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Abstract

Many lower bound computation methods for branch and
bound Max-SAT solvers can be explained as procedures that
search for disjoint inconsistent subformulas in the Max-SAT
instance under consideration. The difference among them is
the technique used to detect inconsistencies. In this paper, we
define five new lower bound computation methods: two of
them are based on detecting inconsistencies via a unit prop-
agation procedure that propagates unit clauses using an orig-
inal ordering; the other three add an additional level of for-
ward look-ahead based on detecting failed literals. Finally,
we provide empirical evidence that the new lower bounds are
of better quality than the existing lower bounds, as well as
that a solver with our new lower bounds greatly outperforms
some of the best performing state-of-the-art Max-SAT solvers
on Max-2SAT, Max-3SAT, and Max-Cut instances.

Introduction
The Max-SAT problem for a CNF formulaφ is the problem
of finding an assignment of values to variables that mini-
mizes the number of unsatisfied clauses inφ.

In recent years we have seen considerable progress on
the performance of Max-SAT solvers. Modern exact solvers
compute optimal solutions much faster than solvers existing
just five years ago; for example, the speedups are up to three
orders of magnitude for random Max-2SAT instances with
just 100 variables.

The most competitive exact Max-SAT solvers (Alsinet,
Manyà, & Planes 2005; de Givryet al. 2003; Li, Manỳa, &
Planes 2005; Shen & Zhang 2004; Xing & Zhang 2005) im-
plement variants of the following branch and bound (BnB)
schema: Given a CNF formulaφ, BnB explores the search
tree that represents the space of all possible assignments for
φ in a depth-first manner. At every node, BnB compares
the upper bound (UB), which is the best solution found so
far for a complete assignment, with the lower bound (LB),
which is the sum of the number of clauses unsatisfied by
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the current partial assignment plus an underestimation of the
number of clauses that will become unsatisfied if the current
partial assignment is completed. IfLB ≥ UB the algorithm
prunes the subtree below the current node and backtracks to
a higher level in the search tree. IfLB < UB, the algorithm
tries to find a better solution by extending the current partial
assignment by instantiating one more variable. The solution
to Max-SAT is the value thatUB takes after exploring the
entire search tree.

In this paper we focus on the study of lower bounds com-
putation methods for BnB Max-SAT solvers and, in partic-
ular, on defining underestimations of good quality that can
be computed efficiently. We explain such methods as proce-
dures that search for disjoint inconsistent subformulas in a
Max-SAT instance. The difference among them is the tech-
nique used to detect inconsistencies. On the one hand, the
bigger the number of detected inconsistencies, the better the
quality of the lower bound. On the other hand, as a lower
bound is computed at each node of the search tree, the de-
tection of inconsistencies should be performed efficiently.

We start by giving some preliminary definitions and re-
viewing the most relevant state-of-the-art lower bound com-
putation methods. We then define five new lower bound
computation methods: two of them are based on detecting
inconsistencies via a unit propagation procedure that propa-
gates unit clauses using an original ordering; the other three
add an additional level of forward look-ahead based on de-
tecting failed literals. Finally, we provide empirical evi-
dence that the new lower bounds are of good quality, as well
as that a solver with our new lower bounds greatly outper-
forms some of the best performing state-of-the-art Max-SAT
solvers on Max-2SAT, Max-3SAT, and Max-Cut instances.

Notation and Definitions
In propositional logic a variablexi may take values 0 (for
false) or 1 (for true). A literalli is a variablexi or its nega-
tion ¬xi. A clause is a disjunction of literals, and a CNF
formula is amultisetof clauses. An assignment of truth val-
ues to the propositional variables satisfies a literalxi if xi

takes the value 1 and satisfies a literal¬xi if xi takes the
value 0, satisfies a clause if it satisfies at least one literal of
the clause, and satisfies a CNF formula if it satisfies all the
clauses of the formula. The empty clause is denoted by�,
and is unsatisfied by any assignment.



Related Work
The lower bound computation method has a dramatic impact
on the performance of any Max-SAT solver. The simplest
method consists of just counting the number of clauses un-
satisfied by the current partial assignment. This method was
implemented by Borchers & Furman (1999).

