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SUMMARY

Mixture modeling provides an effective approach to the differential expression problem in microarray

data analysis. Methods based on fully parametric mixture models are available, but lack of fit in some

examples indicates that more flexible models may be beneficial. Existing, more flexible, mixture models

work at the level of one-dimensional gene-specific summary statistics, and so when there are relatively

few measurements per gene these methods may not provide sensitive detectors of differential expression.

We propose a hierarchical mixture model to provide methodology that is both sensitive in detecting

differential expression and sufficiently flexible to account for the complex variability of normalized

microarray data. EM-based algorithms are used to fit both parametric and semiparametric versions of the

model. We restrict attention to the two-sample comparison problem; an experiment involving Affymetrix

microarrays and yeast translation provides the motivating case study. Gene-specific posterior probabilities

of differential expression form the basis of statistical inference; they define short gene lists and false

discovery rates. Compared to several competing methodologies, the proposed methodology exhibits good

operating characteristics in a simulation study, on the analysis of spike-in data, and in a cross-validation

calculation.
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analysis.
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156 M. A. NEWTON ET AL.

1. INTRODUCTION

Microarray technologies assay a cellular state by measuring gene expression in parallel for many

genes. All technologies assess the abundance of gene-specific messenger RNA molecules by taking

advantage of the biochemical process of hybridization, but different technical approaches are used,

including spotted cDNA microarrays and oligonucleotide microarrays (e.g. Nguyen et al., 2002).

Microarrays present some challenging statistical problems, in part because there are many sources of

variation in the measurement process, and in part because the number of measurements per gene is usually

quite small compared to the number of genes (e.g. Parmigiani et al., 2003). A seemingly elementary

statistical question is, ‘Who is up/down?’ (Speed, 2002, 13th problem). That is, in a comparative analysis

between two cellular states, which genes are up-regulated, which ones are down-regulated and which ones

remain unchanged in their expression levels? It may be necessary to report a short list of differentially

expressed genes, to rank order the genes by evidence favoring differential expression, or to estimate the

extent of differential expression in terms of an overall proportion of affected genes. In spite of considerable

research on the differential expression problem, existing statistical methods are limited in the amount of

reliable information they can extract from microarray data.

A small experiment to study genetic translation in the yeast Saccharomyces cerevisiae provides a

motivating example. Like many microarray studies, this one involves cells grown in controlled conditions

and there is a limited amount of replication. A wildtype yeast strain (WT) is being compared to a

mutant strain (MUT) that is identical to WT except for a single mutation in DED1, a gene implicated in

translational activation (Noueiry et al., 2000). Knowing which genes are differentially expressed between

MUT and WT provides insight into the function of DED1. Also, it is important to understand the direction

and magnitude of effects and how these change according to a certain treatment on the RNA. Part of the

experiment, which we take up in Section 6, involves three replicate Affymetrix S98 microarrays probing

the WT transcripts and three replicate microarrays probing the MUT transcripts. After normalization and

probe-set summarization, gene-specific inferences immediately must cope with the multiple three versus

three comparisons. Nonparametric, permutation-based approaches are hampered by the very small sample

size. There is also a concern that gene-specific tests such as the t-test are overly conservative and will not

have the sensitivity to identify the genes of interest.

The formation of gene-specific summary statistics provides a basis for the rank ordering genes and

the creation of short lists of genes inferred to be differentially expressed; obviously the precise form of

the summary statistic affects this inference. One-dimensional, gene-specific summary statistics are usually

isolated from each other in the sense that evaluation of the statistic for one gene does not use data from any

other genes (e.g. gene-specific t-statistics, Dudoit et al., 2002). By contrast, information sharing can be

beneficial, because it can counteract the effects of low sample size (e.g. regularized t-statistics, Baldi and

Long, 2001; Tusher et al., 2001). To the extent that some methods enable information sharing, they do so

in an elementary way that may belie the complex patterns of variation in microarray data. It is noteworthy

that gene-specific statistics which use data from across the genome arise as a biproduct of hierarchical

statistical modeling.

Whatever method is used to summarize gene-level data and to create a rank ordering of genes, there

remains the problem of inferring which genes are differentially expressed: in other words, the problem of

forming a short list by selecting the top ranking genes. This may be of secondary concern if the laboratory

is interested in looking at, say, the top ten genes, regardless of presented variation. Typically, however,

there is interest to calibrate the list so that errors are controlled in some way (see Dudoit et al., 2003).

Behind most approaches is the concept of a true list relative to which we may control some measure

of type I and type II errors. In doing so we are obliged to introduce probability. Methods that rely on

label permutation for this purpose are appealing because their conditional inference can provide error

rate control which is exact and which does not depend on among gene dependence or any details of
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Detecting differential gene expression 157

the distribution of expression values. However, when the number of replicate microarrays is limited, as

for example in the yeast experiment, probabilistic statements based on label permutation become less

effective because of the coarse distributions involved. There are only ten ways to divide six microarrays

into two equal-sized groups, for example. Both gene-specific permutation-based hypothesis tests, and the

nonparametric mixture approach of Efron et al. (2001) are affected adversely by the low complexity of

the permutation distribution caused by limited replication.

An alternative strategy is to adopt some assumptions about the distribution of the expression measures,

such as within-gene log-normality and independence of replicate measurements on a null hypothesis of

equivalent expression. Another useful and fairly innocuous assumption is the discrete mixture model,

which is becoming popular in microarray data analysis (Newton et al., 2001; Efron et al., 2001; Allison et

al., 2002; Broët et al., 2002; Lee et al., 2002; Lonnstedt and Speed, 2002; Pan, 2002; Kendziorski et al.,

2003; Storey and Tibshirani, 2003). Each gene is viewed as tossing a coin to decide a priori whether or

not it will be differentially expressed. The success probability of the coin represents the unknown fraction

of genes that are truly differentially expressed, and the outcome of each coin toss can be assessed only

indirectly through measurements of expression: the differentially expressed genes present data according

to a different distribution than the equivalently expressed genes. The most frequently considered case

involves a mixture model on one-dimensional gene-specific p-values: given equivalent expression, these

p-values are uniformly distributed on (0, 1) (usually after further modeling assumptions), but otherwise

they ought to tend towards the origin. An advantage of discrete mixture modeling is that it provides a direct

method to control the average rate of type I errors on the reported list—the false discovery rate (FDR).

This can be done via p-value analysis or by more explicit modeling and the construction of gene-specific

posterior probabilities of differential expression (see Section 3). By avoiding the reduction of gene-level

data to p-values prior to mixture modeling, the latter approach may retain a degree of sensitivity.

