follows. Section 2 provides



some necessary background on distributed reputation management,
especially involving local trust ratings and propagation through re-
ferrals. Section 3 introduces some deception models and describes
our weighted majority algorithm as applied in detecting deception.
Section 4 presents our experimental results. Section 5 compares
our contributions to some related approaches. Section 6 concludes
our paper with a discussion of the main results and directions for
future research.

2. REPUTATION MANAGEMENT
The idea that the rating assigned to a party be based on direct

observations as well the ratings assigned by other sources is well-
known in the literature on reputation management. However, our
approach addresses some important challenges: How does the agent
find the right witnesses? How does the agent systematically incor-
porate the testimonies of those witnesses? First, our approach ap-
plies a process of referrals through which agents help one another
find witnesses. Second, our approach includes the TrustNet repre-
sentation through which the ratings can be combined in a principled
manner.

2.1 Dempster-Shafer Theory
We use the Dempster-Shafer theory of evidence as the underly-

ing computational framework. As observed by Kyburg, the Dempster-
Shafer theory explicitly handles the notion of evidence pro and con
[8]. There is no causal relationship between a hypothesis and its
negation, so lack of belief does not imply disbelief. Rather, lack
of belief in any particular hypothesis is allowed and reflects a state
of uncertainty. This leads to the intuitive process of narrowing a
hypothesis, in which initially most weight is given to uncertainty
and replaced with belief or disbelief as evidence accumulates. We
now introduce the key concepts of the Dempster-Shafer theory.

DEFINITION 1. A frame of discernment, notatedΘ, is the set of
possibilities under consideration.

Let T mean that the given agent considers a specified party to be
trustworthy. Then, there are only two possibilities. That is,Θ =
{T,¬T}.

DEFINITION 2. A basic probability assignment (bpa) is a func-
tionm : 2Θ 7→ [0, 1] where (1)m(φ) = 0, and (2)

P
Â⊂Θ m(Â) =

1.

Thusm({T})+m({¬T})+m({T,¬T}) = 1. A bpa is similar
to a probability assignment except that its domain is the subsets
and not the members ofΘ. The sum of the bpa’s of the singleton
subsets ofΘ may be less than1. For example, given the assignment
of m({T}) = 0.8, m({¬T}) = 0, m({T,¬T}) = 0.2, we have
m({T}) + m({¬T}) = 0.8, which is less than1.

For Â ⊆ Θ, thebelief functionBel(Â) is defined as the sum of
the beliefs committed to the possibilities in̂A. For example,

Bel({T,¬T}) = m({T}) + m({¬T}) + m({T,¬T}) = 1

For individual members ofΘ (in this case,T and¬T ), Bel and
m are equal. Thus

Bel({T}) = m({T}) = 0.8, andBel({¬T}) = m({¬T}) = 0

2.2 Local Trust Ratings
When agentAi is evaluating the trustworthiness of agentAj ,

there are two components to the evidence. The first component is
the services offered by agentAj . The second component is the

testimonies from other agents in caseAi has no transactions with
Aj before. Suppose agentAi has rated the quality of service of the
latestH interactions withAj , Sj = {sj1, sj2, . . . , sjH}, where
0 ≤ sjk ≤ 1. We setsjk to 0 if there is no response in thekth
episode of interaction withAj . Let f(xk) denote the probability
that a quality of service ofxk is obtained in thekth episode of
interaction withAj . Here0 ≤ xk ≤ 1.

For convenience, consider a case where the quality of service rat-
ings are discretized, e.g., to one of the11 values in{0.0, 0.1, . . . , 1.0}.
Let h be the number of episodes of interaction with agentAj ,
whereh is bounded by the allowed historyH. Now if g of the lat-
esth episodes have a quality of service equal toxk, thenf(xk) =
g/H.

Following Marsh [10], we define for each agent an upper and a
lower threshold for trust ratings. For each agentAi, there are two
thresholdsωi andΩi, where0 ≤ ωi ≤ Ω ≤ 1.

DEFINITION 3. Given a series of responses from agentAj , Sj =
{sj1, sj2, . . . , sjH}, and the two thresholdsωi and Ωi of agent
Ai, we compute the bpa towardAj asm({T}) =

P1
xk=Ωi

f(xk),

m({¬T}) =
Pxk=ωi

0 f(xk), andm({T,¬T}) =
Pxk=Ωi

xk=ωi
f(xk).

