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Detecting Determinism in Time Series: The Method
of Surrogate Data
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Abstract—We review a relatively new statistical test that may be
applied to determine whether an observed time series is inconsis-
tent with a specific class of dynamical systems. Thesesurrogate data
methods may test an observed time series against the hypotheses of:
i) independent and identically distributed noise; ii) linearly filtered
noise; and iii) a monotonic nonlinear transformation of linearly fil-
tered noise. A recently suggested fourth algorithm for testing the
hypothesis of a periodic orbit with uncorrelated noise is also de-
scribed. We propose several novel applications of these methods for
various engineering problems, including: identifying a determin-
istic (message) signal in a noisy time series; and separating deter-
ministic and stochastic components. When employed to separate
deterministic and noise components, we show that the application
of surrogate methods to the residuals of nonlinear models is equiv-
alent to fitting that model subject to an information theoretic model
selection criteria.

Index Terms—Hypothesis testing, minimum description length,
noise separation, nonlinear modeling, surrogate data.

I. INTRODUCTION

A N IMPORTANT problem in many areas of signal pro-
cessing is to determine whether an observed time series is

deterministic, contains a deterministic component, or is purely
stochastic. Equivalently, one may consider the problem of sep-
arating an observed time series into deterministic (message)
and stochastic (noise) components. In this paper we review the
method of surrogate data and suggest two alternative techniques
that may be employed for effective system identification and
separation of signal and noise.

The method of surrogate data provides a rigorous way to
apply statistical hypothesis testing to experimental time series.
One may apply the method of surrogate data to determine
whether an observed time series has statistically significant
deterministic component. Three standard linear techniques are
widely applied in the physical and biological sciences (see
for example, [1]) to test the hypotheses of [2]: i) independent
and identically distributed (i.i.d.) noise1 ; ii) linearly filtered
noise; and (iii) static monotonic nonlinear transformation
of linearly filtered noise. Surrogate methods require one to
generate an ensemble of artificial time series (thesurrogates)
that are both “like” the data being tested and consistent with
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1By i.i.d. we mean that the time series observations are drawnindependently
from identicalprobability distributions.

the hypothesis of interest. One then statistically compares the
data and surrogates. Many extensions of this basic method have
been suggested ([3] and [4]) but, in this current work, we are
particularly interested in a method that may be applied to test
for nonlinear nonperiodic determinism in apparently periodic
time series [5], [6].

Surrogate methods identify whether an observed time series
contains determinism. By themselves, they cannot separate
the noise and deterministic components. We employ nonlinear
modeling techniques [7] that utilize the information theoretic
minimum description length(MDL) [8] to fit data without over
fitting. These methods have been successfully employed to
identify and model the deterministic component of time series
of many experimental systems [9]–[11]. We show that these
methods may be employed to separate the noise and signal in an
observed time series. Alternatively, we show that surrogate data
methods applied to the model residuals may also be used as a
model fitting criterion. Surrogate data methods may then be used
to separate certain classes of noise, such as i.i.d. or colored noise,
from complex deterministic dynamics in a data set. A similar
interpretation of surrogate data methods has been suggested by
Takens [12]. Takens considered fitting some model to a time
series and applying i.i.d. surrogate tests to the residuals. He
showed that if the residuals are i.i.d., then the model offers a
good fit to the data. We extend this result and use it to show
that surrogates may be employed to determine whether a model
captures all the deterministic structure in a time series.

Section II gives a review of existing surrogate data methods
and describes the application of pseudoperiodic surrogates
(PPSs) in more detail. In Section III, we present several exam-
ples of these methods, both to detect deterministic dynamics
and filtered noise in an observed signal. Finally, in Section IV
we conclude.