To address the differential expression problem, we propose a methodology based on a hierarchical

mixture model. The model is hierarchical in the sense that an observation component describes the

conditional distribution of measurements given expected expression values, and a second component

(the mean component) describes the distribution of these expected expression values. Such hierarchical

modeling enables the sharing of information among genes; genes become linked by virtue of having

expected expression values drawn from a common, albeit unknown, probability distribution. The rationale

for using such random gene effects is that sensitivity may improve when we have very little information

per gene. Inferences concerning the ranking of genes are directly affected by the form of this random

effects distribution. We consider both parametric and nonparametric forms for the distribution of

expected expression values. Although the parametric form produces analytically tractable inferences, the

nonparametric form improves overall model fit and may give more robust inferences. We also adopt a

discrete mixture model over patterns of differential expression. This enables the calculation of gene-

specific posterior probabilities of differential expression and the reporting of gene lists with targeted FDR.

In what follows, Section 2 develops the model and summarizes estimation, and Section 3 reviews

the method of gene-specific inference by posterior probability. Section 4 reports a small simulation study

comparing the proposal to gene-specific t-testing and the mixture method of Efron et al. (2001). We make

further comparisons on data from a spike-in experiment in Section 5. Section 6 reports the analysis of the

yeast translation experiment, and a discussion follows in Section 7. Details of the parametric sub-model,

the EM algorithm, and numerical evaluations are contained in an appendix. We also contribute R language

code to implement the calculations (Ihaka and Gentleman, 1996).

2. HIERARCHICAL MIXTURE MODEL

Let xg = (xg,1, . . . , xg,m) denote the replicate, normalized expression measurements on gene g in

the first cellular state (i.e. condition) and yg = (yg,1, . . . , yg,n) the replicate, normalized measurements
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158 M. A. NEWTON ET AL.

in the second condition. Expectations µg,1 = E(xg,i ) and µg,2 = E(yg,i ) are assumed to mediate

differential expression in the sense that given these parameter values, the measurements in xg form a

random sample (independent and identically distributed) from an observation component p(xg,i |µg,1),

and likewise yg is an independent random sample from p(yg,i |µg,2). The calculations reported here use

a Gamma observation component in which the shape parameter (hence, coefficient of variation CV) is

constant across genes within a condition, but may vary between conditions (see Appendix, Section A.1)

although other formulations such as log-normal may be beneficial (Kendziorski et al., 2003). The Gamma

distribution is analytically tractable, has some theoretical appeal for expression data, and fits well in

our experience (Newton et al., 2001). Further, many proposed models of expression variability encode

approximately constant CV (Chen et al., 1997; Ideker et al., 2000; Baggerly et al., 2001; Li and Wong,

2001; Rocke and Durbin, 2001; Theilhaber et al., 2001; Tsodikov et al., 2002). Our experience with

various normalization procedures is that nearly constant CV is common, although there may be excess

variation at the lowest expression levels and reduced variation at the highest levels.

Next, expectations (µg,1, µg,2) are themselves considered to be a random pair drawn from an unknown

bivariate distribution f . (This is in contrast to a fixed-effects approach, e.g. Kerr et al., 2000.) We organize

f as a discrete mixture over three potentially interesting hypotheses: equivalent expression, Hg,0 : µg,1 =
µg,2, under-expression in the first cellular state, Hg,1 : µg,1 < µg,2, and over-expression in the first

cellular state Hg,2 : µg,1 > µg,2:

f (µg,1, µg,2) = p0 f0(µg,1, µg,2) + p1 f1(µg,1, µg,2) + p2 f2(µg,1, µg,2). (2.1)

Scalers p0, p1, and p2 give the marginal proportion of genes satisfying each of the three hypotheses. The

densities f0, f1, and f2 describe fluctuations of the means within each hypothesis. Though it is tempting

to place no further structural constraints on f it is necessary to do so in order that all the components

are estimable. We do so by relating the joint distribution f to a one-dimensional base distribution π

which generates the gene and condition-specific expected values. Gene g draws its µ as follows: two

independent draws Ug and Vg arise from π , and a three-sided die with probabilities (p0, p1, p2) is cast

to give the discrete outcome Zg . If the die comes up for Hg,0, then µg,1 = µg,2 = Ug , and Vg is

ignored. If the die comes up for Hg,1, then µg,1 = min(Ug, Vg) and µg,2 = max(Ug, Vg), and vice

versa for if the die comes up for Hg,2. Thus, f0(µg,1, µg,2) = π(µg,1) 1[µg,1 = µg,2], f1(µg,1, µg,2) =
2 π(µg,1) π(µg,2) 1[µg,1 < µg,2], and f2(µg,1, µg,2) = 2 π(µg,1) π(µg,2) 1[µg,1 > µg,2], with the

factor of 2 coming from the order constraint and where 1[ ] is the indicator function. This device amounts

to saying that, up to ordering, the assertion of differential expression is the assertion that expected

expressions are unrelated in the sense that they are stochastically independent. The assumed independence

of Zg from the pair (Ug, Vg) encodes the idea that differential expression itself is unrelated to the overall

level of expression; in the absence of special information this seems to be a reasonable starting position.

To fit the hierarchical mixture model is to obtain estimates of the mixing proportions (p0, p1, p2), the

base distribution π , and any unspecified parameters in the observation component. We have implemented

two methods of estimation which differ by their treatment of the base distribution π :

1. Parametric π : The two-parameter inverse Gamma distribution for π is conjugate to the Gamma

observation component (Section A.1). Implement maximum likelihood estimation for all param-

eters via an EM algorithm in which the missing data are the outcomes Zg of the gene-specific

three-sided die tosses.

2. Nonparametric π : For numerical stability, treat Ug and Vg as logarithms of expected expression

values, rather than straight expected values. Fix a dense, equally spaced grid to represent the support

of π (e.g. 500 points spanning the range of the log data). Thus, π is represented as a probability

vector on this support. Implement (nonparametric) maximum likelihood via an EM algorithm for

π and (p0, p1, p2) in which the missing data are the pairs (Ug, Vg) and the outcomes Zg . Fix the
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Detecting differential gene expression 159

shape parameters of the observation component at estimates obtained separately by the method of

moments.

