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Detecting Determinism in Time Series: The Method
of Surrogate Data
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Abstract—\We review a relatively new statistical test that may be the hypothesis of interest. One then statistically compares the
applied to determine whether an observed time series is inconsis- data and surrogates. Many extensions of this basic method have

tent with a specific class of dynamical systems. Theserrogate data  aan suggested ([3] and [4]) but, in this current work, we are
methods may test an observed time series against the hypotheses of; ticularly int ted i th ,d that b i ,d to test
i) independent and identically distributed noise: ii) linearly filtered ~ Particuiarly interested in a metnod that may be applied 1o tes

noise; and iii) a monotonic nonlinear transformation of linearly fil- ~ for nonlinear nonperiodic determinism in apparently periodic
tered noise. A recently suggested fourth algorithm for testing the time series [5], [6].

hypothesis of a periodic orbit with uncorrelated noise is also de-  Surrogate methods identify whether an observed time series
scribed. We propose several novel applications of these methodsforcomains determinism. By themselves, they cannot separate

various engineering problems, including: identifying a determin- th . d det inisti ts. Wi | i
istic (message) signal in a noisy time series; and separating deter- € noise and deterministic components. Yve employ nonlinear

ministic and stochastic components. When employed to separate modeling techniques [7] that utilize the information theoretic
deterministic and noise components, we show that the application minimum description lengttMDL) [8] to fit data without over
of surrogate methods to the residuals of nonlinear models is equiv- fitting. These methods have been successfully employed to
alentto fitting that model subject to an information theoretic model identify and model the deterministic component of time series
selection criteria. .
of many experimental systems [9]-[11]. We show that these
Index Terms—Hypothesis testing, minimum description length, ethods may be employed to separate the noise and signal in an
noise separation, nonlinear modeling, surrogate data. . . .
observed time series. Alternatively, we show that surrogate data
methods applied to the model residuals may also be used as a
|. INTRODUCTION model fitting criterion. Surrogate data methods may then be used

N IMPORTANT problem in many areas of signal pro_toseparatecertam classes of noise, such asi.i.d. or colored noise,

cessing is to determine whether an observed time serielg%n: (ioi‘ngler?( dfeterrrmml?tl%dty nre:]mtlﬁsdln ﬁ datt)a Srft' A S'mtl Izzrb
deterministic, contains a deterministic component, or is pur erpretation of surrogate gata methods has been suggested by

stochastic. Equivalently, one may consider the problem of se _Kens [12]. Takgns .c'0n5|dered fitting some model .to a time
arating an observed time series into deterministic (messal les and applylng "."d' surrogf_;lt_e tests to the residuals. He
and stochastic (noise) components. In this paper we review We.d that if the residuals are "'_'d" then the modgl offers a
method of surrogate data and suggest two alternative techniq 8gd fit to the data. We extend this result gnd use it to show
that surrogates may be employed to determine whether a model

that may be employed for effective system identification an wur Il the deterministic structure in a tim .
separation of signal and noise. captures afl the dete stic structuré in a time series.

The method of surrogate data provides a rigorous way toSectlon Il gives a review of existing surrogate data methods

apply statistical hypothesis testing to experimental time seri g Sde_sr?rrfgfe fjheefca?plﬂlgaetclz(t)'gnolfll psgudrzp::?d;c ;r::rgg:;tﬁ_s
One may apply the method of surrogate data to determi S)| . : » We present sev X

whether an observed time series has statistically significa[?fés of these methods, both to detect deterministic dynamics

deterministic component. Three standard linear techniques éj filtered noise in an observed signal. Finally, in Section IV
widely applied in the physical and biological sciences (sé')ée conclude.
for example, [1]) to test the hypotheses of [2]: i) independent
and identically distributed (i.i.d.) noise ii) linearly filtered
noise; and (iii) static monotonic nonlinear transformation Inthis section, we review the three main techniques employed
of linearly filtered noise. Surrogate methods require one to this paper. Section II-A concerns the application of surrogate
generate an ensemble of artificial time series @heogate$ data hypothesis testing: a standard method in the dynamical sys-
that are both “like” the data being tested and consistent wittms literature. In Section 11-B, we describe the PPS generation
scheme, introduced recently by Small and coworkers [5]. Sec-
Manuscript received January 15, 2002; revised October 29, 2002. This wiRD II-B also discusses some new work concerning the applica-
was supported by the Hong Kong Polytechnic University under Grant G-YwsBon of this algorithm to arbitrary time series data (not just those
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A. Linear Surrogate Methods