II. SURROGATEDATA AND NONLINEAR MODELING

In this section, we review the three main techniques employed
in this paper. Section II-A concerns the application of surrogate
data hypothesis testing: a standard method in the dynamical sys-
tems literature. In Section II-B, we describe the PPS generation
scheme, introduced recently by Small and coworkers [5]. Sec-
tion II-B also discusses some new work concerning the applica-
tion of this algorithm to arbitrary time series data (not just those
that exhibit periodic trends). Finally, in Section II-C, we review
the nonlinear modeling and information theoretic techniques we
employ to model time series data. This modeling method has
been utilized in several previous publications. Here, we pro-
pose that also be employed to separate noise from deterministic
dynamics.
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A. Linear Surrogate Methods

Standard surrogate techniques were first suggested by
Theiler and colleagues in 1992 [2]. Using surrogate data
methods, one tests an experimental time series for membership
of a specific class of dynamical systems. That is, we test
whether the process that generated a time series is an instance
of a specific form of system—for example, i.i.d. or linearly
filtered noise. Let denote a
time series of measurements. Where the meaning is clear
we will drop the indexing and abbreviate this to . For
each class of dynamical system , one generates an ensemble
of surrogates ( ), consistent with
both the data and the class of dynamical systems being
tested. These surrogates represent typical realizations of,
the dynamical system that generated , if . One
then computes some statistic for the data and surrogates. If

is significantly different from the ensemble
( ), then, the class of dynamical systems
may be rejected as the likely origin of . If is not
atypical of { } then membership of may
not be rejected. It is important to note that failure to reject a
particular class of dynamical systems is not the same thing as
accepting that class as the likely origin of the data. Failure to
reject only implies that the particular statistic was unable
to distinguish between data and surrogates.

Two issues remain to be addressed: the exact nature of the al-
gorithm used to generate surrogates consistent with meaningful
hypotheses; and the selection of .

Surrogate generation algorithms are best illustrated by
summarizing those originally suggested by Theiler and col-
leagues [2]. The three algorithms are known as Algorithms 0,
1, and 2.

Algorithm 0 Surrogates generated by this algorithm are i.i.d.
noise. To generate i.i.d. noise surrogates, one
simply shuffles the data. The shuffling process
will destroy any temporal correlation and sur-
rogates thus generated are essentially random
observations drawn (without replacement) from
the same probability distribution as the data.

Algorithm 1 Surrogates generated by this algorithm are lin-
early filtered noise. To generate these surro-
gates one takes the discrete Fourier transform of
the data and shuffles (or randomise) the phases
of the complex conjugate pairs. Note that the
phases of the complex numbers must be shuf-
fled pairwise to preserve the realness of the
inverse Fourier transformation. The surrogate
is the inverse Fourier transform. By shuffling
the phases but maintaining the amplitude of the
complex conjugate pairs the surrogate will have
the same power spectrum (and autocorrelation)
as the data, but will have no nonlinear deter-
minism.

Algorithm 2 Surrogates generated by this algorithm are (ap-
proximately, see [4] and [6]) static monotonic
nonlinear transformations of linearly filtered

noise. Generating surrogates with this algo-
rithm can be somewhat awkward. The various
caveats are amply discussed in the literature [4],
[6] and will not be discussed here. The algo-
rithm aims to preserve both the power spectrum
and probability distribution of the data (and
is therefore well suited to non-Gaussian time
series). Generate a Gaussian time series of the
same length as the data, and reorder it to have
the same rank distribution. Take the Fourier
transform of this and randomise the phases
(as for Algorithm 1). Finally, the surrogate
is obtained by reordering the original data to
have the same rank distribution as the inverse
Fourier transform. By rank distribution we
mean that theth value in both the time series
and surrogate data sets will be theth largest,
for all and .

We note that there is considerable discussion of the merits of
these algorithms (particularly Algorithm 2) in the literature. In
most cases the cautious application of these algorithms should
provide adequate results, for more information on the technical
details we refer the reader to the review [4] or the discussion of
[6].