2.3 Combining Belief Functions
When an agent has not interacted often enough with a correspon-

dent, it must seek the testimonies of other witnesses. Next we dis-
cuss how to combine such evidence.

A subsetÂ of a frameΘ is called afocal elementof a belief
function Bel over Θ if m(Â) > 0. Given two belief functions
over the same frame of discernment but based on distinct bodies of
evidence, Dempster’s rule of combination enables us to compute
a new belief function based on the combined evidence. For every
subsetÂ of Θ, Dempster’s rule definesm1 ⊕ m2(Â) to be the
sum of all products of the formm1(X)m2(Y ), whereX andY

run over all subsets whose intersection isÂ. The commutativity of
multiplication ensures that the rule yields the same value regardless
of the order in which the functions are combined.

DEFINITION 4. Let Bel1 andBel2 be belief functions overΘ,
with basic probability assignmentsm1 andm2, and focal elements
Â1, . . . , Âk, andB̂1, . . . , B̂l, respectively. SupposeP

i,j,Âi∩B̂j=φ m1(Âi)m2(B̂j) < 1

Then the functionm : 2Θ 7→ [0, 1] that is defined by

m(φ) = 0, and

m(Â) =

P
i,j,Âi∩B̂j=Â

m1(Âi)m2(B̂j)

1−P
i,j,Âi∩B̂j=φ

m1(Âi)m2(B̂j)

for all non-emptyÂ ⊂ Θ is a basic probability assignment [16].

Bel, the belief function given bym, is called theorthogonal sumof
Bel1 andBel2. It is writtenBel = Bel1 ⊕ Bel2.

2.4 Trust Networks
It helps to distinguish between two kinds of beliefs:local be-

lief andtotal belief. An agent’s local belief about a correspondent
is from direct interactions with it and can be propagated to others
upon request. An agent’s total belief about a correspondent com-
bines the local belief (if any) with testimonies received from any
witnesses. Total belief can be used for deciding whether the cor-
respondent is trustworthy. To prevent non-well-founded cycles, we
restrict agents from propagating their total beliefs.



To evaluate the trustworthiness of agentAg, agentAr will check
if Ag is one of its acquaintances (HereAr is called the requesting
agent, andAg is called the goal agent). If so,Ar will use its exist-
ing local belief to evaluate the trustworthiness ofAg. Otherwise,
Ar will query its neighbors aboutAg. When an agent receives
a query aboutAg ’s trustworthiness, it will check ifAg is one of
its acquaintances. If yes, it will return the information aboutAg;
otherwise, it will return up toF referrals toAr based on its past
experiences, whereF is thebranching factor. Ar, if it chooses,
can then query any of the referred agents.

A referral r to agentAj returned from agentAi is written as
〈Ai, Aj〉. A series of referrals makes a referral chain. Observing
that shorter referral chains are more likely to be fruitful and accu-
rate [7] and to limit the effort expended in pursuing referrals, we
definedepthLimitas the bound on the length of any referral chain.
The referral process begins withAr initially contacting a neigh-
bor Ai, who then gives a referral, and so on. The process termi-
nates in success when a rating is received and in failure when the
depthLimit is reached or when it arrives at an agent neither gives
an answer rating nor a referral.

Now supposeAr wants to evaluate the trustworthiness ofAg,
after a series ofl referrals, a testimony about agentAg is returned
from agentAj . Let the entire referral chain in this case be〈Ar, . . . , Aj〉,
with lengthl. The depth of any agentAi on the referral chain is its
distance on the shortest path from the root to agentAi, where the
depth of the root or the requesting agent is zero.

A TrustNet is a representation built from the referral chains pro-
duced fromAr ’s query. It is used to systematically incorporate the
testimonies of the various witnesses regarding a particular corre-
spondent.

DEFINITION 5. A TrustNetTN(Ar, Ag,A, R) is a directed
graph, whereA is a finite set of agents{A1, . . . , AN}, andR is a
set of referrals{r1, . . . , rn}.

Given a series of referrals{r1, r2, . . . , rn}, the requesterAr

constructs a TrustNetTN by incorporating the each referralri =
〈Ai, Aj〉 into TN . Algorithm 1 describes the process of construct-
ing a trust network from a series of referrals. The depth of a Trust-
NetTN is equal todepthLimit.