Further details of the EM algorithms are in Section A.2. Regarding the observation component

parameters, note that the proposed model entails a Gamma observation component with shape parameter

a j in condition j = 1, 2. The coefficient of variation (standard deviation)/mean = 1/
√

a j , so we see

that the shape parameters can be estimated by a method of moments using the collection of within-

condition, gene-specific sample coefficients of variation cv j,g computed from the normalized data. The

estimate â j = 1/mean(cv2
j,g) works well in simulations. In the fully parametric case (1) above, these

shape estimates are used as starting values for the EM algorithm which is targeting the full maximum

likelihood estimates. In case (2), we maintain the method-of-moment estimates throughout and update

only π and (p0, p1, p2) during EM iterations.

The fully parametric case (1) is similar to the Gamma–Gamma (GG) methodology described in

Kendziorski et al. (2003), except that here we allow ordered alternative hypotheses. It is useful in the yeast

example and elsewhere to allow ordered alternatives, but doing so creates an interesting technical problem

because the latent variables (Ug, Vg) are harder to integrate away (see equation A.4 in Section A.1). The

fully parametric model has 1/Ug and 1/Vg distributed according to a Gamma distribution with shape

parameter a0 and rate parameter a0x0. Conveniently in this parametrization, the parameter x0 is a measure

of location in the marginal distribution of the measurements. Case (2) involves a flexible nonparametric

model for π coupled with the Gamma observation component, and so it is naturally referred to as a

semiparametric model; the grid-based EM algorithm is a convenient approach to nonparametric likelihood

estimation of π (Lindsay, 1995).

One way to assess goodness of fit in either case is to compute the marginal distribution induced by the

hierarchical model and compare this to the empirical marginal distribution of measurements. For example,

computing the marginal distribution of measurements xg,i in the first condition requires integrating the

Gamma observation component against the fitted f from (2.1),

p(xg,i ) =
∫

p(xg,i |µg,1) p(µg,1) dµg,1,

where p(µg,1) =
∫

f (µg,1, µg,2) dµg,2. In case (1), this is available analytically as the univariate

compoound Gamma distribution (equation A.2). It can be computed numerically in case (2).

3. INFERENCE

Having fitted the hierarchical mixture model, gene-specific inference is based on posterior probabili-

ties

P(Hg, j |xg, yg) = p j p(xg, yg|Hg, j )/p(xg, yg) (3.1)

where

p(xg, yg|Hg, j ) =
∫ ∫

p(xg|µ1) p(yg|µ2) f j (µ1, µ2) dµ1 dµ2 (3.2)

and where p(xg, yg) =
∑

j p j p(xg, yg|Hg, j ) is the marginal (predictive) density of the data. As

above, these integrals are available in closed form for the parametric version of the model (Section A.1,

equation A.4), and they need to be computed numerically in the semiparametric version. A notable

consequence of the EM fitting procedure is that the average gene-specific posterior probability of
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160 M. A. NEWTON ET AL.

hypothesis j equals the estimated overall proportion of genes which satisfy this hypothesis, i.e. p j =
1
N

∑N
g=1 P(Hg, j |xg, yg).

Insofar as the fitted mixture model is accurate and among-gene dependence can be ignored, the

gene-specific posterior probabilities (3.1) form the basis of optimal statistical inference about differential

expression. For example, Bayesian theory indicates that to minimize the probability of making a mistake,

we ought to declare hypothesis Hg, j true for gene g if that hypothesis has higher posterior probability

than any of the other ones (e.g. Berger, 1985, p. 163). Similarly, optimal ranking and selection schemes

are based on these marginal posterior probabilities. The inference problem might be to produce a list of

genes for which evidence favors differential expression. For any fixed-size list, the optimal procedure

is to form that list using those genes having the highest marginal posterior probability of differential

expression. To do otherwise is to report a list with higher posterior expected loss, where the loss is the

number of mistakes on the list. In this sense, the optimal ranking of genes is the ranking based on posterior

probability of differential expression. A short list of differentially expressed genes is obtained by ranking

from smallest to largest by P(Hg,0|xg, yg) and cutting the list at some point chosen either for convenience

(i.e. we only want to look at a fixed number of extreme genes) or in order to control the number of type I

errors (false discoveries) in the list.

Suppose our goal is to identify a list J of genes g for which hypothesis Hg, j is probably true (fix either

j = 1 or 2), and we want the list to be as large as possible while bounding the rate of false discoveries by

α. We use a direct posterior probability approach to achieve this goal. With data and fitted model in hand,

we rank the genes according to increasing values of βg = 1 − P(Hg, j |xg, yg), and our reported list J

contains genes g having values βg less than some bound κ . Given the data, the expected number of false

discoveries is

C(κ) =
∑

g

βg1[βg � κ]

since βg is the conditional probability that placing gene g on the list creates a type I error. In the typical

situation there will be some genes for which βg � α. As long as this is true, we can find a data-dependent

κ � 1 as large as possible so that C(κ)/|J | � α, where |J | > 0 is the size of the list. Notice that

C(κ)/|J | is the expected rate of false detections, given the data. By bounding the rate conditionally, we

bound it on average over data sets. The bound is approximate, however, because it rests on the accuracy of

the fitted model; one expects that careful modeling and diagnostic checking can reduce the effect of this

approximation.

Alternative approaches to bounding the FDR use gene-specific p-values. In the calculations reported

here, we compare the direct posterior probability approach to the algorithm of Storey and Tibshirani

(2003) as it is applied to p-values from gene-specific t-tests. That method first transforms p-values to

q-values; a list with target FDR level α is formed by including genes for which the q-value is bounded

above by α.

Instead of testing for the presence of differential expression, the goal may be to estimate the magnitude

of differential expression. The hierarchical mixture model may be adapted to this purpose. For example,

the target fold change ρg = µg,1/µg,2 may be estimated by the empirical ratio x̄g/ȳg , or a model-based

estimate may be computed. Posterior skewness suggests that we work on the scale of log(ρg); its posterior

expectation is the Bayes estimate under squared-error loss and may be computed by numerical integration.

4. SIMULATION STUDY

We performed a simulation study to evaluate the proposed methodology. The three scenarios discussed

here were designed to present variation similar to what we have observed in practice, although they are
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Detecting differential gene expression 161

necessarily overly simplified representations. In each scenario, we have N = 5000 genes, m = n = 3

replicates per condition, and a Gamma observation component with shape parameters a1 = a2 = 20 that

are common to all genes. The scenarios differ in the status of the underlying mixing components in f :

I. Conjugate, Inverse Gamma, shape a0 = 2, location x0 = 1000.

II. Uniform on 5 � A = log(
√

µg,1µg,2) � 11 and −2 � M = log(µg,1/µg,2) � 2; and M = 0 if

µg,1 = µg,2.