Finally, to apply these surrogate methods one must choose
a suitable statistic . As these methods were originally intro-
duced as a “sanity test” for correlation dimension estimation [2],
correlation dimension is a popular choice [1], [6]. A complete
discussion of choice of statistic may be found in [13], and Small
and Judd [3] demonstrate that correlation dimension is indeed a
good choice. We will paraphrase these results and say that the
chosen statistic should be independent of the surrogate gener-
ation method (linear autocorrelation or mean are therefore bad
choices for Algorithm 2) and yet sensitive to deviation from the
class of dynamical systems being tested (thus, nonlinear predic-
tion is a good choice for the three linear hypotheses). The results
in this paper use a correlation dimension estimation algorithm
proposed by Judd [14], [15] that has been shown to be a good
choice of test statistic for many classes of dynamical systems of
interest [3]. For the sake of brevity, we do not define correlation
dimension here, other than to say that it is a measure of struc-
tural complexity in the observed dynamics.

B. PPSs

The surrogate generation algorithms described in the previous
section test for independent noise, linear noise or statically fil-
tered linear noise. Very many time series of interest exhibit pe-
riodic fluctuations and are obviously inconsistent with linear
noise. In Fig. 1 we show examples of linear surrogates gen-
erated from two typical time series. In the case of a system
exhibiting a strong periodic component (Chua’s circuit) these
linear surrogates are clearly inadequate. For such systems, an al-
ternative approach has been suggested [5]. In [6], we described
this approach and applied it to several artificial and experimental
systems. The PPS algorithm generates surrogates that preserve
coarse deterministic features (such as periodic trends) but de-
stroy fine structures (such as deterministic chaos). In Fig. 2, we
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Fig. 1. Linear (Algorithms 0, 1, and 2) surrogates for two time series. The Ikeda map contaminated with linear noise (left side panels) and Chua’s circuit in
its chaotic regime with both dynamic and observational noise (right). The top two panels are the original time series. Below these are (in order): Algorithm 0,
Algorithm 1, and Algorithm 2 surrogates. Note that the surrogates appear qualitatively like the Ikeda data, but dissimilar to the Chua’s circuit simulation. Chua’s
circuit contains nonlinear determinism which is not modeled adequately as a static monotonic nonlinear transformation of linear filtered noise. Quantitative analysis
reveals that both these data sets are clearly distinct from these surrogates.

show that this method can be applied to differentiate between
deterministic chaos with noise and a periodic orbit. The algo-
rithm generates surrogates that are very like the original data,
yet only have the large-scale deterministic features.

The basic algorithm for this method is the following.

1. Construct the vector delay embedding
from the scalar time series

according to

where the embedding dimension and em-
bedding lag remain to be selected.
The embedding window is defined by

.
2. Call the recon-
structed attractor .
3. Choose an initial condition at
random.
4. Let .
5. Choose a near neighbor of ac-
cording to the probability distribution

where the parameter is the noise radius .
6. Let be the successor to .
7. Increment .
8. If go to step 5.
9. The surrogate time series is

, the scalar
first components of .

The above algorithm has three parameters:, , and .
Selection of embedding parameters and is discussed at
length in the literature (see, for example, [16] and the refer-
ences therein) and we do not consider this problem here. The
noise radius is selected according to the suggestions of [5].
We choose such that the expected number of sequences of
length two or more that are identical for data and surrogates is

Fig. 2. Surrogates generated by the PPS algorithm for Chua’s circuit data.
Note that the data and surrogates are qualitatively similar. However, quantitative
analysis reveals that this data is clearly distinct from the system modeled by
the surrogates—a period orbit with uncorrelated noise. Each of these surrogates
lacks the deterministic “signature” of chaos. The original data are depicted in
the top panel.

maximized. This selection criteria provides a balance between:
1) too much randomization (few identical sequences of length;
and 2) too little (data and surrogate near identical).