Algorithm 1 Constructing a trust network
1: Suppose agentAr is the requesting agent,R is a series of re-

ferrals, andA is a finite set of agents being visited. For any
referralr = 〈Ai, Aj〉, agentAr addr to the trust networks
TN

2: if (depth(Aj) ≤ depthLimit) then
3: if (Aj /∈ A) AND (Aj returns a rating toAg) then
4: addAj to the set of witnesses
5: record the belief rating fromAj

6: else ifAj /∈ A then
7: Append r to the trust network
8: Send a request toAj

9: else
10: Ignore the referral r
11: end if
12: end if

Suppose agentAr wants to evaluate the trustworthiness of agent
Ag, and{W1, . . . , WL} are a group of witnesses towards agent
Ag. We now show how testimonies from witnesses can be incor-
porated into the trust rating of a given agent. Letτi andπi be the
belief functions corresponding to agentAi’s local and total beliefs,
respectively.

DEFINITION 6. Given a set of witnesses∆ = {W1, W2, . . . , WL},
agentAr will update its total belief value of agentAg as follows

πr = τ1 ⊕ . . .⊕ τL

3. DECEPTION
We consider the problem of deception when a witness gives the

rating about the goal agent to the requesting agent. Figure 1 de-
scribes the process of testimony aggregation, where agentA col-
lects the testimonies of witnessesW1, W2, andW3 about agentB.
The witnesses can be deceptive to varying degrees. For example,
witnessW1 may rate agentB at0.9, but produce a rating of0.1 in-
stead of0.9. (Strictly, in our approach, the witnesses return belief
functions instead of scalars, but deception can still occur.) If the
deception is detected, future testimonies from a deceptive witness
should have a reduced effect on the aggregated ratings. 

A 

W1 
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W3 

W2 

Aggregate  

 
Deception 

 

Figure 1: Deceptive witnesses can influence aggregated ratings

3.1 Deception Models
Suppose agentAi considers the latestH episodes of interaction

with agentAj , with the true ratings ofSj = {x1, x2, . . . , xH},
where1 ≤ k ≤ H. Now Ai can be deceptive in providing a rating
of Aj to others. We consider three kinds of deception: comple-
mentary, exaggerated positive, and exaggerated negative. Figure 2
shows the normal rating and three deception models. Below,α
(0 < α < 1) is theexaggeration coefficient.

 

True rating 
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Figure 2: Normal rating and deception models

• Normal: for each ratingxk, the rating given isxk.



• Complementary:for each ratingxk, the rating given is1 −
xk.

• Exaggerated positive:for each ratingxk, the rating given is
α + xk − αxk.

• Exaggerated negative:for each ratingxk, the rating given is
xk − αxk/(1− α).

3.2 Weighted Majority Algorithm
The weighted majority algorithm (WMA) deals with how to make

an improving series of predictions based on a set of advisors [9].
The first idea is to assign weights to the advisors and to make a
prediction based on the weighted sum of the ratings provided by
them. The second idea is to tune the weights after an unsuccess-
ful prediction so that the relative weight assigned to the successful
advisors is increased and the relative weight assigned to the unsuc-
cessful advisors is decreased. WMA applies to the combination of
evidence without regard to the reasoning on which the individual
ratings might be based.

We adapt the algorithm to predict the trustworthiness of a given
party based on a set of testimonies from the witnesses. Each agent
maintains a weight for each of the other agents whose testimonies
it requests. This weight estimates how credible the given witness
is. However, applying the classical WMA for reputation manage-
ment presents a technical challenge, because the ratings received
from witnesses are not scalars, but belief functions. Therefore, our
approach extends the WMA to accommodate belief functions. In
simple terms, our approach maps belief functions to probabilities
so that we can compute the difference between a prediction and the
observed trustworthiness and accordingly update the weights for
each witness. Moreover, we study the number of witnesses found
in different settings (depth of trust networks, branching factor, and
simulation cycles), the effect of the number of witnesses on the
prediction, and the evolution of trust networks.

