
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

LUCAS KLEIN DRAGHETTI

Detecting Errors in Convolutional Neural

Networks Using Inter Frame

Spatio-Temporal Correlation

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engineering

Advisor: Prof. Dr. Paolo Rech

Porto Alegre
July 2019

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Engenharia de Computação: Prof. André Inácio Reis
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Life is an improvisation.

You have no ideas what’s going to happen next

and you are mostly making things up as you go along.”

— STEPHEN COLBERT

ACKNOWLEDGEMENTS

I wish to thank my family, for supporting and helping me through all my life.

I wish to thank my girlfriend, Luana Freitas, for the patience and support whenever

I needed.

I wish to thank my colleagues and all my friends, for helping me when i needed

and making my whole graduation more fun.

I wish to thank my advisor, Professor Paolo Rech, for his patience and guidance

provided during several years of my graduation.

I wish to thank all the teachers, for the quality lessons and knowledge sharing.

ABSTRACT

Object detection, a critical feature for autonomous vehicles, is performed today using

Convolutional Neural Networks (CNNs). Errors in a CNN execution can modify the way

the vehicle sense the surrounding environment, potentially causing accidents or unex-

pected behaviors. The high computational requirements of CNNs combined with the need

to perform detection in real-time allow little margin for implementing error detection.

In this project, an extremely efficient error detection solution for radiation induced errors

in CNN is presented based on the observation that, in the absence of errors, the differ-

ences between the input frames and the detection provided by the CNN should be strictly

correlated. In other words, if the image between two subsequent frames does not change

significantly, the detection should also be very similar. Similarly, if the detection varies

considerably from a frame to the next, then the input image should also have been differ-

ent. Whenever input images and output detection don’t correlate, it is possible to detect an

error. After formalizing and evaluating the inter-frame and output correlation thresholds,

the detection strategy is implemented and validated, utilizing data from previous radiation

experiments. Exploiting the intrinsic efficiency in processing images of devices used to

execute CNNs, up to 80% of errors are detected, while adding low overhead.

The same error detection solution is then proposed to detect false positives in fault-free

CNN executions. This strategy is also implemented and validated, utilizing ground truth

annotations and fault-free CNN executions. For this application, 9% of the false positives

can be detected reliably. A deeper analysis shows that more false positives can be de-

tected, if a certain percentage of wrong detections is accepted.

Keywords: Convolutional Neural Networks. Object Detection. Fault Tolerance. Error

Detection.

Detectando Erros em Redes Neurais Convolucionais Usando Correlação

Espaço-temporal Entre Quadros

RESUMO

Detecção de objetos, um recurso crítico para veículos autônomos, é realizada hoje usando

Redes Neurais de Convolução (CNNs). Erros em uma execução de uma CNN podem

modificar a maneira como o veículo detecta o ambiente ao redor, potencialmente causando

acidentes ou comportamentos inesperados. Os altos requisitos computacionais de CNNs,

combinados com a necessidade de realizar a detecção em tempo real, permitem pouca

margem para a implementação da detecção de erros.

Neste projeto, uma solução de detecção de erros extremamente eficiente para erros indu-

zidos por radiação em CNN é apresentada com base na observação de que, na ausência de

erros, as diferenças entre os quadros de entrada e a detecção fornecida pela CNN devem

ser estritamente correlacionadas. Em outras palavras, se a imagem entre dois quadros sub-

seqüentes não mudar significativamente, a detecção também deve ser muito semelhante.

Da mesma forma, se a detecção variar consideravelmente de um quadro para outro, a ima-

gem de entrada também deve ter sido diferente. Sempre que as imagens de entrada e a

detecção de saída não se correlacionarem, é possível detectar um erro. Depois de forma-

lizar e avaliar os limiares de correlação entre-quadros e de saída, a estratégia de detecção

é implementada e validada, utilizando dados de experimentos anteriores de radiação. Ex-

plorando a eficiência intrínseca no processamento de imagens de dispositivos usados para

executar CNNs, até 80% de erros são detectados, adicionando também pouca sobrecarga.