III. Uniform on 5 � A = log(
√

µg,1µg,2) � 11 and −1 � M = log(µg,1/µg,2) � 1; and M = 0 if

µg,1 = µg,2.

Scenarios II and III involve uniform distributions on the (M, A) scale and this very roughly approximates

the apparent relationship between the means in some examples. The (M, A) notation is borrowed from

Dudoit et al. (2002), though we use it to describe underlying means rather than statistics (and we use

a natural log scale rather than base 2). Scenario I fully matches the proposed parametric model, and

so we expect the parametric methodology to perform best. Scenarios II and III retain the parametric

observation component but violate the parametric mean component; in fact, they do not encode conditional

independence of the means given differential expression.

For each scenario we considered different levels of differential expression. We report in Table 1 results

for mixing proportion vectors (0.9, 0.05, 0.05); (0.8, 0.1, 0.1); two data sets were simulated in every case.

Both parametric and semiparametric models were fitted to each data set, and posterior probabilities were

computed for each gene over the three hypotheses of interest. For comparison, we computed standard

two-sided gene-specific t-tests on the log-transformed measurements. The p-values were transformed

to q-values following the method in Storey and Tibshirani (2003). We specified the inference problem

to be to obtain a list of differentially expressed genes in which the target FDR is α = 0.05. Knowing

the underlying hypotheses for each gene, we obtained empirical estimates of sensitivity, specificity, and

realized rates of false discovery and false non-discovery.

The fully parametric model is correct in scenario I, and yet the parametric and semiparametric methods

have indistinguishable operating characteristics. Evidently little is lost by adopting such a flexible model

for π . In scenarios II and III, the parametric method begins to lose sensitivity to the semiparametric

method, as expected, but the loss of sensitivity is only marginal. For all methods, sensitivity is relatively

low but increases with an increase in the overall rate of differential expression, and the specificity is always

high in the cases considered. Both parametric and semiparametric methods target a 5% FDR, though the

bound is approximate because of estimation error; according to the simulation results the FDR is well-

controlled in the cases considered. The gene-specific t-test procedure bounds FDR, but it does so at a

great expense in sensitivity. The t-test is extremely conservative in the cases considered.

We also applied the nonparametric mixture method from Efron et al. (2001) to each data set, and we

refer to that as the ETST method. It is meaningful to make this comparison because ETST is one of the few

mixture-based approaches in which gene-specific posterior probabilities, as opposed to p-values, are the

primary object of inference. The ETST mixture method has a great deal of flexibility and requires some

care in implementation (see Section A.3 for specifics). We applied it to all simulated examples; Figure 1

summarizes results for one typical case. The ETST method falters compared to the semiparametric method

in the sense that the FDR of a region is overestimated; there is no non-empty list of genes with estimated

FDR of 5%, for example. By contrast, the realized FDR is close to its target value for the semiparametric

method.

The simulated data were also used to assess the accuracy of estimation of true fold change

log(µg,1/µg,2). As expected by shrinkage, the Bayes estimates exhibited a mean squared error that is

smaller than that of log empirical fold change estimate, on average over genes. Most of this improvement

derives from genes of modest effect; the quality of the Bayes ranking is very similar to the quality of the

empirical fold ranking if we focus on the most differentially expressed genes (data not shown).
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162 M. A. NEWTON ET AL.

Table 1. Operating characteristics, simulation study: The methods are

S (semiparametric), P (parametric), and T (t-statistic). #D̂E/n is the

proportion of genes that are detected to be differentially expressed.

Out of the truly differentially expressed genes, Sens. is the proportion

that are detected. Out of the truly equivalently expressed genes Spec.

is the proportion that were not detected as DE. FDR is the realized

rate of false detections in the detected list and FNDR is the realized

rate of false non-detections in the non-detected list. Results shown are

averages over the two data sets simulated and fitted in each condition;

variation is very small

Scenario P(DE) Method #D̂E/n Sens. Spec. FDR FNDR

I 0.1 S 0.07 0.62 1.00 0.05 0.04

P 0.06 0.61 1.00 0.04 0.04

T 0.02 0.24 1.00 0.03 0.08

0.2 S 0.14 0.67 0.99 0.06 0.08

P 0.14 0.67 0.99 0.06 0.08

T 0.09 0.41 0.99 0.05 0.13

II 0.1 S 0.07 0.72 1.00 0.03 0.03

P 0.07 0.71 1.00 0.03 0.03

T 0.04 0.40 1.00 0.05 0.06

0.2 S 0.15 0.74 0.99 0.04 0.06

P 0.15 0.73 0.99 0.03 0.06

T 0.12 0.56 0.99 0.04 0.10

III 0.1 S 0.04 0.34 1.00 0.01 0.07

P 0.03 0.31 1.00 0.01 0.07

T 0.00 0.00 1.00 NaN 0.10

0.2 S 0.08 0.42 1.00 0.01 0.10

P 0.07 0.38 1.00 0.00 0.13

T 0.00 0.01 1.00 0.05 0.20

5. SPIKE-IN STUDY

We applied the proposed methodology to data from the Gene-Logic spike-in experiment in which a

small set of genes is known to be differentially expressed (Antonellis et al., 2002). In the Gene-Logic

study, known concentrations of 11 cloned bacterial and phagemid RNAs were added to RNA derived

from an acute myeloid leukemia (AML) cell line and the complexes were probed with U95A Affymetrix

microarrays. From the full study we selected six arrays, three from the 25pM concentration group and

three from the 50pM concentration group, so as to enable a two-group comparison (see Section A.3

for array labels). Probe-level data were analysed using the robust multi-array average (RMA) method

(Irizarry et al., 2003) to produce gene-level measurements, and then we applied the hierarchical mixture

methodology.

Table 2 summarizes results for the 10 spike-ins which differ in true concentration between the two

conditions by two-fold. To enable comparisons the table considers the rank (out of 12 626 targets) of

these spike-ins as determined by different procedures. The simple fold change (log base 2 of ratio of

within-group arithmetic mean expressions) ranks the spike-ins very well, as do both the parametric and

semiparametric hierarchical methods. Of note is that the gene-specific t-test does a poor job ranking

the spike-ins. The smallest q-value in this case is 0.49 and so no spike-ins can be found if we try to
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Fig. 1. ETST method applied to a simulated data set (scenario II, 40% DE): The plot on the top shows the logistic

regression fit to the Z-scores. The range of the Z-scores is divided into 100 bins, and the points are the proportion

in each bin of Z-scores from the mixture distribution. The fitted regression function is a natural spline with 20 d.f.