Standard surrogate techniques were first suggested by
Theiler and colleagues in 1992 [2]. Using surrogate data
methods, one tests an experimental time series for membership
of a specific class of dynamical systems. That is, we test
whether the process that generated a time series is an instance
of a specific form of system—for example, i.i.d. or linearly
filtered noise. Let{y:}N.;, = {y1,¥2,¥3,...,yn} denote a
time series of N measurements. Where the meaning is clear
we will drop the indexing and abbreviate this {g,}:. For
each class of dynamical systéify, one generates an ensemble
of N surrogates{sgn)}t (n = 1,2,...,N), consistent with
both the datdy;}: and the class of dynamical systems being

noise. Generating surrogates with this algo-
rithm can be somewhat awkward. The various
caveats are amply discussed in the literature [4],
[6] and will not be discussed here. The algo-
rithm aims to preserve both the power spectrum
and probability distribution of the data (and
is therefore well suited to non-Gaussian time
series). Generate a Gaussian time series of the
same length as the data, and reorder it to have
the same rank distribution. Take the Fourier
transform of this and randomise the phases
(as for Algorithm 1). Finally, the surrogate
is obtained by reordering the original data to

have the same rank distribution as the inverse
Fourier transform. By rank distribution we
mean that théth value in both the time series
and surrogate data sets will be tfit largest,
for all 7 andj.
We note that there is considerable discussion of the merits of
these algorithms (particularly Algorithm 2) in the literature. In
ost cases the cautious application of these algorithms should
prgvide adequate results, for more information on the technical
ertails we refer the reader to the review [4] or the discussion of
].

tested. These surrogates represent typical realizatior®, of
the dynamical system that generatggd}:, if D € Hy. One
then computes some statisti¢) for the data and surrogates. If
d({y:}+) is significantly different from the ensembﬂé{sgn) H)
(n =1,2,3,...,N), then, the class of dynamical systefts
may be rejected as the likely origin ¢f;}:. If d({y:}+) is not
atypical of {d({sgn)}t) : Vn} then membership of{, may
not be rejected. It is important to note that failure to reject
particular class of dynamical systems is not the same thing
accepting that class as the likely origin of the data. Failure

reje_ct _only_ implies that the particular statisi¢:) was unable Finally, to apply these surrogate methods one must choose
to 'Iq\l/\?g:]sgsuulzz :):r:]\,;?rf?odbaézgg:je:gdq%if;(act nature of thed ﬁ_uitable statistid(-). As these methods were originally intro-

: o . . uFed as a “sanity test” for correlation dimension estimation [2],
gorithm used to generate Sl_Jrrogates consistent with meaningidl . v n dimension is a popular choice [1], [6]. A complete
hypotheses; and the selectiondf). discussion of choice of statistic may be found in [13], and Small

Surrogate ghe nerat|(_)n_ a:?orlthms arg bbeﬁ_th |I_I|ustratzd BY]d Judd [3] demonstrate that correlation dimension is indeed a
summarizing those origina y suggested by Theller and Civod choice. We will paraphrase these results and say that the
leagues [2]. The three algorithms are known as Algorithms

osen statistic should be independent of the surrogate gener-
1,and 2. ation method (linear autocorrelation or mean are therefore bad
Algorithm O Surrogates generated by this algorithm are i.i.@hoices for Algorithm 2) and yet sensitive to deviation from the
noise. To generate i.i.d. noise surrogates, ongass of dynamical systems being tested (thus, nonlinear predic-
simply shuffles the data. The shuffling procession is a good choice for the three linear hypotheses). The results
will destroy any temporal correlation and surin this paper use a correlation dimension estimation algorithm
rogates thus generated are essentially randgroposed by Judd [14], [15] that has been shown to be a good
observations drawn (without replacement) fronchoice of test statistic for many classes of dynamical systems of
the same probability distribution as the data. interest[3]. For the sake of brevity, we do not define correlation
Algorithm 1 Surrogates generated by this algorithm are lirdimension here, other than to say that it is a measure of struc-
early filtered noise. To generate these surrdural complexity in the observed dynamics.
gates one takes the discrete Fourier transform of
the data and shuffles (or randomise) the phasBs PPSs