According to [5], this algorithm can be applied to test for non-
periodic deterministic dynamics in pseudoperiodic time series.2

Conversely, dynamical systems consistent with these surrogates
exhibit a periodic orbit with uncorrelated noise. For time series
exhibiting pseudoperiodic dynamics, rejection of this class of
systems implies the existence of nonperiodic deterministic dy-
namics. However, for time series that do not exhibit pseudope-
riodic dynamics, we have shown [6] that surrogates generated
by this method are actually consistent with short-term deter-
ministic dynamics. Rejection of this test therefore is evidence
for long-term deterministic dynamics. The distinction between
“long term” and “short term” is perhaps ill defined, and certainly
dependent on the selection of. However, for the current study
a more precise definition is beyond our requirements. It is suf-
ficient to note that surrogates generated by this method appear

2A pseudoperiodic time series is one which exhibits a definite periodic trend:
there exists� > 0 such that the autocorrelation�(�) has a nontrivial peak
�(� ) > 0 at � .
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much more like the data than Algorithms 0, 1, and 2 surrogates.
Rejection of the PPS algorithm indicates the presence of non-
trivial deterministic dynamics in the data.

C. Nonlinear Modeling

In the last two sections, we have discussed various surrogate
techniques. We now turn our attention to a class of nonlinear
models [7] utilising an information theoretic stopping criterion
[8]. The difference between these techniques is not as great as
it may seem. In the previous sections, we have deliberately de-
scribed surrogate datahypothesis testingin terms of dynamical
systems and classes of models. Conversely, in [3] and [12], it
has been shown that noisy iterated predictions of a model may
be used as a form of hypothesis testing.

For a scalar time series we perform a time delay em-
bedding [17] according to

(1)

(There is a minor notational change between this embedding
and that in Section II-B. This distinction is cosmetic and largely
a matter of convenience.) We then model the dynamics of the
map by the construction of a function such that

where theresiduals are expected to be i.i.d. random variates.
The function is of the form

(2)

where are theweights; such that
are thelags; are thebasis func-

tions; are thecenters; and are the radii.
In fact, an often more useful generalization of this scheme is
described in [9]. In addition to each of these parameters, the
model size ( ) must also be selected3 so that the variate

are indeed i.i.d. but yet model overfitting must be avoided.
Note that the selection of the model form (2) is based solely on
the computational algorithms at our disposal. Consideration of
many other similar schemes may be found in the literature (see,
for example, [11]).

To provide a suitable model fitting criterion we employmin-
imum description length(MDL) as described by Rissanen [8]
and applied to radial basis modeling by Judd and Mees [7].
Roughly speaking, the description length of a data set is the
length of shortest description that can be employed to recon-
struct the entire data set. For random variates, that code will
simply be the data itself and the description length will be the
length of that data set. For data containing some determinism,
the shortest description length of that data will be the descrip-
tion of a model of the deterministic component and the model
prediction errors.

Rissanen [8] showed that the description length of a parame-
ters (specified to some finiteprecision ) is

3The model selection scheme described in [7] implies thatm andn are not
independent.

where is a constant related to the number of bits in the mantissa
of the binary representation of . Denote by the model pa-
rameters . Then, if we assume4 that the model
(2) may be completely described by the linear parameters
( ) then the description length of the model
is

(3)

The description length of the datawith this modelis then given
by

(4)

where is the negative log likelihood of the model pre-
diction errors under the assumed distribution (5). The likelihood
of a data set is the probability of observing that particular set of
values. Assuming that the model prediction errors are Gaussian
distributed noise with standard deviation, the negative log
likelihood is given by

(5)

Typically, one will substitute the estimate for the
unknown variance of the noise.

A model may then be assessed based on its description length
as given in (4). The best model of a particular data set is that for
which this quantity is lowest.