One step forward is to incorporate an underestimation of
the number of clauses that will become unsatisfied if the
current partial assignment is extended to a complete assign-
ment. The most basic method was defined by Wallace &
Freuder (1996):

LB(φ) = #unsat +
∑

x occurs inφ

min(ic(x), ic(¬x)),

whereφ is the CNF formula associated with the current par-
tial assignment,#unsat is the number of empty clauses de-
rived so far, andic(x) (ic(¬x)) —inconsistency count of
x (¬x)— is the number of clauses that become unsatisfied
if the current partial assignment is extended by fixingx to
true (false); in other words,ic(x) (ic(¬x)) coincides with
the number of unit clauses ofφ that contain¬x (x). That
method can be explained telling that the underestimation of
the lower bound is the number of disjoint inconsistent sub-
formulas formed by two complementary unit clauses.

Binary clauses can also contribute to the underestimation
of the lower bound using the Directional Arc Consistency
(DAC) count notion defined by Wallace (1995) for Max-
CSP. The DAC count of a value of the variablex in φ is the
number of variables which are inconsistent with that value
of x. For example, ifφ contains clausesx ∨ y, x ∨ ¬y, and
¬x∨ y, the value 0 ofx is inconsistent withy, meaning that
when 0 is assigned tox, the lower bound should be incre-
mented by one. Note that value 0 ofy is also inconsistent
with x. These two inconsistencies are not disjoint and can-
not be summed. Wallace defined a direction fromx to y,
so that only the inconsistency for value 0 ofx is counted.
After defining a direction between every pair of variables
sharing a constraint, one computes the DAC for all values
of x by checking all variables to which a direction fromx
is defined. The DAC notion of Wallace considers the next
underestimation:∑
x occurs inφ

(min(ic(x), ic(¬x))+min(dac(x), dac(¬x)),

wheredac(x) (dac(¬x)) is the DAC count of the value 1(0)
of x. In (Wallace 1995), all directions are statically defined,
so thatdac(x) anddac(¬x) can be computed in a prepro-
cessing step for everyx and do not need to be recomputed
during search. Larrosa, Meseguer, & Schiex (1999) im-
proved this by introducing reversible DAC, which searches
for better directions to obtain a better LB at every step of
search. A further improvement of DAC is the additional in-
corporation of inconsistencies contributed by disjoint sub-
sets of variables, based on particular variable partitions (Lar-
rosa & Meseguer 2002). Max-CSP techniques were applied
to Max-SAT in (de Givryet al. 2003).

The most remarkable improvements to the previous lower
bounds, dealing with more than two literals per clause, are

the star rule (Shen & Zhang 2004; Alsinet, Manyà, & Planes
2004) and UP (Li, Manỳa, & Planes 2005).

In the star rule, the underestimation of the lower bound is
the number of disjoint inconsistent subformulas of the form
{l1, . . . , lk,¬l1 ∨ · · · ∨ ¬lk}. The star rule, whenk = 1, is
the method based on inconsistency counts.

In UP, the underestimation of the lower bound is the num-
ber of disjoint inconsistent subformulas that can be detected
by applying unit resolution.1 UP finds inconsistent subfor-
mulas as follows: It maintains a queueQ that contains the
unit clauses that have been derived so far, and applies unit
propagation2 considering the unit clauses in the ordering of
Q (i.e.; older unit clauses are preferred to more recent unit
clauses). Once a contradiction is detected, UP analyzes the
resolution steps performed and identifies, as an inconsistent
subformula, a multiset of clauses that are able to derive the
detected contradiction via unit resolution. Using technolo-
gies developed in modern SAT solvers such as Satz (Li &
Anbulagan 1997), UP can be implemented efficiently.

UP subsumes the inconsistent count method based on unit
clauses and the star rule. Its effectiveness for producing
a good lower bound can be illustrated with the following
example: Letφ be a CNF formula containing the clauses
x1,¬x1∨x2,¬x1∨x3,¬x2∨¬x3∨x4, x5,¬x5∨x6,¬x5∨
x7,¬x6∨¬x7∨¬x4. UP easily detects that inconsistent sub-
set, with 8 clauses and 7 variables, in time linear in the size
of the formula. Note that this subset is not detected by any
of the lower bounds described above, except for the variable
partition based approach of Larrosa & Meseguer (2002) in
the case that the 7 variables are in the same partition.