of the complex conjugate pairs. Note that the Thg grrogate generation algorithms described in the previous
phases of the complex numbers must be shufation test for independent noise, linear noise or statically fil-
fled pairwise to preserve the realness of thgyed linear noise. Very many time series of interest exhibit pe-
inverse Fourier transformation. The surrogatgogic fluctuations and are obviously inconsistent with linear
is the inverse Fourier transform. By shufflingngise. In Fig. 1 we show examples of linear surrogates gen-
the phases but maintaining the amplitude of therated from two typical time series. In the case of a system
complex conjugate pairs the surrogate will havgxhibiting a strong periodic component (Chua’s circuit) these
the same power spectrum (and autocorrelatiohear surrogates are clearly inadequate. For such systems, an al-
as the data, but will have no nonlinear deterernative approach has been suggested [5]. In [6], we described
minism. this approach and applied it to several artificial and experimental
Algorithm 2 Surrogates generated by this algorithm are (agystems. The PPS algorithm generates surrogates that preserve
proximately, see [4] and [6]) static monotoniccoarse deterministic features (such as periodic trends) but de-
nonlinear transformations of linearly filteredstroy fine structures (such as deterministic chaos). In Fig. 2, we
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Fig. 1. Linear (Algorithms 0, 1, and 2) surrogates for two time series. The Ikeda map contaminated with linear noise (left side panels) and Ghira’s circu
its chaotic regime with both dynamic and observational noise (right). The top two panels are the original time series. Below these are (in aitler):0Algo
Algorithm 1, and Algorithm 2 surrogates. Note that the surrogates appear qualitatively like the Ikeda data, but dissimilar to the Chua’s datioit. sChua’s

circuit contains nonlinear determinism which is not modeled adequately as a static monotonic nonlinear transformation of linear filteredmiitisév€analysis

reveals that both these data sets are clearly distinct from these surrogates.

10

show that this method can be applied to differentiate between
deterministic chaos with noise and a periodic orbit. The algo-
rithm generates surrogates that are very like the original data, £
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yet only have the large-scale deterministic features.
The basic algorithm for this method is the following.

1. Construct the vector delay embedding

{z}N7% from the scalar time series {y N,
according to

2t = [yf,, Ytt+ry Yt4275 - - - 7yt+ds,7-]
where the embedding dimension d. and em-
bedding lag 7t remain to be selected.
The embedding window d,, is defined by
dy = de7 — 1.
2. Call A= {zxt=12...,N—d,} the recon-
structed attractor
3. Choose an initial condition s1 € A at
random.
4. Let = 1.
5. Choose a near neighbor zj € A of s; ac-
cording to the probability distribution

Prob(z; = #) x exp M
where the parameter p is the noise radius
6. Let s;41 = z;41 be the successor to S
7. Increment 1.
8. If i< N go to step 5.
9. The surrogate time series is {(s¢)1} =
{(s1)1,(82)1,(83)1,---5(8¢)1-.-,(sn)1}, the scalar

first components of {5t}

The above algorithm has three parametersd., and 7.
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Fig. 2. Surrogates generated by the PPS algorithm for Chua’s circuit data.
Note that the data and surrogates are qualitatively similar. However, quantitative
analysis reveals that this data is clearly distinct from the system modeled by
the surrogates—a period orbit with uncorrelated noise. Each of these surrogates
lacks the deterministic “signature” of chaos. The original data are depicted in
the top panel.

maximized. This selection criteria provides a balance between:
1) too much randomization (few identical sequences of length;
and 2) too little (data and surrogate near identical).

According to [5], this algorithm can be applied to test for non-
periodic deterministic dynamics in pseudoperiodic time séries.
Conversely, dynamical systems consistent with these surrogates
exhibit a periodic orbit with uncorrelated noise. For time series
exhibiting pseudoperiodic dynamics, rejection of this class of
systems implies the existence of nonperiodic deterministic dy-
namics. However, for time series that do not exhibit pseudope-
riodic dynamics, we have shown [6] that surrogates generated
by this method are actually consistent with short-term deter-
ministic dynamics. Rejection of this test therefore is evidence
for long-term deterministic dynamics. The distinction between
“long term” and “short term” is perhaps ill defined, and certainly

Selection of embedding parametefs and 7 is discussed at dependent on the selection @fHowever, for the current study
length in the literature (see, for example, [16] and the refea-more precise definition is beyond our requirements. It is suf-
ences therein) and we do not consider this problem here. Tiuéent to note that surrogates generated by this method appear

noise radiugy is selected according to the suggestions of [5].
We choosep such that the expected number of sequences pf