A mesma solução de detecção de erro é então proposta para detectar falsos positivos em

execuções de CNN sem falhas. Esta estratégia também é implementada e validada, uti-

lizando anotações de valores de referência e execuções de CNN sem falhas. Para esta

aplicação, 9 % dos falsos positivos podem ser detectados de forma confiável. Uma aná-

lise mais profunda mostra que mais falsos positivos podem ser detectados, se uma certa

porcentagem de detecções incorretas for aceita.

Palavras-chave: Redes Neurais Convolucionais, Detecção de Objetos, Tolerância a Fa-

lhas, Detecção de Erros.

LIST OF ABBREVIATIONS AND ACRONYMS

CNN Convolutional Neural Network

DNN Deep Neural Network

SIMT Single Instruction Multiple Thread

SDC Silent Data Corruption

DUE Detected Unrecoverrable Error

YOLO You Only Look Once

R-CNN Region-based Convolutional Neural Network

COCO Common Objects in Context

mAP Mean Average Precision

IoU Intersection over Union

PASCAL VOC PASCAL Visual Object Classes

BB Bounding Box

RAL Rutherford Appleton Laboratory

LANSCE Los Alamos Neutron Science Center

ECC Error Correction Code

CPU Central Processing Unit

GPU Graphics Processing Unit

SSD Sum of Squared Differences

LIST OF FIGURES

Figure 3.1 Percentages of experimentally observed tolerable and critical errors in
CNNs...19

Figure 4.1 Error Detection Idea ..21

Figure 5.1 Precision and SSD calculated over the Caltech dataset in a fault-free
environment. ...26

Figure 5.2 Recall and SSD calculated over the Caltech dataset in a fault-free envi-
ronment. ..27

Figure 5.3 Precision and SSD calculated over the experimentally observed errors........29
Figure 5.4 Recall and SSD calculated over the experimentally observed errors.30
Figure 5.5 Precision and SSD calculated over the KITTI ground truth annotations.32
Figure 5.6 Recall and SSD calculated over the KITTI ground truth annotations.32
Figure 5.7 CNN Error Distribution ...34
Figure 5.8 Precision and SSD calculated over the KITTI dataset...................................35
Figure 5.9 Recall and SSD calculated over the KITTI dataset.36
Figure 5.10 Analysis of the error detections for each region. ...36

CONTENTS

1 INTRODUCTION...10

2 OBJECT DETECTION AND CONVOLUTIONAL NEURAL NETWORKS12

2.1 Object Detection..12

2.2 Metrics ...12

2.2.1 Intersection Over Union...12
2.2.2 Precision and Recall...13
2.2.3 Mean Average Precision ..13
2.3 Datasets ..13

2.3.1 Caltech Pedestrian Dataset...14
2.3.2 KITTI Vision Benchmark Suite ...14
2.4 Convolutional Neural Networks ..14

2.4.1 R-CNN ...15
2.4.2 Fast R-CNN ...15
2.4.3 Faster R-CNN ..16
2.4.4 YOLO...16
3 TRANSIENT FAULTS IN OBJECT DETECTION..17

3.1 Detected Unrecoverable Error...17

3.2 Silent Data Corruption...17

3.3 SDC Criticality ..17

3.4 Experimental Data Samples...18

4 METHODOLOGY ...20

4.1 Basic Idea...20

4.2 Implementation Details ..21

4.3 Overhead..23

5 RESULTS...25

5.1 Validation for Detection of Errors from Radiation..25

5.2 Detection of Errors from Radiation ..28

5.3 Validation for Detection of Errors in Fault-Free Executions..............................31

5.3.1 CNN Error Distribution ...33
5.4 Detection of Errors in Fault-Free Executions ..33

6 CONCLUSION ...38

REFERENCES...39

10

1 INTRODUCTION

Autonomous vehicles are about to change the transportation systems, the auto-

motive and military markets, and burst deep space exploration. However, while au-

