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Abstract

Background: Epileptic seizure is a serious health problem in the world and there is a huge population suffering from

it every year. If an algorithm could automatically detect seizures and deliver the patient therapy or notify the hospital,

that would be of great assistance. Analyzing the scalp electroencephalogram (EEG) is the most common way to

detect the onset of a seizure. In this paper, we proposed the context-learning based EEG analysis for seizure detection

(Context-EEG) algorithm.

Methods: The proposed method aims at extracting both the hidden inherent features within EEG fragments and the

temporal features from EEG contexts. First, we segment the EEG signals into EEG fragments of fixed length. Second,

we learn the hidden inherent features from each fragment with a sparse auto-encoder and thus the dimensionality of

the original data is reduced. Third, we translate each EEG fragment to an EEG word so that a continuous EEG signal is

converted to a sequence of EEG words. Fourth, by analyzing the context information of EEG words, we learn the

temporal features for EEG signals. And finally, we concatenate the hidden features and the temporal features together

to train a binary classifier which can be used to detect the onset of an epileptic sezure.

Results: 4302 EEG fragments from four different patients are used to train and test our model. An error rate of

22.93 % is achieved by our model as a general, non-patient specific seizure detector. The error rate of our model is

averagely 16.7 % lower than the other baseline models. Receiver operating characteristics (ROC curve) and area under

curve (AUC) confirm the effectiveness of our model. Furthermore, we discuss the extracted features and how to

reconstruct the original data based on the extracted features, as well as the parameter sensitivity.

Conclusions: Given a EEG fragment, by extracting high-quality features (the hidden inherent features and temporal

features) from the EEG signals, our Context-EEG model is able to detect the onset of a seizure with high accuracy in

real time.
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Background

An epileptic seizure is a transient aberration due to abnor-

mally excessive or synchronous neuronal activities in the

brain. The disease epilepsy is defined as an enduring pre-

disposition in brain which generates epileptic seizures.

The symptom of epilepsy can vary from uncontrolled
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jerking movement to as subtle as a temporary uncon-

sciousness [1]. Frequent seizures are dangerous as it may

result in serious physical injuries and even death. Accord-

ing to the studies [2, 3], 5–10 % of the population over

80 years old have experienced the epileptic seizures for

at least once. After the first experience, they would suffer

from another epileptic seizure with a probability of 40–

50 %. Currently about 1 % of the global population are
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affected by epileptic seizures and at some point in time the

number used to be 4 % at its highest [2].

Considering the serious outcome caused by epileptic

seizure for the patients and the large population affected

by epileptic seizure, a device that can quickly detect the

onset of seizure and deliver therapy can be of great help.

In recent years, the surge in brain-computer interface

(BCI) technology introduces tremendous opportunities to

applying physiological signals to biomedical applications.

According to previous studies, the electroencephalogram

signals (EEG) are closely related to brain activities and can

be used to detect neural diseases [4, 5]. Therefore, analy-

sis on the EEG signals is a powerful and enabling way to

detect the onset of seizures.While we can collect EEG sig-

nals from different parts of body, the scalp EEG is most

widely adopted, which is a non-invasive, multi-channel

recording of the brain’s electrical activities.

The condition of seizures has proven to be closely

related to the neural electrical activities which are

reflected on the scalp EEG signals. Nevertheless, there still

exist several challenges in the automatic seizure detection

task:

First, seizure and non-seizure states have considerable

overlap in patients’ EEG signal patterns.

Second, both the seizure and non-seizure status have

more than one sub-states and the EEG of an patient may

constantly transition between them.

Third, most conventional learning models directly send

all the inputs to the seizure classifier without extract-

ing features and are not able to analyze the correlation

between different input data, which would result in the

failure to recognize the temporal signal patterns [6–8].