It is also worth to mention a lower bound for Max-2SAT,
called LB4, that was defined by Shen & Zhang (2004),
which is similar to UP: they detect disjoint inconsistent sub-
formulas in Max-2SAT instances via linear unit resolution.
Finally, we mention the lower bound computation defined
by Xing & Zhang (2005), which detects disjoint inconsistent
subformulas with a method based on linear programming.

We have reviewed the methods that improve the lower
bound by computing underestimations. Another approach
consist of applying inference rules that allow to transform a
Max-SAT instanceφ into an equivalent Max-SAT instance
φ′ that contains more empty clauses thanφ. Inference rules
preserving the equivalence among Max-SAT instances can
be found, for instance, in (Alsinet, Manyà, & Planes 2005;
Larrosa & Heras 2005).

Five New Lower Bounds
We first propose two new lower bounds, called UP∗ and
UPS , which improve UP by using better orderings for prop-
agating unit clauses in unit propagation. Then, we propose
three new lower bounds, called UPFL, UP∗

FL and UPSFL,

1Unit resolution states that froml and¬l∨D, wherel is a literal
andD is a disjunction of literals, we can derive the resolventD.

2Unit propagation is the repeated application of the one-literal
rule until reaching a contradiction or a saturation state. Given a
CNF formulaφ with a unit clausel, the one-literal rule deletes all
the clauses containingl and removes all the occurrences of¬l.



which are, respectively, extensions of UP, UP∗ and UPS in-
corporating the detection of failed literals.

Lower Bounds Improving UP
UP gives an underestimation of the number of disjoint in-
consistent subformulas in a CNF formulaφ using unit prop-
agation, which means that (i) each inconsistent subformula
contains at least one unit clause and, therefore, the number
of detected inconsistencies is bounded by the number of unit
clauses inφ; and (ii) clauses in an inconsistent subformula
cannot be used to derive other inconsistent subformulas.

In order to improve the underestimation of UP, we need to
find disjoint inconsistent subformulas containing as few unit
clauses as possible, leaving more unit clauses in the remain-
ing formula to derive further inconsistent subformulas. For
the same reason, each inconsistent subformula should also
contain as few non-unit clauses as possible. That is the moti-
vation of defining better orderings than the one implemented
in UP for propagating unit clauses in unit propagation. As a
result, we provide two new lower bounds: UP∗ and UPS .

UP∗ maintains two queues:Q1 andQ2. When UP∗ starts
to search for an inconsistent subformula,Q1 contains all the
unit clauses of the CNF formula under consideration (more
recently derived unit clauses are at the end ofQ1), andQ2

is empty. The unit clauses derived during the application of
unit propagation are stored inQ2, and unit propagation does
not use any unit clause fromQ1 unlessQ2 is empty.

UPS stores all unit clauses in a stackS instead of in a
queueQ.

Example 1 Let φ1 be the Max-SAT instance
{x1, x2, x3,¬x1 ∨ x4,¬x1 ∨ x5,¬x4 ∨ ¬x5,¬x1 ∨
¬x2 ∨ ¬x3, x1 ∨ ¬x2}. We show that UP detects exactly
one inconsistent subformula while UP∗ and UPS are able
to detect two inconsistent subformulas.

• UP: Initially, Q = [x1, x2, x3]. Whenx1 is propa-
gated, unit clausesx4 and x5 are added toQ (Q =
[x2, x3, x4, x5]), clausex1 ∨ ¬x2 is removed, and clause
¬x1∨¬x2∨¬x3 becomes¬x2∨¬x3. Whenx2 is propa-
gated,¬x2∨¬x3 becomes¬x3, which is added toQ (Q =
[x3, x4, x5,¬x3]). Whenx3 is propagated, the empty
clause is derived. The inconsistent subformula detected
by UP is{x1, x2, x3,¬x1 ∨ ¬x2 ∨ ¬x3}. The remaining
clauses{¬x1 ∨ x4,¬x1 ∨ x5,¬x4 ∨ ¬x5, x1 ∨ ¬x2} do
not contain any unit clause and, therefore,UP stops.