The bottom plot summarizes the properties of the estimated FDR for both the ETST method and the semiparametric

method. As can be seen, the estimated FDR in the ETST method starts quite high, and thus cannot be used to control

the FDR at, say, 5%.

maintain a small FDR using p-values from the t-test. (This test uses log-normal measurements and equal

variance between groups but different variance across genes.) In targeting a 10% FDR list by our proposed

method, 8 of 10 spike-ins are on the semiparametric list and all 10 are on the parametric list. A 15% FDR-

semiparametric list contains all 10 of the spike-ins. Further, ranking by Bayes estimated fold-change is

very similar to the probability-based ranking.

6. YEAST TRANSLATION EXPERIMENT

To identify genes for which translation is affected by the DED1 gene, yeast mRNA was fractionated

on a sucrose gradient and separated into a translating fraction associated with ribosomes and a non-

translating, ribosome-free fraction following the approach of Johannes et al. (1999). Affymetrix Yeast
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Table 2. Spike-in study: column 1 has the spike-in label. Column pairs refer to empirical fold

change, t-statistic p-value, semiparametric method and parametric method DE posterior

probabilities. Shown are values and then rank out of 12 626 total targets

Spike-in Fold F-rank p-value p-rank SP-post SP-rank P-post P-rank

AFFX-BioB-3-at −0.79 7 0.026 154 0.999 9 0.999 11

AFFX-BioB-5-at −0.86 4 0.009 46 1.000 5 1.000 5

AFFX-BioB-M-at −1.17 1 0.010 52 1.000 1 1.000 1

AFFX-BioC-3-at −0.88 2 0.010 51 1.000 2 1.000 2

AFFX-BioC-5-at −0.82 6 0.016 101 1.000 6 1.000 7

AFFX-BioDn-3-at −0.88 3 0.013 77 1.000 3 1.000 3

AFFX-DapX-3-at −0.65 19 0.015 94 0.511 41 0.661 34

AFFX-DapX-5-at −0.86 5 0.006 36 1.000 4 1.000 4

AFFX-DapX-M-at −0.66 18 0.004 24 0.580 38 0.732 32

AFFX-CreX-5-at −0.66 17 0.047 333 0.762 31 0.817 30

S98 microarrays representing all 6130 known yeast genes were used to probe the translating and non-

translating fractions in both the mutant strain (MUT) and the wildtype strain (WT). The measurement

process was repeated for three MUT replicates and three WT replicates in both translating and non-

translating fractions to yield 12 microarrays. Separately for the two fractions, probe-level data were

analysed using the RMA method to yield a single measure of expression for each gene on each microarray.

A full characterization of genes affected by DED1 is underway. In the present methodologic study,

we focus on the six non-translating microarrays (3 MUT and 3 WT); we use the data primarily for

demonstration, noting that the level of replication and the patterns of variation may be common features

of many expression studies.

Figure 2 shows that the sample coefficient of variation (CV) for the three non-translating WT

microarrays does not have a strong systematic relationship with the sample mean expression. This is

precisely what we expect if the measurement standard deviation increases linearly with the mean in

the underlying data-generation process, as we have, for example, in the constant-shape Gamma model.

Figure 3 reveals another property of the non-translating WT yeast measurements that also may be a

common feature in microarray data. Each of the nine quantile–quantile plots compares data from a

vertical band of Figure 2 to the quantiles of a fitted Gamma distribution. These diagnostic plots (and

others not shown) show that the distribution of expression measurements is well approximated by the

Gamma distribution when we focus locally on genes that have similar mean expression.

Figure 4 gives the parametric and semiparametric estimates of the base distribution π for the

comparison of non-translating WT and MUT transcripts. The center and scale of the two estimates are

similar, although, as expected by the allowed flexibility, the semiparametric estimate has much more

detailed structure and fits well (Figure 5). Parameter estimates are reported in the caption of Figure 4.

Shape parameters of the observation component are estimated to be smaller by the fully parametric

method; this corresponds to bigger coefficient of variation and may be due to lack of fit by the parametric

inverse-Gamma mean component. The model fit also entails estimated proportions of genes satisfying

the three hypotheses: for the semiparametric fit we get (p0, p1, p2) = (0.554, 0.352, 0.093), which is

slightly more differential expression than we estimate from the parametric model: (0.634, 0.291, 0.074).

In either case the rate of differential expression may seem high, but one must remember that (a) DED1

is a critical translation factor and mutations could have substantial impact, and (b) the reported rates are

overall proportions in the genome; they do not in themselves indicate the proportion of genes that are

significantly differentially expressed.

One gene-specific question of interest is to ask, in the non-translating fraction of RNA, which genes are
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Fig. 2. Ranked CV vs. ranked Mean: N = 6130 points (genes) from WT data. From m = 3 replicate measures

per gene (after normalization, raw scale) we compute the sample mean and CV which is the sample standard

deviation over the sample mean. Ranking both axes spreads points. Non-uniformity indicates violation of constant

CV assumption (e.g. most highly expressed genes exhibit slightly reduced variation). Strips contain 100 genes, for

Figure. 3.

down-regulated in MUT compared to WT: i.e. H2,g : µ1,g > µ2,g in our notation where the x correspond

to WT and y to MUT. The biological rationale, briefly, is that the mutant DED1 may be enhancing the

efficiency of translation on these genes, depending on how they behave in the translating RNA fraction. As

noted, the semiparametric estimate suggests that a proportion p2 = 0.093 of genes are so down-regulated.

Thus, a point estimate for the number of down-regulated genes is 572.4 = 6130 × p2, though we may

want to size a short list of down-regulated genes by considering FDR. For example, the largest list we can

find with an estimated 5% FDR contains the 461 genes that have the highest P(H2,g|xg, yg). The cutoff

happens to be P(H2,g|xg, yg) � 0.684. It also happens that in the context of the fitted parametric model

we obtain about the same cutoff for a 5% FDR list, though the list is smaller, having 351 genes; all of

these genes are also on the list obtained by the semiparametric method, so there is good agreement and the

semiparametric method is making more calls. For comparison we implemented one-sided gene-specific

t-tests and formed a list of down-regulated genes according to the q-values that are bounded by 5%. This

list contained only 33 genes, 31 of which are also on the semiparametric list.