To motivate our approach, we describe a variant of WMA called
WMA Continuous (WMC). WMC allows the predictions of the al-
gorithms to be chosen from the interval[0, 1], instead of being bi-
nary. The predictions of WMC are also chosen from the interval
[0, 1]. The termtrial refers to an update step. We assume that the
master algorithm is applied to a pool ofn algorithms, lettingxj

i de-
note the prediction of theith algorithm of the pool in trialj. Letλj

denote the prediction of the master algorithm in trialj, ρj denote
the result of trialj andwj

1, . . . , w
j
n denoted the weights at the be-

ginning of trial j. Consequently,w(j+1)
1 , . . . , w

(j+1)
n denoted the

weights following the final trial. We assume that all initial weights
w1

i are positive. Letsj =
Pn

i=1 wj
i .

Prediction: The prediction of the master algorithm is

λj =
Pn

i=1 w
j
i x

j
i

sj .

Update: For each algorithm in the pool, the weightwj
i is multi-

plied by some factorθ that depends onβ, xj
i , andρj .

w
(j+1)
i = θwj

i ,

whereθ can be any factor that satisfies

β|x
j
i−ρj | ≤ θ ≤ 1− (1− β)|xj

i − ρj |

3.3 Deception Detection
Now we introduce a version of WMC geared to belief func-

tions. Suppose agentAr wishes to evaluate the trustworthiness
of agentAg. Our algorithm is given from the perspective ofAr.

Let {W1, . . . , WL} be a set of witnesses thatAr has discovered
for agentAg. Let Ar assign a weightwi to witnessWi. All the
weights are initialized to1.

Let the belief rating given byWi toAg bemi({T}), mi({¬T}),
mi({T,¬T}). Then the new belief rating is

m′
i({T}) = wi ∗mi({T})

m′
i({¬T}) = wi ∗mi({¬T})

m′
i({T,¬T}) = 1−m′

i({T})−m′
i({¬T}).

Prediction: Suppose the set of witnesses is{W1, . . . , WL},
then the total belief of agentAr for agentAg is

πr = τ ′1 ⊕ . . .⊕ τ ′L (1)

for any witnessWi, τ ′i = {m′
i({T}), m′

i({¬T}), m′
i({T,¬T})}.

Update: Since the prediction is in the form of a belief function,
we cannot use WMA directly. Therefore, we first convert the belief
function to the probabilities ofT and¬T . Next, we compute the
difference between the prediction and the true rating ofAr.

Below is our approach to convert a belief function to probabil-
ities. Supposemi({T}), mi({¬T}), mi({T,¬T}) are the new
belief ratings without considering the weight of the witnessWi.
Then define a likelihood rating ofT and¬T as follows

qi({T}) = mi({T}) + mi({T,¬T})
qi({¬T}) = mi({¬T}) + mi({T,¬T})

The probabilities ofT and¬T are

probi({T}) = qi({T})
qi({T})+qi({¬T})

probi({¬T}) = qi({¬T})
qi({T})+qi({¬T})

The probability ofT from witnessWi is

probi({T}) =
m′

i({T}) + m′
i({T,¬T})

1 + m′
i({T,¬T}) . (2)

Supposeρ is the rating fromAr, where0 ≤ ρ ≤ 1. Then the
weight of witnessWi will be updated as follows.

w′i = θwi

whereθ can be any factor that satisfies

θ = 1− (1− β)|probi({T})− ρ|. (3)

The above formula can be simplified as follows ifβ = 0.5.

1− |probi({T})− ρ|
2

(4)

Figure 3 shows the values ofθ for different values ofprob({T})
whenρ = 0.1, 0.5, and0.9.

Algorithm 2 Deception detection by requesting agentAr

1: Initialize all witness weights to1
2: LetAg be the goal agent
3: Let {W1, . . . , Wn} be the witnesses found byAr for Ag by

applying Algorithm 1
4: Generate a predictionλ as specified in Equation 1
5: for Each witnessWi do
6: Compute a probability from the belief function testimony of

Wi according to Equation 2
7: Update the weightwi according to Equation 3
8: end for

Algorithm 2 describes the algorithm used by each agent to adjust
the weights of the witnesses it uses.
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Figure 3: The value ofθ whenρ = 0.1, 0.5, and 0.9

4. EXPERIMENTAL RESULTS
Our experiments are based on a simulation testbed we have de-

veloped. This testbed models theinterestand expertisefor each
agent via term vectors of dimension5. Roughly, the interest en-
codes what the agent’s queries are like and the expertise encodes
what the agent’s responses are like. The closeness of the match
between a response and a query translates to how high a rating is
given by a querying agent to a responding agent (in a given query-
response episode).