• UP∗: Initially, Q1 = [x1, x2, x3]. Whenx1 is propagated,
unit clausesx4 andx5 are added toQ2 (Q2 = [x4, x5]),
clausex1∨¬x2 is removed, and clause¬x1∨¬x2∨¬x3

becomes¬x2 ∨ ¬x3. We then propagatex4 and derive
¬x5, which is added toQ2 (Q2 = [x5,¬x5]). Whenx5

is propagated, the empty clause is derived. The first in-
consistent subformula detected is{x1,¬x1 ∨ x4,¬x1 ∨
x5,¬x4 ∨ ¬x5}. Observe that UP∗ consumed exactly
one unit clause from the input formula. Next, UP∗

detects another contradiction in the remaining clauses:
{x2, x3,¬x1∨¬x2∨¬x3, x1∨¬x2}. Now,Q1 = [x2, x3].
Whenx2 is propagated, unit clausesx1 is added toQ2

(Q2 = [x1]) and¬x1 ∨ ¬x2 ∨ ¬x3 becomes¬x1 ∨ ¬x3.
Whenx1 is propagated, unit clauses¬x3 is added to

Q2 (Q2 = [¬x3]). When¬x3 is propagated, the empty
clause is derived. The second inconsistent subformula is
{x2, x3,¬x1 ∨ ¬x2 ∨ ¬x3, x1 ∨ ¬x2}.

• UPS :Initially, S = [x3, x2, x1] (we assumex1 is at the
bottom of the stack). Whenx3 is propagated, clause¬x1∨
¬x2 ∨ ¬x3 becomes¬x1 ∨ ¬x2, andS = [x2, x1]. When
x2 is propagated, unit clauses¬x1 andx1 are added to
S (S = [x1,¬x1, x1]). Whenx1 is propagated, the empty
clause is derived. The first inconsistent subformula de-
tected is{x2, x3,¬x1∨¬x2∨¬x3, x1∨¬x2}. Next, UPS

derives another contradiction from the remaining clauses:
{x1,¬x1 ∨ x4,¬x1 ∨ x5,¬x4 ∨ ¬x5}. Now,S = [x1].
Whenx1 is propagated, unit clausesx4 andx5 are added
to S (S = [x5, x4]). Whenx5 is propagated, unit clauses
¬x4 is added to S (S = [¬x4, x4]). When¬x4 is propa-
gated, the empty clause is derived. The second inconsis-
tent subformula is{x1,¬x1 ∨ x4,¬x1 ∨ x5,¬x4 ∨¬x5}.

Example 1 suggests that one of the drawbacks of UP is
that it consumes unit clauses from the input formula that
could be avoided, which is a direct consequence of the or-
dering in which unit clauses are propagated.

Example 2 Let φ2 be the Max-SAT instance{x1,¬x1 ∨
x2,¬x1∨x3,¬x2∨¬x3,¬x1∨x4,¬x4∨x5,¬x5∨x6,¬x6∨
x7,¬x7 ∨ ¬x8,¬x7 ∨ ¬x9, x8 ∨ x9}. We show that, in
this case, UPS consumes more clauses (not necessarily unit
clauses) than UP∗ when detecting inconsistent subformulas.

• UPS : Initially, S = [x1]. Whenx1 is propagated, unit
clausesx2, x3, andx4 are added toS (S = [x4, x3, x2]).
Whenx4 is propagated, unit clausex5 is added toS
(S = [x5, x3, x2]). Whenx5 is propagated, unit clausex6

is added toS (S = [x6, x3, x2]). Whenx6 is propagated,
unit clausex7 is added toS (S = [x7, x3, x2]). When
x7 is propagated, unit clauses¬x8 and¬x9 are added
to S (S = [¬x9,¬x8, x3, x2]). When¬x9 is propagated,
unit clausex8 is added toS. (S = [x8,¬x8, x3, x2]).
Whenx8 is propagated, the empty clause is derived. The
inconsistent subformula detected by UPS is {x1,¬x1 ∨
x4,¬x4 ∨ x5,¬x5 ∨ x6,¬x6 ∨ x7,¬x7 ∨ ¬x8,¬x7 ∨
¬x9, x8 ∨ x9}, which contains 8 clauses.