2A pseudoperiodic time series is one which exhibits a definite periodic trend:
re exists, > 0 such that the autocorrelatigr{7) has a nontrivial peak

length two or more that are identical for data and surrogatesis,) > 0 at.
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much more like the data than Algorithms 0, 1, and 2 surrogategherey is a constant related to the number of bits in the mantissa
Rejection of the PPS algorithm indicates the presence of nari-the binary representation of. Denote byA the model pa-

trivial deterministic dynamics in the data. rameters\o, A1, ..., Am+n. Then, if we assuntehat the model
(2) may be completely described by the linear parameters
C. Nonlinear Modeling (i = 0,1,...,m + n) then the description length of the model
In the last two sections, we have discussed various surrogigte
techniques. We now turn our attention to a class of nonlinear mtn
models [7] utilising an information theoretic stopping criterion Lo, Ay s Aman) = L(A) = Z log r ()
[8]. The difference between these techniques is not as great as o bi

it may seem. In the previous sections, we have deliberately de- o ) ) )
scribed surrogate datgpothesis testini terms of dynamical The description length of the datath this models then given
systems and classes of models. Conversely, in [3] and [12],b)f
has been shown that noisy iterated predictions of a model may
be used as a form of hypothesis testing.

For a scalar time serieg); }; we perform a time delay em-
bedding [17] according to

L(z) = L(z|A) + L(A) (4)

whereL(z|A) is the negative log likelihood of the model pre-
diction errors under the assumed distribution (5). The likelihood
of a data set is the probability of observing that particular set of
values. Assuming that the model prediction errors are Gaussian

(There is a minor notational change between this embeddiggtributed noise with standard deviatie, the negative log
and that in Section II-B. This distinction is cosmetic and largelykelinood is given by

a matter of convenience.) We then model the dynamics of the

2t = [ytvyt—lvyt—%-~-ayt—dw]~ 1)

mapz; — z:41 by the construction of a functiofi such that L(z|A) = — InProb(z|A)
N 1 eTe
Yt+1 = f(zf) + e :W exp ﬁ (5)

where theeesidualse; are expected to be i.i.d. random variates.
The functionf(-) is of the form Typically, one will substitute the estimate = v/eZe for the
m n unknown variance of the noise.
Flz) = Ao+ Z Aive—e, + Z Amsi® (”Zt - CJ”) ) A model may then be assessed based on its description length
i1 = Tj as givenin (4). The best model of a particular data set is that for
which this quantity is lowest.
One observes that the important quantity in the above com-
putation is the set of precisions of the parameterdt can be

where)\; € R are theweights /; € R such that0 < /; <

liy1 < d, are thelags ¢(z) = expx?/2 are thebasis func-
; . 4 ' n .
tions c; € R% are thecenters and”. € _R are _the radil. shown [7] that these precisions may be calculated as the solu-
In fact, an often more useful generalization of this scheme BN of

described in [9]. In addition to each of these parameters, the

model size £ + n) must also be selectedo that the variate T A ry _ 1 6

e; are indeed i.i.d. but yet model overfitting must be avoided. (Q 180 61 82 men] )L b; ©)

Note that the selection of the model form (2) is based solely evrbere is the second partial derivative §t.) with respect to
the computational algorithms at our disposal. Consideration Q P ) P

many other similar schemes may be found in the literature (sé ? model parameters. In Fig. 3, we show the typical behavior
for example, [11]). of 'MDL and root-mean-square error for a model of the data

To provide a suitable model fitting criterion we emplayn- depicted in (2).
imum description lengtiMDL) as described by Rissanen [8]
and applied to radial basis modeling by Judd and Mees [7].
Roughly speaking, the description length of a data set is thewe now apply the methods discussed in Section Il to simu-
length of shortest description that can be employed to recdated and experimental data. We show that linear and nonlinear
struct the entire data set. For random variates, that code wgilirrogates as described in Sections 1I-A and 1I-B can be suc-
simply be the data itself and the description length will be theessfully applied to realistic data to differentiate between de-
length of that data set. For data containing some determinisgrminism and stochastic behavior. We then consider the appli-
the shortest description length of that data will be the descripation of surrogate techniques to nonlinear modeling and show
tion of a model of the deterministic component and the modgilat they behave the same as minimum description length and

I1l. DETECTING AND EXTRACTING DETERMINISM

prediction errors. may be used as a form of model selection criteria.
Rissanen [8] showed that the description length of a paramedn Section 1lI-A, we present the application of surrogate
ters)\; (specified to some finit@recisionsd;) is methods to various engineering systems. Section IlI-B com-
v pares minimum description length and surrogate methods as
log 5 model selection criteria.