Fourth, the characteristics of seizures on EEG might

vary significantly across patients. Because of this cross-

patient variability in seizure and non-seizure activities,

patient non-specific classifiers are usually not able to

obtain a high accuracy and suffer from long delays in

detecting the onset of a seizure. On the contrary, patient

specific classifiers can exhibit impressive performance but

they are not able to work for new patients [9].

Fifth, in practice, the automatic seizure detector should

be able to detect the onset of a seizure quickly.

Sixth, practically, it should also be able to handle the

unbalanced training data, because seizures are rare events

which results in the paucity of seizure training data.

Facing these challenges, we propose an innovative

method to capture the temporal features and context

information hidden in EEG data. Since the onset of a

seizure is related to a sequence of EEG signals rather than

the values at a certain point, temporal analysis is necessary

and crucial for the seizure detection. The context-learning

based techniques have proven to be effective in bioinfor-

matics [10, 11]. More specifically, our model handles these

challenges with the following strategies:

• We segment the EEG into small pieces of fixed length

with a sliding window. By sliding the window with a

fixed step length, the EEG is segmented into

numerous small fragments as the ‘EEG words’ for

further analysis.
• We extract the hidden inherent features within each

EEG fragment. One single feature corresponds to one

‘EEG word’ in our learned ‘EEG dictionary’.
• We explore the temporal knowledge by learning the

context information of EEG fragments. After

translating the EEG fragments into ‘EEG words’, we

can infer the context knowledge for each EEG

fragment by analyzing it with its context fragments.
• Finally, we combine the hidden features of each EEG

fragment and the temporal knowledge together and

subsequently send them to a seizure classifier. In this

paper we propose a two-way classifier (seizure or

non-seizure states) while the proposed model can be

easily extended to uncover more physiological classes.

Based on the above strategies, the framework of our

model is described in Fig. 1.

Methods

Dataset

The dataset we use is the scalp electroencephalogram col-

lected at the Children’s Hospital Boston [5]. EEGmeasures

the electrical activities in the brain by attaching multi-

ple electrodes to the patient’s scalp. Each EEG channel

records the voltage change between a specific pair of elec-

trodes, and therefore reflects the electrical activities in the

corresponding region. This study used public EEG sig-

nal obtained from the CHB-MIT scalp EEG database on

PhysioNet. A team of investigators from Children’s

Hospital Boston (CHB) and theMassachusetts Institute of

Technology (MIT) created and contributed this database

to PhysioNet. The CHB Internal Review Board approved

the study under the overall CHB-MIT scalp EEG project.

This dataset consists of the EEG recording intractable

seizures from pediatric subjects. Twenty three patients

were involved in the dataset, including 5 males and 18

females from age 2 to age 22. In order to characterize

their seizures and assess the necessity of surgery for them,

their scalp EEG signals were recorded. All the signals were

recorded at 256 Hz with 16 − bit resolution. In most files,

there are 23 EEG channels and 24 channels in a few cases.

Usually following the onset of a seizure, a set of EEG sig-

nals show dramatic changes from the non-seizure states.

And this will assist the seizure detector in distinguish-

ing the seizure and non-seizure states. For example, Fig. 2

illustrates the onset of a seizure of patient A. Patient A’s

seizure starts at the 6th second as the red bar shows in

Fig. 2, and then the onset of this seizure comes with the

significant changes of EEG signals.
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Fig. 1 Schematic illustration of the overall framework. In this framework, we focus on extracting representative features from EEG signals. On one

hand we extract the hidden inherent features of each EEG fragment by segmenting the EEG signals and learning the EEG dictionary. On the other

hand, we extract the temporal features by analyzing the EEG contexts of EEG fragments. And finally, we send the integrated features to the classifier

However, as we mentioned, the characteristics of

seizures on EEG might vary significantly across patients,

and this variability will make the seizure detection prob-

lem even more difficult. Figure 3 shows the onset of a

seizure of patient B. Patient B’s seizure also starts at the

6th second as the red bar shows in Fig. 3. Significant

changes can still be observed between seizure and non-

seizure states, but the pattern of seizure EEG differs across

patients.