The top panel of Figure 6 considers the model-based estimates of fold change as compared to the

empirical fold change. As expected, most genes (94%) exhibit shrinkage towards ρ = 1 (upper left and

lower right quadrants), although the attenuations are variable and genes with highest fold change show

little shrinkage. In this example, genes with empirical fold more than about two-fold have a very high

differential expression probability.

In the present statistical study we have no further molecular validation of the model predictions, but we
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Fig. 3. Gamma Q Q plot WT data. Each strip from Figure 2 contains 100 genes and thus 300 expression measures.

Plotted here is a Q Q plot for a fitted Gamma observation component. Theoretical quantiles are on the x-axis and

observed quantiles are on the y-axis.

can make some statements about robustness from the following calculation. We considered six data sets

that were derived from the original three-on-three comparison by omitting one microarray at a time. For

each of these five-array data sets we applied the methodology to identify genes that are down-regulated

in MUT at a target 5% FDR. On average over the six leave-outs, the semiparametric method identified

386 down-regulated genes, 96% of which are, on average, contained in the list obtained from the full data

set. Further, the set of genes in both the leave-out and the full list is on average 80% of the full list. This

is a high degree of robustness. The parametric methodology, by comparison, makes smaller lists that are

mostly contained in the full list but that constitute on average only 61% of the full list. Also, five of six

leave-outs produce empty t-based lists.

7. DISCUSSION

Hierarchical mixture models can form the basis of an effective methodology to address the differential

expression problem. They provide both for gene ranking and for the creation of short gene lists with target
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Fig. 4. Nonparametric (black) and parametric (red) estimates of the base distribution π for comparing non-translating

MUT and WT RNAs. The semiparametric fit also has likelihood-estimated mixing proportions (0.554, 0.352, 0.093)

and moment-estimated observation shape parameters (a1, a2) = (48.1, 85.9). In the parametric fit, ML esti-

mates of the mixing proportions are (0.634, 0.291, 0.074) and remaining parameters are (a0, a1, a2, x0) =
(0.88, 34.2, 73.2, 1556.8).

error rates. The hierarchical structure permits a formal connection amongst genes. This is useful because

isolated gene-specific calculations may be less efficient than methods which channel information from

the whole genome into each gene-specific inference. Further, the mixture structure allows us to estimate

global features such as the proportion of up- or down-regulated genes, and, at the same time, guides the

formation of short lists with target FDRs. The proposed parametric model captures substantial sources

of variation, though goodness of fit is improved when we consider a semiparametric model in which

latent mean expression values fluctuate according to an unspecified distribution. Estimation via the EM

algorithm is straightforward in either case.

We use a direct posterior probability approach to control FDR (Section 3), and we note that the idea

is not new but is evident in the recent and fruitful literature on FDR (Efron et al., 2001; Storey, 2002,

2003; Genovese and Wasserman, 2002a,b). Not accounting for the directionality of our inferences, what

we denote by βg is akin to the local FDR of Efron et al. (2001), except that we have fit a full probability

model to the data rather than to a one-dimensional reduction; our ranking of genes by βg and the formation

of a gene list with level α FDR would give the same thing as if the Storey (2003) q-value method was

applied to the βg themselves (Storey, 2003, page 21) and if we formed the list of genes for which these q-

values are bounded by α. We remark that in the context of a full probability model, as we have estimated,

there is a certain simplicity in working directly with the gene-specific probabilities and assessing error

rates of lists by looking collectively at these posterior probabilities. Gene-specific posterior probabilities
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Fig. 5. Marginal diagnostic plot: histogram shows the complete set of MUT expression measurements compared to

the marginal distributions (solid lines) which are induced by the fitted semiparametric model. The three interior curves

correspond to the three mixing states Hg,0 Hg,1 and Hg,2 and the outer curve is the overall predictive distribution.

Parametric fit (not shown) is inferior.

possess an interesting dual functionality: small βg is the ticket with which gene g gets on the reported

list; at the same time, βg is the chance that the placement of gene g on the list is a false discovery. This

fact is helpful in routine manipulations of microarray data. We note further that recent literature focuses

primarily on inference using gene-specific p-values. Our modeling effort aims directly at gene-specific

posterior probabilities rather than p-values; in the context of a statistical model that produces posterior

probabilities, it is natural to use these objects directly, and so this is what we propose.

Though many methods take advantage of features that are typically present in microarray data, few

methods rely on the explicit formulation of a probability model for the data. Our use of a Gamma

observation component is quite compelling given diagnostic plots (Figures 2 and 3) and the recent

characterization that the Gamma distribution is the only distribution for which the sample mean is

independent of the sample coefficient of variation (Hwang and Hu, 1999). Flexibility in the mean

component is also well justified so as to improve the overall model fit. In contrast to methods which invoke

label-permutation to calibrate differential expression, our proposal considers differential expression to be

the independence of latent expected expression values. This may be invalid if systematic effects are not

properly eliminated by normalization, but it is suitable for carefully pre-processed data and allows for

statistical inference even when there is limited replication.

There may be useful extensions of the present model. For example, it deals only with the simple two-

group comparison and it ignores dependence among genes. Also, there may be useful improvements to be

had on the computational side. Grid-based EM for estimating the base mixing distribution π is effective in

the cases considered, though convergence may be slow compared to alternative optimization procedures.
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Fig. 6. Fold change estimates (top) and volcano plot (bottom): Ordinary fold change x̄g/ȳg (horizontal) compared

with semiparametric Bayes estimate ρ̂g for WT/MUT (top). Upper left and lower right quadrants hold genes which

shrink towards ρg = 1. Genes in the other quadrants (6%) do not shrink towards 1. The lower panel indicates how

posterior probability tracks with empirical fold change.
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APPENDIX

A.1 Parametric submodel

Here we describe the various marginal and conditional distributions induced by the parametric hierarchical

mixture model. These objects are used both to drive the model fitting calculations (Section A.2) and to

characterize the final gene-specific inferences. To simplify the development, we suppress in the notation

the gene subscript g.

Gamma, inverse Gamma. The random variable V has a Gamma distribution with shape a and rate b,

denoted V ∼ Gamma(a, b) if, for v > 0,

p(v) = bava−1 exp(−bv)/Ŵ(a). (A.1)

Note that E(V ) = a/b in this parametrization and the coefficient of variation is 1/
√

a. A variable U has

an inverse Gamma distribution with shape a and rate b if 1/U ∼ Gamma(a, b).