• UP∗: Initially, Q1 = [x1] andQ2 is empty. Whenx1 is
propagated, unit clausesx2, x3, andx4 are added toQ2

(Q2 = [x2, x3, x4]). Whenx2 is propagated, unit clause
¬x3 is added toQ2 (Q2 = [x3, x4,¬x3]). Whenx3 is
propagated, the empty clause is derived. The inconsis-
tent subformula detected by UP∗ is {x1,¬x1 ∨ x2,¬x1 ∨
x3,¬x2 ∨ ¬x3}, which contains 4 clauses.

Example 2 suggests that UPS tends to find larger incon-
sistent subformula than UP∗; i.e., UPS can consume more
clauses than UP∗ to derive an empty clause. This is so be-
cause UPS , when there are several possibilities of deriving
an empty clause from a unit clause, just finds the first deriva-
tion, while it can be shown that UP∗ always finds the short-
est derivation. UP∗ makes one step in each possible deriva-
tion in parallel, stopping all derivations when the first empty
clause is found. In other words, UPS performs a depth-first
search while UP∗ performs a breadth-first search.



Example 3 Let clauses inφ2 be ordered as follows:
{x1,¬x1 ∨ x4,¬x4 ∨ x5,¬x5 ∨ x6,¬x6 ∨ x7,¬x7 ∨
¬x8,¬x7 ∨¬x9, x8 ∨ x9,¬x1 ∨ x2,¬x1 ∨ x3,¬x2 ∨¬x3}.

In this case, UPS finds the shortest derivation to an empty
clause, because the shortest derivation happens to be the
first one. However, UP∗ always finds this derivation in the
following way: initially,Q1 = [x1] andQ2 is empty. When
x1 is propagated, unit clausesx4, x2, andx3 are added to
Q2 (Q2 = [x4, x2, x3]). Whenx4 is propagated, unit clause
x5 is added toQ2 (Q2 = [x2, x3, x5]). Whenx2 is propa-
gated, unit clause¬x3 is added toQ2 (Q2 = [x3, x5,¬x3]).
Whenx3 is propagated, the empty clause is derived.

Extending UP, UP∗ and UPS with Failed Literal
Detection

UPFL, UP∗
FL and UPSFL are extension, respectively, of UP,

UP∗ and UPS , incorporating an additional level of forward
look-ahead based on the detection of failed literals.3

Let φ be a Max-SAT instance, and letφ′ be the formula
resulting fromφ after replacing every inconsistent subfor-
mula detected by UP∗ with an empty clause. Obviously,
unit propagation inφ′ cannot derive any additional empty
clause. However, if unit propagation is applied toφ′ ∪ {x}
andφ′ ∪ {¬x}, for any variablex occurring inφ′, and pro-
duces an empty clause in each CNF formula (i.e.;x and¬x
are failed literals inφ′), then(ϕ1∪ϕ2)\{x,¬x} is an incon-
sistent subformula ofφ′, whereϕ1 is the inconsistent subfor-
mula detected by UP∗ in φ′∪{x}, andϕ2 is the inconsistent
subformula detected by UP∗ in φ′ ∪ {¬x}. That is a direct
consequence of the following observation: We can produce
a proof of¬x by applying resolution (not necessarily unit
resolution) toϕ1 \ {x}, and a proof ofx by applying resolu-
tion toϕ2 \ {¬x}. If we put the two proofs together and re-
solvex and¬x, we get a refutation from(ϕ1∪ϕ2)\{x,¬x}.
Note that now (i) we only consider clauses ofφ′, and (ii) the
refutation is not aunit resolution refutation; it is a resolution
refutation.

Example 4 Letφ′ be{�,�, y∨¬x,¬y∨z,¬y∨¬z, y∨x}.
If unit propagation is applied toφ′ ∪ {x}, UP∗ detects the
inconsistent subformulaϕ1 = {x, y∨¬x,¬y∨z,¬y∨¬z},
and if it is applied toφ′∪{¬x}, UP∗ detects the inconsistent
subformulaϕ2 = {¬x,¬y ∨ z,¬y ∨ ¬z, y ∨ x}. Observe
that a resolution refutation can be derived from(ϕ1 ∪ ϕ2) \
{x,¬x} = {y ∨ ¬x,¬y ∨ z,¬y ∨ ¬z, y ∨ x}.