Moreover, sometimes EEG signals show certain kinds

of rhythmic activities when people are excited, which are

also different from the calm states. But these EEG frag-

ments should not be confused with seizures. The ambigu-

ity brought by these activities requires the seizure detector

to learn the features of seizures.

The Context-EEGmodel

In this subsection, we propose a novel frame-

work to extract the hidden inherent features and

temporal information in EEG signals. We start by dis-

cussing the first step of our model, segmenting EEG

data.

EEG segmentation

Since EEG signals cannot be explicitly segmented into

sub-fragments associated with physiological meanings,

we segment it into several overlapped epochs of fixed

length. With a sliding window of length L (for example, 3

seconds), we build our EEG fragment pool by sliding the

window by 1 second at each step.

Figure 4 shows an example of how to segment an EEG

signal into three fragments, in which the length of the slid-

ing window is fixed to L = 3 seconds and the step length

is 1 second.

By segmenting the EEG signals into numerous EEG frag-

ments, we obtain an EEG pool of EEG fragments. Our

further analysis and experiments are conducted on these

EEG fragments.
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Fig. 2 The scalp EEG of patient A. The red bar marks the onset of a seizure. The EEG signals before this red bar are of non-seizure states and the EEG

signals after this red bar are of seizure states

Fig. 3 The scalp EEG of patient B. The red bar marks the onset of a seizure. The EEG signals before this red bar are of non-seizure states and the EEG

signals after this red bar are of seizure states
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Fig. 4 An example of EEG segmentation. Given a 5 second long EEG signal, it is segmented into three EEG fragments by a 3 second sliding window

when the step length is 1 second

EEG dictionary learning

After the EEG fragment pool is built, we use a sparse

autoencoder (SAE) to extract features for these fragments.

Autoencoder is an unsupervised neural network based

model which aims at discovering interesting structures of

data by reconstructing the input [12].

In its simplest form, an autoencoder consists of two

parts, an encoder and a decoder. Autoencoder can also be

viewed as a technique for feature extraction and dimen-

sionality reduction. The encoder reduces the dimension-

ality of the input data to obtain principal features, and

the decoder is tuned to reconstruct the input data based

on the output features of the encoder. Hence by min-

imizing the reconstruction error, we can get the opti-

mal autoencoder whose encoder extracts features with

reduced dimensionality and decoder reconstructs input

data from the extracted features. In particular, when we

select a linear activation function and use less hidden units

than the input dimensions, the encoder works similarly

with the principal component analysis (PCA) [13]. How-

ever, when a non-linear activation function is adopted, the

autoencoder has proven to be capable of learning more

useful features than PCA [14].

Figure 5 depicts the structure of an antoencoder with

one hidden layer, where x is the input data, h is the hid-

den unit and +1 term is adopted to integrate the bias.

The autoencoder tries to learn a hidden layer that satis-

fies g(f (x)) ≈ x, where f (x) extracts features from input s

and g(y) reconstructs the original data from the extracted

features. In other words, it aims at learning a model to

approximate the output with the input. The bottom-up

structure denotes the process of encoding, as the left

green arrow shows in Fig. 5. The encoder corresponds to

the function f that maps the input data x to the hidden

layer h. The function f is defined as:

h = f (x) = σ(Wx + bh), (1)

where bh represents the bias, W represents the weight

matrix from input data to the hidden units and σ(x) is the

activation function. In our test we adopt the non-linear

logistic sigmoid function, as follows:

σ(x) =
1

1 + e−x
.

The top-down structure denotes the process of decod-

ing, as the right green arrow shows in Fig. 5. The decoder

Fig. 5 The structure of an autoencoder. x is the input data, h is the hidden unit and +1 term is adopted to integrate the bias. It is composed of two

parts, an encoder and a decoder. The output of the encoder is the extracted features for the input data and the decoder is tuned to reconstruct the

input data based on the extracted features
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corresponds to the function g that reconstructs the input

data from the hidden features:

x̃ = g(h) = σ ′(W ′h + bx), (2)

where bx is the bias, W ′ is the weight matrix from the

hidden features to the reconstruction and σ ′(x) is the acti-

vation function of the decoder. Usually the decoder adopts

the same activation as the encoder for simplicity, and thus

for the decoder we adopt the logistic sigmoid function as

well.