Compound Gamma. Let θ ∼ Gamma(a0, a0v0) for hyperparameters a0 and v0. Given θ , let

V1, V2, . . . , Vk be conditionally independent Gamma-distributed random variables in which Vi has shape

ai and rate aiθ . Thus, 1/θ is the common conditional mean of the Vi . It is a classical result that upon

integrating θ , the random variables V1, . . . , Vk have a compound Gamma distribution with joint density

h(v1, . . . , vk) =
v0 Ŵ

(

∑k
i=0 ai

)

(

∑k
i=0 aivi

)

∑k
i=0 ai

k
∏

i=0

[

a
ai

i v
ai −1
i

Ŵ(ai )

]

. (A.2)

This distribution arises as the predictive distribution of measurements on a gene when considered

marginally with respect to the latent mean.

Mean component. Let π which defines f in (2.1) be the density function of an inverse Gamma

distribution having shape a0 and rate a0x0. Thus

f0(µ1, µ2) = π(µ1) 1[µ1 = µ2]
f1(µ1, µ2) = 2 π(µ1)π(µ2) 1[µ1 < µ2] (A.3)

f2(µ1, µ2) = 2 π(µ1)π(µ2) 1[µ1 > µ2].

Fitting the model amounts to estimating the discrete mixing proportions (p0, p1, p2), the shape

parameters (a0, a1, a2) and the location parameter x0. We use an EM algorithm and maximize marginal

likelihood using data from all genes together under the independence assumption (Section A.2). Both this

calculation and the calculation of posterior probabilities requires a formula for the marginal probability of

gene-specific data (x, y) having integrated against f (µ1, µ2), as in (3.1). We obtain

p(x, y) = p0h(x, y) + p1h(x)h(y) 2P[B > b] + p2h(x)h(y) 2P[B < b] (A.4)

where h is the density of a compound Gamma (A.2), B is a Beta-distributed random variable with shapes

(a0 + ma1, a0 + na2), and

b = b(x, y) = a0x0 + a1

∑m
i=1 xi

2a0x0 + a1

∑m
i=1 xi + a2

∑n
i=1 yi

.
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More specifically, the shape parameters entering h in (A.4) are a1 for all m coordinates in h(x), a2 for all

n coordinates of h(y), and a concatenation of m a1 and n a2 in h(x, y).

We find it interesting how the compensating factor involving B enters the formula (A.4).

Gene-specific inference uses the posterior probability distribution over the three hypotheses about µ1

and µ2. For example, using elements in (A.4), the posterior probability of equivalent expression is

P(µ1 = µ2|x, y) = P(Z = 0|x, y) = p0h(x, y)/p(x, y) (A.5)

and the posterior probability of over-expression in the x condition is

P(µ1 > µ2|x, y) = P(Z = 2|x, y) = p2h(x)h(y)2P[B < b]/p(x, y). (A.6)

Derivation of (A.4). That (A.4) involves a discrete mixture of three terms follows from (2.1) and the

structure of f in (A.3). The first term p0h(x, y) emerges from the definition of compound Gamma (A.2)

because on the null all measurements have a common conditional mean. The next two terms involve the

ordered alternatives. Consider the term p1(x, y) = h(x)h(y)2P(B > b) which corresponds to hypothesis

H1, under-expression in the first state. When m = n = 1 (i.e. no replication), the calculations are most

simple to report. The argument is not much more difficult in the general case since
∑

xi ,
∏

xi ,
∑

yi

and
∏

yi are sufficient statistics. Here we give the argument when m = n = 1, and we further suppose

a1 = a2 = a, though this also is not necessary.

Let θ1 = 1/µ1 and θ2 = 1/µ2 denote the inverted expectations. By (A.3), their joint PDF is

2p(θ1)p(θ2)1[θ1 > θ2]

with common Gamma densities p(θ1) and p(θ2), as in (A.1) with shape a0 and rate a0x0. Thus, the

marginal predictive density

p1(x, y) =
∫ ∞

0

∫ ∞

0

p(x |θ1)p(y|θ2) 2p(θ1)p(θ2)1[θ1 > θ2] dθ1dθ2

=
∫ ∞

0

2p(y|θ2)p(θ2)I (θ2) dθ2 (A.7)

where

I (θ2) =
∫ ∞

θ2

p(x |θ1)p(θ1) dθ1

=
∫ ∞

θ2

(a0x0)
a0θ

a0−1
1 exp{−θ1a0x0}

Ŵ(a0)

(aθ1)
a xa−1 exp{−aθ1x}

Ŵ(a)
dθ1

= h(x)

∫ ∞

θ2

(a0x0 + ax)a0+aθ
a0+a−1
1 exp{−θ1(a0x0 + ax)}
Ŵ(a0 + a)

dθ1

= h(x)

∫ ∞

θ2(a0x0+ax)

ψ
a0+a−1
1 exp(−ψ1)

Ŵ(a0 + a)
dψ1.

Now we plug this back into (A.7), and switch the order of integration to draw out h(y) as we have just
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drawn out h(x). Specifically,

p1(x, y) = 2h(x)

∫ ∞

0

∫ ∞

θ2(a0x0+ax)

p(y|θ2)p(θ2)
ψ

a0+a−1
1 exp(−ψ1)

Ŵ(a0 + a)
dθ2dψ1

= 2h(x)h(y)

∫ ∞

0

∫ ψ1/(a0x0+ax)

0

p(ψ1)
p(y|θ2)p(θ2)

h(y)
dθ2dψ1

= 2h(x)h(y)

∫ ∞

0

p(ψ1)

(

∫ ψ1/(a0x0+ax)

0

p(θ2|y) dθ2

)

dψ1

where p(ψ1) is a Gamma PDF with rate 1 and shape a0 + a, and p(θ2|y) is the posterior calculated under

the Gamma prior for θ2, which also turns out to be a Gamma with shape a + a0 by conjugacy. Adjusting

rates by a change of variables, we have

p1(x, y) = 2h(x)h(y)

∫ ∞

0

∫ r

0

p(ψ1)p(ψ2) dψ2dψ1

= 2h(x)h(y) P (ψ1 > ψ2/r)

= 2h(x)h(y) P [B > (1 − B)/r ]

= 2h(x)h(y) P [B > 1/(1 + r)]

where now ψ1 and ψ2 are i.i.d. Gamma variables with shape a0 + a, and r = (ay + a0x0)/(ax + a0x0),

and B = ψ1/(ψ1 + ψ2) is a Beta distributed random variable. Thus we obtain the second term in (A.4)

with b = 1/(1 + r). The third term is similarly derived.