One observes that the important quantity in the above com-
putation is the set of precisions of the parameters. It can be
shown [7] that these precisions may be calculated as the solu-
tion of

(6)

where is the second partial derivative of with respect to
the model parameters. In Fig. 3, we show the typical behavior
of MDL and root-mean-square error for a model of the data
depicted in (2).

III. D ETECTING AND EXTRACTING DETERMINISM

We now apply the methods discussed in Section II to simu-
lated and experimental data. We show that linear and nonlinear
surrogates as described in Sections II-A and II-B can be suc-
cessfully applied to realistic data to differentiate between de-
terminism and stochastic behavior. We then consider the appli-
cation of surrogate techniques to nonlinear modeling and show
that they behave the same as minimum description length and
may be used as a form of model selection criteria.

In Section III-A, we present the application of surrogate
methods to various engineering systems. Section III-B com-
pares minimum description length and surrogate methods as
model selection criteria.

4This is an approximation intended to make the calculations that follow sub-
stantially easier. A full treatment is provided in [9].
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Fig. 3. Description length and root-mean-square of the residuals as a function of model size for the data depicted in the upper panel of Fig. 2. The dot-dashed line
is root-mean-square prediction error, the solid line is description length. Note that the root-mean-square prediction error is a monotonically decreasing function of
model size: as the model gets bigger the errors get smaller. However, the description length is not monotonic, a minimum is observed at model size 22. Increasing
the model size beyond the minimum will cause description length to increase.

A. Detecting Determinism

We consider the application of the linear surrogate algorithms
and the PPS algorithm to six test systems: i.i.d. random variates
(generated from a radioactive decay process); a colored noise
process; a monotonic nonlinear transformation of colored noise;
Ikeda type chaos with observational and dynamic noise; and the
Chua circuit during both periodic (with observational noise) and
chaotic behavior (with observational and dynamic noise). For
completeness, we describe the equations of motion and param-
eter settings employed in this paper.

i.i.d. Random Variates:5000 uniform random variates were
obtained as the product of two independent and uniformly dis-
tributed integers between 1 and 256.

Colored Noise: Colored noise was generated as realizations
of the random walk process

where are Gaussian random variates with mean 0 and stan-
dard deviation 1.

Monotonic Transformation of Colored Noise:Generated by
applying the monotonic nonlinear transformation to
colored noise (as above).

Ikeda Chaos:The Ikeda map is given by

(7)

and

(8)

where, for , this system is chaotic.

Chua’s Circuit: Chua’s circuit equations are given by

(9)

and

(10)

where and . We investigate the be-
havior of the system for: and (“double
scroll” chaos); and (stable period 2 dynamics);
and, and (“single-band” chaos).

In each case, observational and dynamic noise are computer
generated pseudorandom numbers conforming to a Gaussian
distribution. The distinction betweenobservationaland dy-
namicnoise is the following. Let be the discrete time map
under consideration (or for a flow the flow integrated over one
time interval) and be the scalar measurement function.
Then

and the time series we consider is
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Fig. 4. Probability distribution (shown as a contour plot) of correlation dimension estimates for 50 Algorithm 2 surrogates and the original data fordata from
four different systems is shown. Any value beyond the lowest (outside) isocline would indicate an outlier of the surrogate distribution. The four systems considered
are: a colored noise process (top left), a monotonic nonlinear transformation of colored noise (top right), and Chua’s circuit in chaotic (bottom left) and periodic
(bottom right) regime.

The random variates are dynamic noise (these affect the time
evolution of ), and the variates are observational noise
(these do not affect the evolution of).