Briefly, the simulations proceed as follows. In each simulation
cycle, we randomly designate an agent to be the querying agent.
The queries are generated as vectors by perturbing the interest vec-
tor of the querying agent. When an agent receives a query, it may
ignore the query, answer it based on its expertise vector, or refer
to other agents. The originating agent collects all suggested refer-
rals, and continues the process by contacting some of them. Fi-
nally, the referral process draws to an end. The querying agent
agent aggregates the ratings based on weights it has assigned to
the witnesses; the originating agent may decide to interact with the
specified agent. Depending on the outcome of the interactions, the
originating agent adjusts the weights it assigns to the witnesses in-
volved.

Each agent keeps up to the10 latest episodes of interactions with
another agent. The agents are limited to having no more than4
neighbors and16 acquaintances. Queries are sent only to and refer-
rals are given to neighbors. Periodically, each agent decides which
acquaintances are promoted to become neighbors and which neigh-
bors are demoted to be ordinary acquaintances.

The length of each referral chain is limited to6. For any two
agentsAi andAj , the initial values of the belief functionτ are de-
fined as follows:τi({Tj}) = τi({¬Tj}) = 0, τi({Tj ,¬Tj}) = 1.
The sociability for all agents in the acquaintance models is initial-
ized to0.5. For each agentAi, we setωi = 0.1 andΩi = 0.5.

We initialize the network of agents in the following manner. Fol-
lowing Watts and Strogatz [17], we begin from a ring but, unlike
them, we allow for edges to bedirected. We use a regular ring with
100 nodes, and4 out-edges per node (to its neighbors) as a starting
point for the experiment.

Of the total of 100 agents, 10 agents give complementary ratings,
10 agents exaggerate positive ratings (α = 0.1), and 10 agents ex-
aggerate negative ratings (α = 0.1). The rest of the agents always
give normal ratings. We randomly choose 10 agents as requesting

agents. Each requesting agentAi evaluates the trustworthiness of
all agents except itself. After every500 rounds, we compute the
weights for the witnesses, and the rating error (i.e., the difference
between the prediction and the true rating). The computation is not
counted in the simulation cycle.

4.1 Metrics
We now define some useful metrics with which to intuitively cap-

ture the results of our experiments.

DEFINITION 7. Suppose{W1, . . . , WL} are exactlyL witnesses
for agentAg, then the total belief of agentAr for agentAg is

πr = τ ′1 ⊕ . . .⊕ τ ′L

for any witnessWi, τ ′i is the new belief ratings and is equal to
{m′

i({T}), m′
i({¬T}), m′

i({T,¬T})}. The rating error is de-
fined as

|probr({T})− ρ|.

whereprobr({T}) =
m′r({T})+m′r({T,¬T})

1+m′r({T,¬T}) , and ρ is the rating
for agentAg from agentAr.

DEFINITION 8. The average weight of a witnessW is

ΠW = 1/N
PN

i=1 wi,

wherewi is the weight of witnessW from agentAi’s acquaintance
model, andN is the total number of agents in whose acquaintance
modelWi occurs.

4.2 Number of Witnesses
Our first experiment discusses the depth of trust networks and

branching factor and their effects on the number of witnesses. The
10 chosen agents evaluate the trustworthiness of other agents. Fig-
ure 4 shows the average number of witnesses found at different
depths with a branching factorF of 1, 2, 3, and4, respectively, af-
ter 5000 simulation cycles. As intuitively expected, more witnesses
are found when the requesting agent searches deeper and wider.
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Figure 4: Average number of witnesses found for different
depths with branching factor F = 1, 2, 3, 4 (after 5000 cycles)

More interestingly, the number of witnesses also depends on the
queries (i.e., simulation cycles). The more the queries the more
witnesses can be found in the trust networks with the same depth



and branching factor. Figure 5 shows the total number of witnesses
and the number of witnesses that can be found in the trust networks
with depth six and branching factor four. With the help of trust
networks, the requesting agent can only find 10% witnesses at sim-
ulation cycle zero. After15000 cycles, the number increases to
50% (see Figure 6).
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We also study the effect of the number of witnesses on the accu-
racy of the prediction. Figure 7 shows the rating error for different
numbers of witnesses at cycles0, 2500, and5000. We find that the
number of witnesses does not affect the prediction accuracy much.
The rating error only improves from20% to 17% at 5000 simula-
tion cycles when the number of witnesses increases from one to six.
This is possibly due to a combination of two reasons. One, there are
few (only 10%) witnesses who give complementary ratings. Two,
the updating of weights dominates the number of witnesses (see
below).