3The model selection scheme described in [7] implies thandr are not 4This is an approximation intended to make the calculations that follow sub-
independent. stantially easier. A full treatment is provided in [9].
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Fig. 3. Description length and root-mean-square of the residuals as a function of model size for the data depicted in the upper panel of Fig.&sdelinhat-d
is root-mean-square prediction error, the solid line is description length. Note that the root-mean-square prediction error is a monotoeasifig deaction of
model size: as the model gets bigger the errors get smaller. However, the description length is not monotonic, a minimum is observed at modelesazag?2. In
the model size beyond the minimum will cause description length to increase.

A. Detecting Determinism Chua’s Circuit: Chua’s circuit equations are given by
We consider the application of the linear surrogate algorithms

and the PPS algorithm to six test systems: i.i.d. random variates T a(y —z — ¢())

(generated from a radioactive decay process); a colored noise y|= T—Yy+z 9)

process; a monotonic nonlinear transformation of colored noise; z —by

Ikeda type chaos with observational and dynamic noise; and the

Chua circuit during both periodic (with observational noise) arehd

chaotic behavior (with observational and dynamic noise). For

completeness, we describe the equations of motion and param- (mo —m)

eter settings employed in this paper. (@) =mz + 2 (jo+ 1] = o = 1)) (10)
i.i.d. Random Variates:5000 uniform random variates were

obtained as the product of two independent and uniformly digherem, = —8/7 andm,; = —5/7. We investigate the be-

tributed integers between 1 and 256. havior of the system fora = 9 andb = 14(2/7) (“double

Colored Noise: Colored noise was generated as realizatiorseroll” chaos)p = 8.86 andb = 16 (stable period 2 dynamics);
ofthe randomwalk process = 0.5z;_1+0.3z;_2+0.1z,_3+ and,a = 9.4 andb = 16 (“single-band” chaos).
e; Wheree; are Gaussian random variates with mean 0 and stan4n each case, observational and dynamic noise are computer
dard deviation 1. generated pseudorandom numbers conforming to a Gaussian
Monotonic Transformation of Colored Noisé&enerated by distribution. The distinction betweeabservationaland dy-
applying the monotonic nonlinear transformatigi) = z* to  namicnoise is the following. Lef (z) be the discrete time map

colored noise (as above). under consideration (or for a flow the flow integrated over one
Ikeda Chaos: The Ikeda map is given by time interval) andg(z) be the scalar measurement function.
(a:) :<1+/L(a:cosﬁ—ysin9)> 7 Then
7 p(zsinb + ycos )
and zep1 = f(2t) + 6
0 =04 — 6 (8) and the time series we consider is
1+22+9y2

where, fory, = 0.7, this system is chaotic. yr = g(2¢) + €.
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Fig. 4. Probability distribution (shown as a contour plot) of correlation dimension estimates for 50 Algorithm 2 surrogates and the originadatatédon

four different systems is shown. Any value beyond the lowest (outside) isocline would indicate an outlier of the surrogate distribution. Thenfsemysidered
are: a colored noise process (top left), a monotonic nonlinear transformation of colored noise (top right), and Chua’s circuit in chaotic (patidmpéeiodic

(bottom right) regime.