That result is exploited in the new lower bounds but, as
introducing an additional level of look-ahead is time con-
suming, only a subset of the variables occurring in the CNF
formula are used to detect failed literals. Note that, since a
literal corresponds to a value of a variable, the detection of
failed literals subsumes the DAC count for binary clauses.

We next describe in detail UP∗FL, and assume that incon-
sistent subformulas inφ′ ∪ {x} andφ′ ∪ {¬x} are detected
via UP∗. UP∗ was selected because it is better than UP and
UPS , but the previous result holds for UP and UPS as well.

3The detection of failed literals is related to shaving in schedul-
ing, and singleton local consistency in constraint satisfaction.

Let V ar(φ′) be the set of propositional variables occur-
ring in φ′ such that (i) they do not occur in unit clauses; and
(ii) they have at least two positive occurrences and two neg-
atives occurrences in binary clauses. UP∗

FL detects, for each
variablex in V ar(φ′), if x and¬x are both failed literals in
φ′. Once an inconsistent subformulaγ is detected,γ is re-
placed with an empty clause inφ′, and the set of variables in
which failed literals are searched for is updated taking into
account the new CNF formula derived.

Variables occurring in unit clauses are not considered be-
cause they do not lead to a contradiction if UP∗ is applied
to φ′. The fact of selecting variables with at least two pos-
itive occurrences and two negatives occurrences in binary
clauses was determined empirically. These variables give at
least two new unit clauses when they are set to a truth value.

UP∗
FL computes, in general, tighter bounds (the total

number of empty clauses in the resulting CNF formula) than
UP∗ and, in the worst-case, it provides the same lower bound
as UP∗. It is also important to highlight some side effects of
its application: (i) as soon as the new lower bound reaches
the upper bound for some variablex, we can prune the cur-
rent search subspace, and (ii) if the difference between the
current lower bound and the upper bound is one and unit
propagation inφ′∪{x} (φ′∪{¬x}) leads to an empty clause,
thenx can be set to false (true).

UPFL and UPSFL are like UP∗FL, except that they generate
φ′ from φ, respectively, with UP and UPS .

Experimental Investigation
In the experimental investigation, we evaluated the impact
of the different lower bounds defined in this paper, and com-
pared a Max-SAT solver that implements UP∗

FL, which is
our best performing lower bound, with the following solvers:

• SZ (Shen & Zhang 2005): a BnB Max-2SAT solver im-
plementing the lower bound LB4.

• Toolbar2.2 (de Givryet al. 2003): a Max-SAT solver
that encodes the input instance as a constraint network
and solves that network with a state-of-the-art Max-CSP
solver. We used version 2.2 with default parameters.

• MaxSolver (Xing & Zhang 2004): a BnB Max-SAT
solver that applies a number of efficient inference rules.
We used the 2nd release.

• Lazy (Alsinet, Manỳa, & Planes 2005): a BnB Max-SAT
solver with lazy data structures and a static variable selec-
tion heuristic. We used version 2.0.

• UP1.5 (Li, Manỳa, & Planes 2005): a BnB Max-SAT
solver implementing UP. We used version 1.5.

In the rest of this section, when we say solver UP, UP∗,
UPS , UPFL, UP∗

FL, and UPSFL we refer to an improved
version of the Max-SAT solver UP1.5 augmented with the
lower bound computation method of the same name.

We provided the same initial upper bound to all the
solvers, which was computed with a local search solver. All
the experiments were performed on a Linux Cluster with
2GHz AMD Opteron processors with 1Gb of RAM.

As benchmarks we used randomly generated Max-2SAT
instances and Max-3SAT instances, as well as Max-Cut
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instances. Max-2SAT instances and Max-3SAT instances
were created with the generator mwff.c developed by Bart
Selman, which allows for duplicated clauses. For Max-Cut,
we used the same encoding as Shen & Zhang (2004).