As the autoencoder aims at reconstructing the input

data, the cost function in terms of parameters θ =

{W ,W ′, bh, bx} is defined as:

JAE(θ) =
∑

x

L(x, x̃) =
∑

x

L(x, g(f (x))), (3)

where L represents the reconstruction error, which is

measured by the cross-entropy loss:

L(x, x̃) = −
∑

x

(x log(x̃) + (1 − x)log(1 − x̃)).

In our case, given an 3-second EEG fragment, the input

size for the autoencoder is 256Hz×3 seconds = 768. This

may result in the number of hidden units being also very

large. For each input EEG fragment, intuitively it should

only activate a few of the features rather than most of the

features. So when the number of hidden units is large, we

can still discover some interesting structure by imposing

a sparsity constraint on the hidden units [15]. Thus, we

use a sparse autoencoder to deal with our EEG dictionary

learning task.

A hidden unit is considered of being ‘inactive’ when

its output is close to zero, and of being ‘active’ when its

output is close to one. Specifically the sparsity constraint

makes one hidden unit inactive most of the times. For hid-

den unit j, we define its average activation ρ̂j over all the

input data x as:

ρ̂j =
1

N

N
∑

i=1

(fj(xi)),

where N is the size of input data, and fj(xi) is the output

of hidden unit j on the i-th input data. Then the aver-

age activation is constrained to the sparsity parameter ρ

which should be quite small (for example ρ = 0.05). To

measure the difference between ρ and ρ̂j, Kullback-Leibler

(KL) divergence is adopted [16]:

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
.

This function penalizes the hidden units being active for

too many times. Incorporating the sparsity constraint into

the autoencoder cost function in Eq. 3, we get the overall

cost function for the sparse autoencoder:

JSAE(θ) = JAE(θ) + β

M
∑

j=1

KL(ρ‖ρ̂j), (4)

where JAE is the cost function defined in Eq. 3, β is

the parameter that controls the weight of the sparsity

constraint andM is the number of hidden units. It is note-

worthy that, the average activation ρ̂j is also a function of

θ . We use backpropagation to update the parameters, and

the gradient of the cost function is computed as:

∂JSAE

∂w(k)
=

∂JAE

∂w(k)
+ β

(

−
ρ

ρ̂k
+

1 − ρ

1 − ρ̂k

)

. (5)

The sparse autoencoder we have discussed above has

only one hidden layer, and in our model, we use a sparse

autoencoder with two hidden layers, which is able to

capture more abstract features. Each learned feature cor-

responds to a vocabulary in the EEG dictionary. And the

EEG dictionary is constructed by decoding all the learned

features.

EEG sequence translation

As the sparse autoencoder is trained, each EEG word is

obtained by decoding each hidden unit and one EEGword

represents one basic signal type. The EEG dictionary is a

set of all the EEG words, and each EEG fragment can be

viewed as a combination of EEG words in the dictionary.

For each EEG fragment, different features have different

weights due to the different proportions of basic signal

types in it. Therefore the EEG fragment can be sampled

to a single EEG word according to the normalized feature

weights.

Given a continuous EEG signal, we can translate it into

a sequence of words by converting each EEG fragment of

it into an EEG word in the dicionary. Translating contin-

uous signal into discrete words would help us learn the

temporal context information in further analysis.