The random variate$ are dynamic noise (these affect the timgorithm 0, but not by the others; and, the monotonic nonlinear
evolution of z;), and the variateg; are observational noise transformation of linearly filtered noise is clearly distinct from
(these do not affect the evolution f). Algorithm 0 and 1 surrogates, but not Algorithm 2. Of the de-
In each case, we employ correlation dimension [14], [15] asrministic systems, all are inconsistent with the linear (Algo-
a test statistic. The algorithm described in [14] and [15] estithms 0, 1, and 2) surrogates, and all are inconsistent with the
mates correlation dimensiah as a function of viewing scale PPS algorithm. This is most notable because the Ikeda data are
0, henceld.(eg). Therefore, the correlation dimension for eackisually indistinguishable from noise. Furthermore, it is worth
time series is not a single number, but a curve. To compareting that surrogates generated by the PPS algorithm appear
curves, we either plot the results graphically (as in Figs. 4 andalitatively similar to the data (unlike the linear surrogates) but
5) or compute a single statistic, teviation The deviation is quantitative analysis demonstrates that they are significantly dif-
computed to be the maximum difference between the correfarent.
tion dimension estimated for the data and the mean of the corThat Table | shows i.i.d. noise being rejected by Algorithm 1
relation dimension for the surrogates, expressed in terms of th@n indication of why one needs to apply this hierarchy of sur-
standard deviation of the surrogates. The results of these calate algorithms. In contrast, we note that the PPS data is (ac-
culations are summarized in Table I. If these distributions wecerding to Table I) indistinguishable from the Ikeda map data.
Gaussian, then a value of deviation greater than three wouldTigs is a demonstration of why failure to reject a surrogate test s
statistically significant. Although it does not necessarily follomot evidence that the hypothesis is true; only that we have failed
that these distributions are Gaussian, a value of deviation gredtefind evidence that it is false. By varying the test statistic, one
than about five is certainly significant and anything below thaieadily observes the converse. Itis simply that in this particular
is questionable. Fig. 4 displays the results of the Algorithm &ase (a two-dimensional map), correlation dimension is not sen-
surrogate calculation for four of the data sets considered hesiive to the distinction between the data and surrogates.
and Fig. 5 is the same result for the PPS Algorithm. A more de-Figs. 4 and 5 provide further illustration of these calculations
tailed examination of the PPS algorithm is presented in [6]. for four data sets. The noise data (colored noise and a static
Table | shows that the test systems are identified correctlytonotonic transformation of colored noise) are indistinguish-
i.i.d. noise is not rejected by Algorithm O (although it is spuriable from the surrogates (correlation dimension estimates are
ously rejected by Algorithm 1); colored noise is rejected by Akoincident). However, both Algorithm 2 and PPS data are
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Fig. 5. Probability distribution (shown as a contour plot) of correlation dimension estimates for 50 PPS algorithm surrogates and the origimddt@aftenin
four different systems is shown. Any value beyond the lowest (outside) isocline would indicate an outlier of the surrogate distribution. Thenfisecmysidered
are: a colored noise process (top left), a monotonic nonlinear transformation of colored noise (top right), and Chua circuit in chaotic (battonpéeitdic
(bottom right) regime. Note that, although the correlation dimension estimate and contour plot appear to differ in the top left plot this is selyHeeeasemble
of surrogate data sets failed to provide an estimaté. dor these values of,. That is, for values of, for which data and surrogate dimension estimates differ,
the number of available surrogates is low. Furthermore, in the case of significant deviation between data and surrogates we expect the owgralatioofdhe
data to bdower than that for the surrogates. Results such as those in the top right panel are more typical.

TABLE | Minimum description length and other information theoretic
MAXIMUM NUMBER OF STANDARD DEVIATIONS (OF SURROGATE measures offer a well founded model selection criteria. How-
DISTRIBUTION) SEPARATING THE MEAN OF THE SURROGATE . .
DISTRIBUTION FROM THE DATA ESTIMATE OF d. (=0 ) ever, such measures are often very computationally expensive
or analytically complex [9]. Surrogate data provides a straight-
System Alg. 0| Alg. 1| Alg. 2 PPS  forward and robust alternative.
ii.d. noise 1.9515 | 8.5915 | 0.83616 | -0.32588 We take as our test system 4000 points of the Chua circuit
coloured noise 85.577 | 0.8214 | 0.47828 | 0.61221 equations during “double-scroll” type chaas (: 9 andb =
monotonic transformation of coloured noise | 25.558 | 12.654 | 1.0058 | 0.47261 14(2/7))’ Samp|ed at 40 Hz with observational and dynamic
noisy Tkeda map 57.958 | 1178 32.909 | 0.7936  noise of N(0,0.05) and N(0,0.1) (added to each component
Chua’s circuit: single band chaos 5.011 | 5.5801 | 59146 | 12.023  of the vector time series) respectively. Although this observa-
Chua’s circuit: period 2 2.6582 | 2.5655 | 3.5315| 9.0051  tjon noise level is modest, this level of dynamic noise is suffi-
Chua’s circuit: double scroll 6.4708 | 6.9028 | 10.806 | 15.084 cient to have a substantial impact on the observed dynamics J—

especially for a chaotic system. A representative time series and
clearly distinct from the nonlinear systems (Chua’s circuft delay reconstruction of the underlying attractor are depicted in
during broad band chaos and periodic dynamics). Note tHd8- 6. Itis clear from Fig. 6 that the observation and dynamic
this result is as one expects: Chua’s circuit in periodic motidiPise have a substantial impact on the observed time series.
was simulated with both observational and dynamic noise. TheWe applied the radial basis modeling scheme described in
dynamic noise means that the system is inconsistent with ff7¢ and [9] to these data. Plots of description length and root-
hypothesis of periodic motion with uncorrelated noise proposetean-square prediction error are given in Fig. 3. From Fig. 3 the

for PPS data [5]. optimal model size is 22 parameters. Although the minimum in
_ o the description length curve is only slight, itis significant. For all
B. Extracting Determinism models of size larger than 22, the description length increases.