A.2 Model fitting details

Semiparametric model. Having replicate measurements within each gene/condition setting allows us to

get a method-of-moments estimate of the observation component shape parameters a1 and a2 as indicated

in Section 2. These are treated as fixed in the following.

The model asserts that i.i.d. draws Ug and Vg arise from an unknown base distribution π for all

genes g, and also that there are i.i.d. discrete random variables Zg on {0, 1, 2} with unknown mixing

probabilities (p0, p1, p2) which indicate patterns of differential expression. The base distribution π is

considered to be a probability vector on a finite grid G in the space of log mean expressions. In our

calculations we used a grid of 500 values equally spaced in the range of the log expression measurements,

though the software allows a user-supplied grid. The EM algorithm starts at a uniform π and equal mixing

probabilities (1/3, 1/3, 1/3). To generate the algorithm, note that the complete data likelihood Lc is

Lc =
∏

g

p(xg, yg, Zg, Ug, Vg)

=
∏

g

p(xg|Zg, Ug, Vg) p(yg|Zg, Ug, Vg) p(Zg) π(Ug) π(Vg)

= A × B × C

where, in the last line, the product is being reorganized as a product over the three values of Zg . For

example,

A =
∏

g:Zg=0

p(xg|Ug) p(yg|Ug) P(Zg = 0) π(Ug) π(Vg),
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and

B =
∏

g:Zg=1

p(xg|Ug ∧ Vg) p(yg|Ug ∨ Vg) P(Zg = 1) π(Ug) π(Vg).

Next, expand π(Ug) =
∏

u∈G [π(u)]1(Ug=u) and similarly expand π(Vg) and use this to simplify the

complete-data log-likelihood as

log Lc =
2

∑

j=0

log(p j )

(

∑

g

1[Zg = j]
)

+
∑

u∈G
log[π(u)]

{(

∑

g

1[Ug = u]
)

+
(

∑

g

1[Vg = u]
)}

+ K

where K involves the observation components but neither π nor (p0, p1, p2). The E-step is complete

upon taking conditional expectations; the M-step is

p̂ j =
∑

g P(Zg = j |xg, yg)

N
(A.8)

π̂(u) =
∑

g

[

P(Ug = u|xg, yg) + P(Vg = u|xg, yg)
]

2N

where N is the number of genes. It remains to derive a useful formula for these conditional probabilities.

Of course by Bayes’ rule (3.1),

P(Zg = j |xg, yg) ∝ p j p(xg, y j |Zg = j)

and this can be renormalized after evaluating it for all three hypotheses j . Each j involves integrating over

the mean space. For example,

p(xg, yg|Zg = 1) =
∑

u∈G

∑

v∈G
p(xg|u ∧ v) p(yg|u ∨ v) π(u) π(v). (A.9)

Conveniently, the double summation in (A.9) reduces and may be computed using simple vector inner

products. To see this, consider univariate distributions associated with sampling from π , such as

π(xg) =
∑

u∈G
p(xg|u) π(u), π(u|xg) = p(xg|u) π(u)/π(xg)

and the tail posterior π(Ug > v|xg) =
∑

u>v π(u|xg). Likelihoods p(xg|u) and p(yg|u) and the base

distribution π are stored on the grid G so these objects are readily computed. With this, the predictive

probability (A.9) can be written as

p(xg, yg|Zg = 1) = ǫ +
∑

u 
=v

p(xg|u ∧ v) p(yg|u ∨ v) π(u) π(v)

= ǫ + 2
∑

u<v

p(xg|u) p(yg|v) π(u) π(v)

= ǫ + 2π(xg) π(yg)
∑

u<v

π(u|xg) π(v|yg)

= ǫ + 2π(xg) π(yg)
∑

u∈G
π(u|xg) π(Vg > u|yg).
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Here ǫ, which is on the order of
∑

u∈G π2(u), may be ignored as it emerges from the possibility on Hg,1

that independent draws from π can be equal; ǫ is reduced as the grid G becomes more dense.

Continuing with the E-step, we require a simplified formula in (A.8) for

ψg(u) = P(Ug = u|xg, yg) + P(Vg = u|xg, yg)

for each u ∈ G. We find by similar manipulations that ψg(u) is proportional to

p0π(xg, yg)
[

π(u|xg, yg) + π(u)]

+ 2p1 π(xg) π(yg)
[

π(u|yg) π(Ug � u|xg) + π(u|xg) π(Vg > u|yg)
]

+ 2p2 π(xg) π(yg)
[

π(u|xg) π(Vg � u|yg) + π(u|yg) π(Ug > u|xg)
]

.

The software provided starts with uniform estimate of π and (p0, p1, p2) and iterates EM steps by

computing the necessary one-dimensional probability vectors. In the reported calculations we used a grid

G with 500 support points in the range of the log data, and we used 300 EM iterations. Convergence was

monitored informally by graphical analysis of the model fits and posterior probabilities.

Using the formulae in Section A.1 it is straightforward to generate an EM algorithm for the fully

parametric model in which only the discrete {Zg} are missing values. Moment-based estimates are used

to start the EM iterations.

A.3 Miscellaneous

Spike-in. Arrays used in the spike-in comparison from Table 1 of Antonellis et al. (2002)

are 92456hgu95a11, 92457hgu95a11, 92499hgu95a11, 92458hgu95a11, 92459hgu95a11, and

92500hgu95a11.

ETST method. The ETST method uses a regularized t-like statistic on the log-transformed measure-

ments: in our notation

Tg =
1
m

∑

i log(xg,i ) − 1
n

∑

i log(yg,i )

Sg + a0
(A.10)

where Sg is a gene-specific pooled sample standard deviation and a0 is a regularizing constant. ETST note

that having a0 converge to ∞ amounts to assuming constant variance among genes on the log scale; to

develop a fair comparison we adopt this limiting case. We implement this by replacing the denominator

of (A.10) by the median of Sg values across genes. (Recall that the statistics Tg are transformed to Z -score

values via a normal-scores transformation so that constant-ness across genes rather than large-ness is the

key property of the denominator.) The ETST method involves a two-component mixture model on the

transformed Z -scores. For the unpaired comparison problem, ETST propose that null scores be generated

by permutation of sample labels, and then a nonparametric regression method is used to estimate the

posterior probability of differential expression. With m = n = 3, there are only ten distinct arrangements

of the six microarrays into two equal-sized groups, and so we evaluated null Z -scores exhaustively rather

than by random shuffling. We used ETST equation (5.9) which provides a way to estimate the FDR of any

given rejection region.
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