Figure 6 shows an example of how to translate an

EEG fragment to the corresponding EEG word based on

the learned dictionary. More specifically, given an EEG

fragment and the EEG dictionary learned by the sparse

autoencoder, the EEG word in the dictionary correspond-

ing to this EEG fragment is drawn from the multinomial

distribution:

P(ǫi) =
hi

∑M
j=1 hj

,

where ǫi is the i-th EEG word in the dictionary, hi is the

output of the i-th hidden unit on this EEG fragment input

andM is the number of hidden units. Because of the spar-

sity constraint, most of the hi should be close to zero,

which means each EEG fragment is basically composed of

a few main signal types.
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Fig. 6 An example of EEG sequence translation. Each EEG fragment can be decomposed into a combination of EEG words in the EEG dictionary.

Each EEG word corresponds to a hidden unit of the sparse autoencoder in the dictionary learning step, and the distribution of EEG words is the

normalized weights of the hidden units. And then an EEG fragment is sampled to an EEG word according the word distribution

EEG context learning

In order to capture the temporal features of seizures on

EEG signals, we design an EEG context learning algorithm

to analyze the EEG sentences.

In the previous EEG translation step, every EEG frag-

ment is translated to an EEGword, so the continuous EEG

signals are translated to EEG sentences of EEG words. In

this way, we are able to learn the temporal features hidden

in the context information of the EEG sentences.

The main idea of the EEG context learning algorithm is

to infer the current EEG word based on its context words.

This intuition is inspired by the Continuous Bag-of-words

(CBOW) model [17], where each word is represented by

a vector of fixed length and words with similar semantics

would be mapped to close positions in the vector space by

learning the context information.

In our model, the context of an EEG word is drawn from

the EEG sentence with a window of length 2k + 1, i.e.,

the previous k words and the following k words form the

context of the current word.

Figure 7 shows the framework of this EEG context learn-

ing algorithm. Wt is the current word to predict, and

Wt−2 ∼ Wt+2 are the context words of Wt . Each EEG

word is mapped to an unique vector, represented by a col-

umn in matrix A. The integration of all the word vectors

in context should lead the softmax classifier to choose the

current wordWt .

More formally, our EEG sentence dataset consists of T

training EEG words a1, a2, . . . , aT . We are going to pre-

dict each EEG word based on its neighborhood. So all the

context EEG word vectors make a contribution to the pre-

diction task about the current word in the context. Thus

the objective of this EEG context learning algorithm is to

maximize the average log probability:

L =
1

T

T−k
∑

t=k

log p(at|at−k , at−k+1, . . . , at+k), (6)

where 2k + 1 is the size of the context window, i.e., when

predicting every EEG word, only its previous k words and

following k words contribute to the prediction about this

word as its context. The other EEG words outside this

context window are not considered.
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Fig. 7 The framework of the EEG context learning algorithm. This

framework adopts a neural network structure to extract the temporal

features from EEG contexts. The input layer is a projection layer that

projects each word to an unique vector. The hidden layer is an

integration of the vectors in a context. And the output layer is a

classifier where each tuple in the output corresponds to the

conditional probability of a word in the dictionary

The p(at|at−k , at−k+1, . . . , at+k) in Eq. 6 is the predic-

tion task for EEG word at . It is calculated by a multi-class

softmax classifier, as follows:

p(at|at−k , at−k+1, . . . , at+k) =
eyat

∑

i e
yi
, (7)

where ex is the exponential function and yi is the unnor-

malized log probability for each output EEG word ai. As

Fig. 7 shows, the process of prediction is based on a two-

layer neural network, which means there are three steps

for each prediction: first we need to project all the input

words into the vector space, and second we integrate the

vectors, and finally we calculate the output y. So yat can be

computed as:

yat = b + Uh(at−k , at−k+1, . . . , at+k ;A), (8)

where b andU are the parameters of the softmax classifier,

and h is the integration of the context EEG word vec-

tors extracted from matrix A. The integration is typically

implemented as either average function or the concatenation.

In practice, for the sake of fast training, the softmax

classifier is usually replaced by the hierarchical softmax

classifier. In our model, the hierarchical softmax classi-

fier is based on a binary Huffman tree as shown in Fig. 8,

wherein the shortest path is assigned to the most frequent

EEG word.