In this section, we demonstrate that surrogate data calculafor each model of size (i.en + n) 0 to 36 we applied Algo-
tions may be employed as a form of model selection criteriagthm O surrogates to the model residuals (prediction errors). The
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Fig. 6. Computational simulation of 4000 points of Chua’s circuit with observation and dynamic noise (standard deviation of 0.1 and 0.05 |y} Epetutivie
in the upper panel. The sampling rate is 40 Hz. The lower panel depicts the attractor reconstructed from this data in three dimensions with a lag of 20.
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Fig. 7. Top panel shows the number of standard deviations (of the surrogate distribution) separating the mean of the Algorithm 0 surrogate filcmimitui
value of correlation dimensioth. estimated for the model residuals. The bottom panel is a plot of nonlinear prediction error applied to the residuals as a function
of model size. Also shown in this lower plot is the mean and the five standard deviation range of this same quantity for Algorithm O surrogates.

results of this calculation are shown in Fig. 7. One can cleantyodel residuals and i.i.d. noise (Algorithm O surrogates). How-
see that this criterion does not indicate the necessity for theer, correlation dimension is not the best statistic to employ
large model built according to description length. For all mod@h this case. Correlation dimension is insensitive to fine time
sizes larger than 4, there is no significant difference between tependence in the system. Indistinguishable correlation dimen-
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Fig. 8. Attractor reconstructed from a noise free model simulation for the MDL-best model of the data in Fig. 6. The attractor is reconstructeddfaten thi
in three dimensions with a lag of 20. Note that the chaotic dynamics exhibited by this model trajectory mimic the behavior of Chua’s circuit vehtheell. A
essential features appear to be preserved, but the noise in the original data (Fig. 6) is absent. This is good evidence that the modeling afdmdhmtdissc
paper is fitting the system dynamics without overfitting.

sion estimates only imply that topologically the embedded tintebit equivalent dynamics, irrespective of whether an MDL or
series (for model residual and surrogates) are equivalent. Asreimlinear prediction model selection criteria is employed.
alternative, we employ a test statistic that is much more sensiBecause the data considered in this example contain both dy-
tive to temporal dependencies in the data: nonlinear predictipamic and observational noise, it is not obvious how one may
error [18]. measure the signal-to-noise ratio. Indeed, because the system

Nonlinear prediction error is a measure of the amount of ddynamics are corrupted by the dynamic noise there is no under-
terminism in the time series. For a delay embedding such lgsg “clean” trajectory. However, a comparable quantity may
(1) one predicts the future behavior of stateby building a be estimated as follows. The standard deviatiorthefclean
linear model based on the behavior of the spatial neighborssifnal may be approximated by the standard deviati@ctdan
x; [19]. Nonlinear prediction of one indicates no temporal derajectory of Chua’s circuity, ~ 1.34. The system noise is the
terminism, less than one indicates nonlinear determinism. Thet effect of the observational noise (standard deviation 0.1) and
second panel of Fig. 7 shows the results of this calculation fdynamic noise (standard deviation of 0.05). However, the dy-
the model described in Fig. 3. Algorithm 0 surrogates were alsamic noise is actually a vector (R?) and propagated by the
used to compute the expected distribution of nonlinear predithaotic dynamics of the system. Therefore, we can only estimate
tion if the residual were i.i.d. noise. That is, the surrogates ditee magnitude of the noise from the root-mean-square predic-
employed to act as error bounds on the estimate of nonlingian error of the optimal modeb,, ~ 0.16. Hence, we obtain
prediction. One can clearly see that this computation indicatas estimate of signal-to-noise ratio of approximately
that the residualsf all model sizesontain significant temporal
determinism. However, the model size for which the nonlinear 20 log s~ 18 dB.
prediction was least significant corresponds to a model of size On
24—very close to the MDL estimate provided by Fig. 3.