In each case, we employ correlation dimension [14], [15] as
a test statistic. The algorithm described in [14] and [15] esti-
mates correlation dimension as a function of viewing scale

, hence . Therefore, the correlation dimension for each
time series is not a single number, but a curve. To compare
curves, we either plot the results graphically (as in Figs. 4 and
5) or compute a single statistic, thedeviation. The deviation is
computed to be the maximum difference between the correla-
tion dimension estimated for the data and the mean of the cor-
relation dimension for the surrogates, expressed in terms of the
standard deviation of the surrogates. The results of these cal-
culations are summarized in Table I. If these distributions were
Gaussian, then a value of deviation greater than three would be
statistically significant. Although it does not necessarily follow
that these distributions are Gaussian, a value of deviation greater
than about five is certainly significant and anything below that
is questionable. Fig. 4 displays the results of the Algorithm 2
surrogate calculation for four of the data sets considered here,
and Fig. 5 is the same result for the PPS Algorithm. A more de-
tailed examination of the PPS algorithm is presented in [6].

Table I shows that the test systems are identified correctly:
i.i.d. noise is not rejected by Algorithm 0 (although it is spuri-
ously rejected by Algorithm 1); colored noise is rejected by Al-

gorithm 0, but not by the others; and, the monotonic nonlinear
transformation of linearly filtered noise is clearly distinct from
Algorithm 0 and 1 surrogates, but not Algorithm 2. Of the de-
terministic systems, all are inconsistent with the linear (Algo-
rithms 0, 1, and 2) surrogates, and all are inconsistent with the
PPS algorithm. This is most notable because the Ikeda data are
visually indistinguishable from noise. Furthermore, it is worth
noting that surrogates generated by the PPS algorithm appear
qualitatively similar to the data (unlike the linear surrogates) but
quantitative analysis demonstrates that they are significantly dif-
ferent.

That Table I shows i.i.d. noise being rejected by Algorithm 1
is an indication of why one needs to apply this hierarchy of sur-
rogate algorithms. In contrast, we note that the PPS data is (ac-
cording to Table I) indistinguishable from the Ikeda map data.
This is a demonstration of why failure to reject a surrogate test is
not evidence that the hypothesis is true; only that we have failed
to find evidence that it is false. By varying the test statistic, one
readily observes the converse. It is simply that in this particular
case (a two-dimensional map), correlation dimension is not sen-
sitive to the distinction between the data and surrogates.

Figs. 4 and 5 provide further illustration of these calculations
for four data sets. The noise data (colored noise and a static
monotonic transformation of colored noise) are indistinguish-
able from the surrogates (correlation dimension estimates are
coincident). However, both Algorithm 2 and PPS data are
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Fig. 5. Probability distribution (shown as a contour plot) of correlation dimension estimates for 50 PPS algorithm surrogates and the original data for data from
four different systems is shown. Any value beyond the lowest (outside) isocline would indicate an outlier of the surrogate distribution. The four systems considered
are: a colored noise process (top left), a monotonic nonlinear transformation of colored noise (top right), and Chua circuit in chaotic (bottom left)and periodic
(bottom right) regime. Note that, although the correlation dimension estimate and contour plot appear to differ in the top left plot this is only because the ensemble
of surrogate data sets failed to provide an estimate ofd for these values of" . That is, for values of" for which data and surrogate dimension estimates differ,
the number of available surrogates is low. Furthermore, in the case of significant deviation between data and surrogates we expect the correlation dimension of the
data to belower than that for the surrogates. Results such as those in the top right panel are more typical.

TABLE I
MAXIMUM NUMBER OF STANDARD DEVIATIONS (OF SURROGATE

DISTRIBUTION) SEPARATING THE MEAN OF THE SURROGATE

DISTRIBUTION FROM THE DATA ESTIMATE OF d (" )

clearly distinct from the nonlinear systems (Chua’s circuit
during broad band chaos and periodic dynamics). Note that
this result is as one expects: Chua’s circuit in periodic motion
was simulated with both observational and dynamic noise. The
dynamic noise means that the system is inconsistent with the
hypothesis of periodic motion with uncorrelated noise proposed
for PPS data [5].

B. Extracting Determinism

In this section, we demonstrate that surrogate data calcula-
tions may be employed as a form of model selection criteria.