Fig. 8 The illustration of the hierarchical softmax. The output layer is

replaced by a hierarchical tree structure and each leaf node

corresponds to one word in the vocabulary. So that the time

complexity is drastically reduced. More specifically, a binary Huffman

tree structure is adopted by our model, wherein the shortest paths

are assigned to the most frequent words

Applying hierarchical softmax classifier accelerates our

model in three ways: first, according to the strategy

of building the Huffman tree, frequent EEG words are

assigned short codes, which means the overall accessing

time is shorter; second, by representing the vocabulary

with a binary tree structure, the average seeking time

reduces from O(N) to O(log(N)), where N is the size of

the vocabulary and log(N) is the height of the Huffman

tree; third, by storing the EEG words in a tree structure, in

each round of update, we only need to access and update

the nodes on the path rather than accessing all the words

in the vocabulary.

Similar with the other neural network models, the EEG

context learning algorithm is trained with backpropaga-

tion. After learning EEG contexts, the EEG words with

similar properties are mapped to close positions in the

vector space [18]. These vectors can be used as the tempo-

ral features because in the EEG context learning process,
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the order of the EEG words in an EEG sentence is consid-

ered as part of the context information.

Epileptic seizure detection

The final features we use are the combination of the hid-

den inherent features within the EEG fragments extracted

in the EEG dictionary learning process and the temporal

features extracted in the EEG context learning process.

After concatenating the hidden inherent features and

the temporal features, we use them together with the

labels to train a support vector machine (SVM) classifier

[19]. Andwe name ourmodel the Context-Learning Based

EEG Analysis for Seizure Detection (Context-EEG).

By incorporating the hidden inherent features and tem-

poral features into the classifier, SVM is able to find a

more distinct hyperplane between the seizure and the

non-seizure EEG fragments.

Results

We conduct computational experiments to show the

effectiveness of our model Context-EEG for detecting the

onset of an epileptic seizure. To achieve this, we bench-

mark our model on the CHB-MIT scalp EEG dataset

mentioned in the ‘Background’ Section.

Task and baselines

In order to design a general seizure detecting algorithm,

i.e., a non-patient specific seizure detecting algorithm, we

combine 4302 EEG fragments from four different patients

as our experiment dataset, and randomly choose 3500

EEG fragments out of it as the training set and use the

other EEG fragments as the test set. Given a piece of EEG

fragment, it’s a two-way classification task where the class

labels are {seizure, non-seizure}. We measure the perfor-

mance of each algorithm by the classification error rate,

the receiver operating characteristic (ROC curve) and the

area under curve (AUC).

Since it is a classification task, we apply several widely

used classification algorithms as the baseline algorithms,

including SVM and neural network (NN) [20]. For the

sake of fairness and to avoid the curse of dimensionality,

it is necessary to reduce the dimensionality of the data

before we send it to SVM and NN. So we employ the dec-

imation process by downsampling the EEG signals, and

we call the SVM with downsampling DSVM, the NN with

downsampling DNN. Also, we use the principal compo-

nent analysis (PCA) [21] as another data preprocessing

mechanism to reduce the dimensionality of the data, and

we call the SVM with PCA as PSVM, the NN with PCA

as PNN. SVM is also adopted by our Context-EEG model

as the classifier. The input to it is the hidden inherent

features and the temporal features of each EEG fragment

extracted by our model, and the dimensionality of the data

is reduced as the features are extracted.

Table 1 The error rates of each method

Methods Error rate

SVM 23.43 %

NN 26.22 %

DSVM 29.71 %

DNN 30.21 %

PSVM 28.71 %

PNN 26.82 %

Context-EEG 22.93%

Our model Context-EEG outperforms the baseline methods by 16.7 % on average

Experiment protocols

In our dataset, a seizure is usually 30∼100 seconds long

and surrounded by one hour long non-seizure signals,

whichmeans seizures are rare events. Considering the rar-

ity of seizure events, we trim our test set to balance the

number of seizure fragments and non-seizure fragments

to around 50–50. Otherwise, simply by labeling all the

test samples as non-seizure state, a classifier can obtain an

error rate as low as 30s/3600s = 0.8333%.