Significant nonlinear determinism is observed in models of
all sizes. But minimum description length indicates that this de- IV. CONCLUSION
terminism is not sufficient to be modeled adequately by (2): the

determinism is either very small (in magnitude) or very COMave been widely applied in the literature to identiiyssible

p|e|;1< I(:IingteSm\:\;Seosfhr(?v(\j/Iﬂsgtstlfail':gf:f:osr)l;structed from noise frgonlinearity in experimental _Systems. A new algo_rithm, th_e PPS
simulati(.)n's produced by the MDL-best model. It is clear fro a?gonthm, may also be applied to expenmenta_l t_|r_ne series and
this simulation that this model is adequate tc; capture the ';Ha_s_been_ shown to be_m_ore useful for data exh|b|_t|ng some hon-
sential behavior of the original system. It is not meaningful ts?auonan.ty or dgtgrmmlsm. In such syst_ems, th'$ algonthm 'S

' ble to mimic existing large-scale determinism while destroying

extracF a true. trajectory in th? presence of dynamic and O%he features, such as deterministic chaos. We demonstrated the
servational noise. However, this simulation shows that equiva-

lent trajectories _('n the absence of noise) may be produced by, 5 stems with only observational noise we have found this quantity to be
models of the noisy data. Furthermore, the models produced ey close to the standard deviation of the noise.

We have described the existing surrogate data techniques that
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application of these four algorithms to seven test systems angg] J. RissanenStochastic Complexity in Statistical InquirySingapore:

correctly identified the origin of the signal in each case. World Scientific, 1989. , _ ,
To dat te techniques have largely been a I'e(ﬁg] M. Small and K. Judd, “Comparison of new nonlinear modeling tech-
) 0 ate, Su.rmga_e _'qu V! ] gely pp_' niques with applications to infant respiratiorPhys. Q vol. 117, pp.
within the nonlinear time series community to screen data prior ~ 283-298, 1998.
to analysis with nonlinear methods. Data that is likely to bell0] M. Small, D. J. Yu, and R. G. Harrison, “Period doubling bifurcation
istent with th l | ith .. din f f route in human ventricular fibrillation,Int. J. Bifurcation Chaosvol.
consistent with these linear algorithms is ignored in favor o 13, 2003, to be published.

more interesting time series. Once such set of data is showmi] M. Small, K. Judd, and A. Mees, “Modeling continuous processes from
to be distinct from a monotonic nonlinear transformation of _ data’Phys. Rev. Bvol. 65, p. 046704, 2002. o
l v filtered noise . it is usual to proceed to the application 01{12] F. Takens, “Detecting nonlinearities in stationary time seriks,’J. Bi-
Inearly 1 e IS€, ILIS usu : p ) ppl .' s furcation Chaosvol. 3, pp. 241-256, 1993.
more sophisticated data analysis techniques. In an engineerifig] J. Theiler and D. Prichard, “Constrained-realization Monte-Carlo
context, these techniques may be applied to observed data to_ Mmethod for hypothesis testing?hys. Q vol. 94, pp. 221-235, 1996.

d ianifi d . 0 v th h &14] K. Judd, “An improved estimator of dimension and some comments on

etect significant determinism. One can apply these methods = ,4,iging confidence intervalsPhys. D vol. 56, pp. 216-228, 1992.
to search for deterministic signals hidden within an apparently15] —, “Estimating dimension from small sample®hys. Q vol. 71, pp.
random background. For example, surrogate techniques should 421-429, 1994. _ .

ful for identifyin a communication sianal encode ] H. D. |. Abarbanel Analysis of Observed Chaotic DataNew York:

prpve use_u 0 : g . ’ g k Springer-Verlag, 1996.

with chaotic shift keying: unmasking chaotic masking. [17] F. Takens, “Detecting strange attractors in turbulendastt. Notes
However, to unmask a chaotic signal one needs to know more_ Math. vol. 898, pp. 366381, 1981. ,

h it istence. For this reason. we described a non"neglrS] R. Hegger, H. Kantz, and T. Schreiber, “Practical implementation of non-
than '_S exis : ! SV " linear time series methods: The TISEAN packagdetiaos vol. 9, pp.
modeling methods that can separate deterministic and stochastic 413-435, 1999.
components in a time series. A common problem for all mod{19] G. Sugihara and R. M. May, “Nonlinear forecasting as a way of distin-

. . . guishing chaos from measurement error in time serlatlre vol. 344,
eling regimes is how large should one make the model. The 5, °73777.0, 1990.
algorithm described in this paper addressed this problem with
the information theoretic minimum description length. For the
data we considered here we found that nonlinear prediction error
and surrogate data methods could be employed to provid .
equivalent model selection criteria: the best model is achie

when the model prediction errors (residuals) are indistinguis
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