Minimum description length and other information theoretic
measures offer a well founded model selection criteria. How-
ever, such measures are often very computationally expensive
or analytically complex [9]. Surrogate data provides a straight-
forward and robust alternative.

We take as our test system 4000 points of the Chua circuit
equations during “double-scroll” type chaos ( and

), sampled at 40 Hz with observational and dynamic
noise of and (added to each component
of the vector time series) respectively. Although this observa-
tion noise level is modest, this level of dynamic noise is suffi-
cient to have a substantial impact on the observed dynamics —
especially for a chaotic system. A representative time series and
a delay reconstruction of the underlying attractor are depicted in
Fig. 6. It is clear from Fig. 6 that the observation and dynamic
noise have a substantial impact on the observed time series.

We applied the radial basis modeling scheme described in
[7] and [9] to these data. Plots of description length and root-
mean-square prediction error are given in Fig. 3. From Fig. 3 the
optimal model size is 22 parameters. Although the minimum in
the description length curve is only slight, it is significant. For all
models of size larger than 22, the description length increases.

For each model of size (i.e., ) 0 to 36 we applied Algo-
rithm 0 surrogates to the model residuals (prediction errors). The
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Fig. 6. Computational simulation of 4000 points of Chua’s circuit with observation and dynamic noise (standard deviation of 0.1 and 0.05, respectively) is shown
in the upper panel. The sampling rate is 40 Hz. The lower panel depicts the attractor reconstructed from this data in three dimensions with a lag of 20.

Fig. 7. Top panel shows the number of standard deviations (of the surrogate distribution) separating the mean of the Algorithm 0 surrogate distribution from the
value of correlation dimensiond estimated for the model residuals. The bottom panel is a plot of nonlinear prediction error applied to the residuals as a function
of model size. Also shown in this lower plot is the mean and the five standard deviation range of this same quantity for Algorithm 0 surrogates.

results of this calculation are shown in Fig. 7. One can clearly
see that this criterion does not indicate the necessity for the
large model built according to description length. For all model
sizes larger than 4, there is no significant difference between the

model residuals and i.i.d. noise (Algorithm 0 surrogates). How-
ever, correlation dimension is not the best statistic to employ
in this case. Correlation dimension is insensitive to fine time
dependence in the system. Indistinguishable correlation dimen-
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Fig. 8. Attractor reconstructed from a noise free model simulation for the MDL-best model of the data in Fig. 6. The attractor is reconstructed from this data
in three dimensions with a lag of 20. Note that the chaotic dynamics exhibited by this model trajectory mimic the behavior of Chua’s circuit very well. All the
essential features appear to be preserved, but the noise in the original data (Fig. 6) is absent. This is good evidence that the modeling algorithm described in this
paper is fitting the system dynamics without overfitting.

sion estimates only imply that topologically the embedded time
series (for model residual and surrogates) are equivalent. As an
alternative, we employ a test statistic that is much more sensi-
tive to temporal dependencies in the data: nonlinear prediction
error [18].

Nonlinear prediction error is a measure of the amount of de-
terminism in the time series. For a delay embedding such as
(1) one predicts the future behavior of stateby building a
linear model based on the behavior of the spatial neighbors of

[19]. Nonlinear prediction of one indicates no temporal de-
terminism, less than one indicates nonlinear determinism. The
second panel of Fig. 7 shows the results of this calculation for
the model described in Fig. 3. Algorithm 0 surrogates were also
used to compute the expected distribution of nonlinear predic-
tion if the residual were i.i.d. noise. That is, the surrogates are
employed to act as error bounds on the estimate of nonlinear
prediction. One can clearly see that this computation indicates
that the residualsof all model sizescontain significant temporal
determinism. However, the model size for which the nonlinear
prediction was least significant corresponds to a model of size
24—very close to the MDL estimate provided by Fig. 3.