Since the original sampling rate is 256 Hz and each file

contains 23 channels of EEG signals, a 3-second long EEG

fragment consists of 256 Hz × 3 seconds × 23 channels =

17664 data points. This high dimensionality problem

would not only put the classifiers at the risk of the curse of

dimensionality, but also consume a lot of time and space.

So for the baseline methods with decimation process, we

reduce their dimensions of the input data to the same

dimensions as Context-EEG by PCA and downsampling.

Fig. 9 The ROC curves of the proposed model and the baselines. In

this figure, the blue line is the ROC curve of SVM. The green ROC

curve is for the DSVM and purple ROC is for the PSVM. The red curve is

the ROC of Context-EEG
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Table 2 The AUC of each method

Methods AUC

SVM 0.7764

DSVM 0.7208

PSVM 0.7232

Context-EEG 0.8880

The AUC of our model is higher than the other methods by 14 % averagely

Experimental result

The error rates of different methods are reported in

Table 1. We can see that our model Context-EEG

outperforms the other methods by averagely 16.7 %. It

is worth noticing that the performances of SVM and

NN decrease quite a lot as the dimensionality of their

input data decreases. The original SVM performs well

at the cost of acceptable dimensionality. However, after

reducing its dimensionality to the same dimensionality

as ours, PSVM and DSVM perform much worse. And

the comparison result between two different decimation

approaches also shows that using PCA is a better way

to extract principal components of data than just simply

downsampling.

Figure 9 and Table 2 show the ROC curve and the AUC

of each method respectively. We can see that our model

performs much better than the other methods.

In the ROC curve figure, among all the baseline meth-

ods, SVM performs the best. However, even though the

dimensionality of SVM is 64 times as high as the dimen-

sionality of the Context-EEG model, SVM still performs

much worse than the Context-EEG model. And we can

see that, the true positive rate of the Context-EEG model

increases at a very fast speed in the beginning when

the false positive rate is still close to zero, which means

Context-EEG is able to capture the important features

to represent and separate seizure and non-seizure data

points effectively.

Fig. 10 Two examples of EEG data reconstruction. The blue lines are the original data and the red lines are the data reconstructed by the hidden

inherent features extracted in the EEG dictionary learning step
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As shown in Table 2, the AUC of the Context-EEG

model is higher than the other methods’ AUCs by 14

percent averagely even though it has the lowest dimen-

sionality among all the methods. As with the error rate

results and the ROC curves, reducing the dimensionality

of input data for SVM by downsampling and PCA has a

rather big impact on the AUC, and using PCA to extract

principal components is a little bit better than just simply

downsampling the data.

It is worth noticing that the Context-EEG model is slow

at learning but extremely fast at prediction, because once

the training step is finished, the parameters will be stored

and will not change anymore. When a new EEG fragment

comes, the classification will be done in O(N) time. So

as a real-time seizure detecting algorithm, Context-EEG

would be of great help for the patients in practice.

Discussion

The main achievement of this paper is an automatic, gen-

eral, non-patient specific seizure detector which is able to

extract both the hidden inherent features and the tempo-

ral features from EEG signals. The experimental results

confirm the effectiveness of our model. Being able to

extract high-quality features is the main reason why our

model outperforms the baselines. Thus, in the follow-

ing subsection we show the extracted features and how

the original data can be reconstructed from the extracted

features.

EEG dictionary learning and EEG signal reconstruction

The first step of our feature extraction process is to learn

the hidden inherent features within each EEG fragment. In

this step, we learn the hidden inherent features by setting

the output of the sparse autoencoder equal to the input.