For the next two experiments, the depth six and branching factor
four are applied in the trust networks.

4.3 Prediction
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Figure 7: The rating error for different numbers of witnesses
(at 0, 2500, and 5000 cycles)

Figure 7 tells us that the requesting agents can make better pre-
dictions through weight updating. For the same population and the
same number of witnesses, the rating error changes from0.31 to
about0.17 after 5000 simulation cycles. Figure 8 shows the whole
process in greater detail. We compute the average rating error for
the given sets of requesting agents and goal agents every 500 cy-
cles. We find the average rating error becomes less then0.05 after
8000 cycles.
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Figure 8: Average rating error during weight learning

4.4 Weights of Witnesses
The reason that the requesting agent can make better prediction

is that it adjusts the weights for different types of witnesses. There-
fore, the testimonies from lying witnesses will have less effect on
the process of testimony aggregation. Figure 9 shows the change of
average weights for different types of witnesses: normal, comple-
mentary, exaggerated positive, and exaggerated negative. We find
the weights for witnesses with normal ratings are almost the same,
but the weights for witnesses with complementary ratings change
a lot. For the witnesses with complementary ratings, their average



weights decrease from1 to about0.2 after5000 cycles.
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Figure 9: Average weights of witnesses for different deception
models

The default exaggeration coefficient for witnesses with exagger-
ated positive or negative ratings is0.1 in our previous experiments.
The present experiment studies the average weights for such wit-
nesses with different exaggeration coefficients. Figure 10 shows
the average weights for witnesses with exaggerated negative rat-
ings when exaggeration coefficientα is set to0.1, 0.2, and0.3,
respectively. The results indicate that our approach can effectively
detect witnesses lying to different degrees.
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Figure 10: Average weights of witnesses for different exaggera-
tion coefficients

5. RELATED WORK
One of the first works that tried to give a formal treatment of

trust was that of Marsh [10]. His model attempted to integrate as-
pects of trust taken from sociology and psychology. Since Marsh’s
model has strong sociological foundations, the model is rather com-
plex and cannot be easily used in today’s electronic communities.
Moreover the model only considers an agent’s own experiences and
doesn’t involve any social mechanisms. Hence, a group of agents
cannot collectively build up a reputation for others.

Rahman and Hailes [1] proposed an approach for trust in vir-
tual communities. In simple terms, this is an adaptation of Marsh’s
work wherein some concepts were simplified (for example, trust
can have only four possible values) and some were kept (such as
situation or contexts). The main problem with Rahman and Hailes’
approach is that every agent must keep rather complex data struc-
tures that represent a kind of global knowledge about the whole
network. Usually maintaining and updating these data structures
can be laborious and time-consuming.

Another, more computational, method is fromSocial Interaction
Framework(SIF) [14]. In SIF, an agent evaluates the reputation of
another agent based on direct observations as well through other
witnesses. Schillo’s work motivates some of our experiments for
reputation management. However, SIF does not describe how to
find such witnesses, whereas in the electronic communities, deals
are brokered among people who often would never have met each
other.

In our first work on this subject, we developed an approach for
social reputation management, in which we represented an agent’s
belief ratings about another as a scalar and combined them with
testimonies using combination schemes similar to certainty fac-
tors [18]. The drawbacks of the certainty factor models led us to
consider alternate approaches, specifically an evidential model of
reputation management based on the Dempster-Shafer theory [19],
which is extended further by the present work to accommodate de-
ception.