Significant nonlinear determinism is observed in models of
all sizes. But minimum description length indicates that this de-
terminism is not sufficient to be modeled adequately by (2): the
determinism is either very small (in magnitude) or very com-
plex (in terms of radial basis functions).

In Fig. 8, we show the attractor reconstructed from noise free
simulations produced by the MDL-best model. It is clear from
this simulation that this model is adequate to capture the es-
sential behavior of the original system. It is not meaningful to
extract a “true” trajectory in the presence of dynamic and ob-
servational noise. However, this simulation shows that equiva-
lent trajectories (in the absence of noise) may be produced by
models of the noisy data. Furthermore, the models produced ex-

hibit equivalent dynamics, irrespective of whether an MDL or
nonlinear prediction model selection criteria is employed.

Because the data considered in this example contain both dy-
namic and observational noise, it is not obvious how one may
measure the signal-to-noise ratio. Indeed, because the system
dynamics are corrupted by the dynamic noise there is no under-
lying “clean” trajectory. However, a comparable quantity may
be estimated as follows. The standard deviation ofthe clean
signal may be approximated by the standard deviation ofaclean
trajectory of Chua’s circuit . The system noise is the
net effect of the observational noise (standard deviation 0.1) and
dynamic noise (standard deviation of 0.05). However, the dy-
namic noise is actually a vector (in ) and propagated by the
chaotic dynamics of the system. Therefore, we can only estimate
the magnitude of the noise from the root-mean-square predic-
tion error of the optimal model5 . Hence, we obtain
an estimate of signal-to-noise ratio of approximately

dB

IV. CONCLUSION

We have described the existing surrogate data techniques that
have been widely applied in the literature to identifypossible
nonlinearity in experimental systems. A new algorithm, the PPS
algorithm, may also be applied to experimental time series and
has been shown to be more useful for data exhibiting some non-
stationarity or determinism. In such systems, this algorithm is
able to mimic existing large-scale determinism while destroying
fine features, such as deterministic chaos. We demonstrated the

5For systems with only observational noise we have found this quantity to be
very close to the standard deviation of the noise.
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application of these four algorithms to seven test systems and
correctly identified the origin of the signal in each case.

To date, surrogate techniques have largely been applied
within the nonlinear time series community to screen data prior
to analysis with nonlinear methods. Data that is likely to be
consistent with these linear algorithms is ignored in favor of
more interesting time series. Once such set of data is shown
to be distinct from a monotonic nonlinear transformation of
linearly filtered noise, it is usual to proceed to the application of
more sophisticated data analysis techniques. In an engineering
context, these techniques may be applied to observed data to
detect significant determinism. One can apply these methods
to search for deterministic signals hidden within an apparently
random background. For example, surrogate techniques should
prove useful for identifying a communication signal encoded
with chaotic shift keying: unmasking chaotic masking.

However, to unmask a chaotic signal one needs to know more
than its existence. For this reason, we described a nonlinear
modeling methods that can separate deterministic and stochastic
components in a time series. A common problem for all mod-
eling regimes is how large should one make the model. The
algorithm described in this paper addressed this problem with
the information theoretic minimum description length. For the
data we considered here we found that nonlinear prediction error
and surrogate data methods could be employed to provide an
equivalent model selection criteria: the best model is achieved
when the model prediction errors (residuals) are indistinguish-
able from i.i.d. variates. We showed that either method could be
employed to recover a chaotic attractor from a time series con-
taminated with dynamic and observational noise.

Apart from the application considered here, a variant on this
model selection algorithm may be employed to reduce the resid-
uals to a less trivial form. If the objective were to separate the
observed time series into a nonlinear component and a colored
noise component one could apply the modeling algorithm until
the model residuals are indistinguishable from Algorithm 1 or 2
surrogates. Such a technique could be useful when one is aware
of the form of the noise but is only interested in more complex
nonlinear structure. However, successful implementation of this
would rely on ensuring that the modeling algorithm did not at-
tempt to fit the linear stochastic structure first.
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