In the first experiment we evaluated, on random Max-
2SAT instances, the lower bounds based on unit propaga-
tion. We solved sets of 100 instances with 100 variables;
the number of clauses ranged from 400 to 900. The results
obtained are shown in Figure 1. Along the horizontal axis
is the number of clauses, and along the vertical axis is the
mean time, in seconds, needed to solve an instance of a
set. Figure 2 shows the mean number of branches of the
proof tree. Notice that we use a log scale to represent both
run-time and branches. Then, we compared UP∗

FL with the
Max-SAT solvers Lazy, MaxSolver, SZ, Toolbar2.2, UP and

 0.01

 0.1

 1

 10

 100

 1000

 10000

 400  500  600  700  800  900

tim
e (

log
 sc

ale
)

number of clauses

Max-2SAT - 100 variables

Lazy
Toolbar2.2

SZ
MaxSolver

UP1.5
UP

UP*
FL

Figure 3: Comparison of Max-SAT solvers on Max-2SAT

 1

 10

 100

 1000

 10000

 500  600  700  800  900  1000

tim
e (

log
 sc

ale
)

number of clauses

Max-3SAT - 70 variables

UP
UPS

UPS
FL

UPFL

UP*

UP*
FL

Figure 4: Mean time, in seconds, for Max-3SAT

 10000

 100000

 1e+06

 1e+07

 1e+08

 500  600  700  800  900  1000
br

an
ch

es
 (lo

g s
ca

le)

number of clauses

Max-3SAT - 70 variables

UP
UPS

UP*

UPS
FL

UPFL
UP*

FL

Figure 5: Mean number of branches for Max-3SAT

 1

 10

 100

 1000

 10000

 500  600  700  800  900  1000

tim
e (

log
 sc

ale
)

number of clauses

Max-3SAT - 70 variables

MaxSolver
Lazy

UP1.5
Toolbar2.2

UP
UP*

FL

Figure 6: Comparison of Max-SAT solvers on Max-3SAT

 0.01

 0.1

 1

 10

 100

 1000

 10000

 200  300  400  500  600

tim
e (

log
 sc

ale
)

number of edges

Max-Cut - 50 nodes

UP
UPS

UP*

UPS
FL

UPFL
UP*

FL

Figure 7: Mean time, in seconds, for Max-Cut



 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 200  300  400  500  600

br
an

ch
es

 (lo
g s

ca
le)

number of edges

Max-Cut - 50 nodes

UP
UPS

UP*

UPS
FL

UPFL
UP*

FL

Figure 8: Mean number of branches for Max-Cut
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Figure 9: Comparison of Max-SAT solvers on MAX-CUT

UP1.5. Figure 3 shows the results obtained.

In the second experiment we evaluated the new lower
bounds on random Max-3SAT instances. We solved sets
of 100 instances with 70 variables; the number of clauses
ranged from 500 to 1000. Figure 4 shows the mean time,
in seconds, needed to solve an instance of a set, and Fig-
ure 5 shows the mean number of branches of the proof tree.
We also compared UP∗FL with the Max-SAT solvers Lazy,
MaxSolver, Toolbar2.2, UP and UP1.5. Figure 6 shows the
results obtained.

In the third experiment, whose results are shown in Fig-
ure 7 and Figure 8, we evaluated the new lower bounds on
Max-Cut instances. We solved sets of 100 graphs with 50
vertices; the number of edges ranged from 200 to 600. Fi-
nally, we compared UP∗FL with the Max-SAT solvers Lazy,
MaxSolver, SZ, Toolbar2.2, UP and UP1.5. Figure 9 shows
that comparison.

The experimental results provide evidence that UP∗
FL is

the best lower bound introduced in this paper; for example,
UP∗

FL is one order of magnitude faster than UP on the hard-
est Max-2SAT instances. The results also provide evidence
that a solver implementing UP∗FL slightly improves SZ and
is superior to the rest of solvers on Max-Cut, and produces
important speedups on Max-2SAT and Max-3SAT. In Fig-
ures 3 and 6, UP∗FL is about 30 times faster than the second
best solver on the hardest instances.

Conclusions
We contributed to the definition of good quality lower
bounds in Max-SAT. We improved UP by using more ef-
ficient orderings in the propagation, and showed that UP-
based lower bounds can be augmented with failed literal de-
tection, obtaining tighter lower bounds.

The experimental results indicate that unit propagation,
along with failed literal detection, gives an efficient method
for computing good quality lower bounds if unit clauses are
propagated following a suitable ordering. In particular, the
ordering in UP∗FL is the best option in our study, because it
produces many more inconsistent subformulas than other or-
derings by consuming fewer unit and non-unit clauses when
detecting an inconsistent subformula.
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