Aberer and Despotovic [2] simplified our model and use that to
manage trust in a peer-to-peer network where no central database
is available. Their model is based on binary trust, i.e., an agent is
either trustworthy or not. In case a dishonest transaction is detected,
the agents can forward their complaints to other agents. Aberer and
Despotovic use a special data structure, namely the P-Grid, to store
the complaints in a peer-to-peer network. In order to evaluate the
trustworthiness of another agentB, an agentA searches the leaf
level of the P-Grid for complaints on agentB.

Barber and Kim [3] present a multiagent belief revision algo-
rithm based on belief networks. In their model the agent is able
to evaluate incoming information and generate a consistent knowl-
edge base, and to avoid fraudulent information from unreliable or
deceptive information source or agents. Barber and Kim emphasize
on modeling the reliability of information sources and maintaining
the knowledge base of each agent, whereas we emphasize effec-
tively detecting untrustworthy agents in a group.

Pujol et al. [12] propose an approach to establish reputation
based on the position of each member within the corresponding
social networks. Pujolet al. seek to reconstruct the social net-
works using available information in the community, and measure
each member’s reputation with an algorithm calledNodeRanking,
which can operate without knowing the entire graph. Pujolet al.
view reputation roughly as the popularity of the node in the social
networks, whereas we model reputation as the past experiences of
members in the networks.

Sabater and Sierra [13] show how social network analysis can
be used as part of theRegretreputation system, which considers
the social dimension of reputation. They use a different approach
to find the witnesses and calculate the witness reputation based on
the subset of the selected sociogram over the agents that had inter-
actions with the target agent. However, Sabater and Sierra apply
some simple rules to decide the trustworthiness of the information
from the witness, and do not consider deception and the effect of
deception on information aggregation.

Mui et al. [11] summarize existing works on reputation across
diverse disciplines, i.e., distributed artificial intelligence, economics,



and evolutionary biology. They discuss the relative strength of the
different notions of reputation using a simple simulation based on
evolutionary game theory. Muiet al focus on the strategies of each
agent, and do not consider gathering reputation information from
other parties in the network.

Sen and Sajja [15] consider the situation where an agent uses the
word-of-mouth reputation from other agents to select one of sev-
eral service provider agents. Their mechanism allows the querying
agent to select one of the high-performing service providers with a
minimum probabilistic guarantee based on the reputation commu-
nicated by the agents who are queried. Sen and Sajja’s algorithm
can decide the number of agents being queried in order to meet the
probabilistic guarantee.

Brainov and Sandholm [4] study the impact of trust on contract-
ing in electronic commerce. Their approach shows that in order
to maximize the amount of trade and of agents’ utility functions,
the seller’s trust should be equal to the buyer’s trustworthiness.
Advanced payment contracts can eliminate inefficiency caused by
asymmetric information about trust and improve the trustworthi-
ness between sellers and buyers. By contrast, we focus on the com-
putational model of distributed reputation management for elec-
tronic commerce and multiagent systems.

There has been much work on the cognitive view of trust. In the
cognitive view, trust is made up of underlying beliefs, and trust is
a function of the value of these beliefs [6, 5]. It is usually unlikely
in a computational setting that an agent will have direct access to
the mental state of another agent. Instead our approach is based
on observation and concentrates on representations of trust, prop-
agation algorithms, and formal analysis. However, the cognitive
concepts explored by Castelfranchi and Falcone can be thought of
as underlying and motivating the mechanisms we study here.

6. CONCLUSION
This paper studies the problem of deception in reputation man-

agement. We focus on how to effectively detect deception in the
process of reputation information propagation and aggregation. Our
approach helps an agent distinguish reliable witnesses from decep-
tive witnesses, and to minimize the effect of testimonies from de-
ceptive witnesses. For simplicity, this work assumes that the wit-
nesses behave in a consistent manner. However, it is easily seen that
this approach applies to more complex kinds of deception, e.g., not
lying to all agents, or lying with a certain probability. For the first
case, the weights given to an agent by others depend on whether
this agent lies to them or not. Probabilistic lying would dilute the
weights as well.

Reputation management is related to trust. Reputation is im-
portant in making effective and informed trust decisions. In fu-
ture work, we plan to integrate these mechanisms in the design
of multiagent systems and electronic commerce systems. We will
also study decision-making models and the evolution of different
strategies of each agent, e.g., how an agent can adapt its strategy
to the dynamic social structure of the given multiagent system and
whether an agent should trust another agent based on the collected
reputation information.
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