Hence we can claim that the features are well learned if the

features are able to precisely reconstruct the input data.

Because only if the learned features contain all the crucial

information of the input data, we can reconstruct the data

based on the learned features.

Usually the dimensionality of the features is much lower

than the dimensionality of the original data, so as we are

extracting the hidden inherent features of EEG fragments,

we are also reducing the dimensionality.

Figure 10 illustrates the EEG data reconstruction pro-

cess. We can see that the reconstructed data (the red

lines in the figure) is quite similar with the original data

(the blue lines in the figure). The upper figure is an EEG

fragment of a non-seizure state, where the EEG signal is

regular and clean. And in this case, the learned features

successfully reconstruct every peak and every valley of

the original EEG signal, and the rebuilt value is almost

the same. The lower figure is an EEG fragment of the

onset of a seizure, where the second half of the EEG sig-

nal is quite intense and irregular. Despite this intensity and

irregularity of seizure fragment, the original EEG signal

can still be reconstructed from the learned features as the

red line shows.

Parameter sensitivity

In this part, we show the performance of the proposed

method in various learning scenarios by tuning the num-

ber of hidden units M of the sparse autoencoder. In the

EEG dictionary learning step, the output of the hidden

layer denotes the extracted features of an EEG fragment,

and each hidden unit is directly associated with each EEG

word in the EEG dictionary. In practice, the number of

hidden unitsM of the sparse autoencoder not only affects

the training speed to a great extent, but also determines

the dimensionality of the feature space in the classifica-

tion step. Hence we conduct the parameter sensitivity

experiment on the number of hidden unitsM.

As the input size of the sparse autoencoder is 256 Hz ×

3 seconds = 768, the number of hidden units M varies

in the range of 0 and 768. So we set the number of hid-

den units M = 50, 150, 250, 400, 500, and measure the

performance of Context-EEG respectively.

Figure 11 shows the ROC curves with different param-

eter settings. The proposed model gets the best perfor-

mance when M is 250. Comparing to the input size 768,

the dimensions are reduced effectively and 250 hidden

units are enough to capture the important information of

the original data. While too few hidden units might result

in the proposedmodel being unable to extract enough fea-

tures, such as M = 50, and too many hidden units might

also put the proposed model at the risk of the curse of

dimensionality, such as M = 500. The AUC and error

rate of parameter settings also affirms this conclusion

Fig. 11 The ROC curve for the parameter sensitivity experiment. In

this figure,M is the number of hidden units of the sparse

autoencoder and we record the performances of the proposed

model withM = 50, 150, 250, 400, 500 respectively
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Fig. 12 The AUC and error rate of Context-EEG with different

parameter settings. In this figure, the blue line shows how the AUC of

the proposed model changes as the number of hidden units gets

larger and the red line denotes the error rate. The x-axis is the number

of hidden units

as shown in Fig. 12. When the number of hidden units

is too large or too small, the performance of Context-

EEG decreases somewhat, but we can observe that it still

outperforms the baseline methods.

Conclusions

In this paper, we design and evaluate the context-learning

based EEG analysis for seizure detection model (Context-

EEG) that utilizes the scalp EEG to detect the onset of a

seizure. The proposedmodel is a general, non-patient spe-

cific model which is capable of extracting both the hidden

inherent features and the temporal features for the EEG

signals. The hidden inherent features are extracted from

each EEG fragment internally by a sparse autoencoder and

the temporal features of an EEG fragment are extracted

in its EEG context by the EEG context learning method.

When detecting seizure with respect to a given EEG frag-

ment, not only its internal hidden features but also the

temporal features make a contribution to the classification

task.

The proposedmethod has been tested on the CHB-MIT

scalp EEG dataset and compared with several baseline

methods. In general, the results show the effectiveness and

superiority of the proposed model in detecting epileptic

seizures. Since the proposed model is very fast at testing,

once we obtain the trained model, we can detect the onset

of a seizure in real time.
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