tonomous cars are expected to reduce of two-three orders of magnitude the number of ac-

cidents (SAXENA, 2016; FERNANDES et al., 2016), current self-driving systems are not

yet ready to be employed in large-scale. One of the main issues related with the software

and hardware systems for autonomous vehicles is to qualify them for the strict ISO26262

reliability requirements (DONGARRA; MEUER; STROHMAIER, 2015). In particular,

object detection, a critical task in autonomous vehicles, has been shown to be vulnerable

to transient faults (FERNANDES et al., 2016) and to be responsible for the majority of

reported accidents in current self-driving cars prototypes (BANERJEE et al., 2018). Also,

false positives were reported as the cause of the largest problems in advanced-driver as-

sistance systems, as they may cause the system to apply the brakes needlessly (HUVAL et

al., 2015). Intuitively, when the system detects non-existent objects or doesn’t detect exis-

tent objects, it will behave differently from expected. The vehicle may stop unnecessarily

or, worse, it may drive into something or someone, causing dangerous accidents.

Today’s object detection is performed through Convolutional Neural Networks, a

new class of Deep Neural Networks that extract features to detect and classify objects.

Convolution, combined with a very deep topology, makes CNNs significantly different

from traditional neural networks. Previous studies in the late 1990’s that showed inher-

ent reliability for Neural Networks may not, then, be applied to current object detection

frameworks. Additionally, the devices required to satisfy to the high computational de-

mand of CNNs are built with parallel or heterogeneous architectures. These architectures

have been shown to have some inherent vulnerabilities as they tend to propagate a single

fault to multiple computing units (RECH et al., 2013; OLIVEIRA et al., 2014), invalidat-

ing the single-fault model used in the past.

The high number of layers and the high computational demand of each layer im-

pose the use of parallel and performant devices to execute CNN in real-time. This re-

quirements makes the design of fault-tolerant techniques for CNNs extremely challeng-

ing for two main reasons: (1) traditional error detection solutions based on replication

or redundancy are inapplicable because of their high computing or cost overhead and (2)

parallel architectures have been found to spread a single fault to multiple computing el-

ements (OLIVEIRA et al., 2017), significantly modifying the fault model and, then, the

11

impact of faults in CNN execution, increasing the need of error detection strategies.

We want to use all the information at hand when detecting the object to propose an

efficient and effective error detection solution. CNNs process each frame independently of

other frames, but in reality, each frame has a temporal correlation with the preceding one.

We found that not only the input frames but also the output from the CNN, containing the

detections made, correlate with each other. We use both the input and output information

to detect errors in a frame as it is processed. After each frame is processed, we measure the

difference between its resulting Bounding Boxes (BB, i.e., potential object) from the CNN

and the resulting Bounding Boxes from the previous frame using precision and recall

scores. We also measure the difference between the input image and the preceding image

using the Sum of Squared Differences method. If the system is functioning correctly,

drastic changes in the output detection are justified by changes in the input image. If that

is not the case, we detect an error.

The same idea is applied firstly with the goal of detecting radiation induced errrors

and secondly with the goal of detecting false posives in fault-free CNN executions.

12

2 OBJECT DETECTION AND CONVOLUTIONAL NEURAL NETWORKS

2.1 Object Detection

Object Detection is the act of processing images and detecting the bounding box

(position and size) of an object and determining its class. There are many applications for

it: character detection and recognition, face detection, self driving cars and many more.

The classes detected vary depending on the application and environment. For example,

self driving cars will need to detect most objects on the street, like other cars, pedestrians,

cyclists, horses and more, while face detection applications only need to detect human

faces.

Many different algorithms were created to try and detect objects reliably. To mea-

sure their effectiveness, many datasets were made, with different classes, formats and

technologies. These datasets provide a large amount of images or videos and descriptions

of the objects (usually position, size and class) so that the algorithms can be trained and

tested. Some datasets, like Common Objects in Context (COCO), are very broad, and

present many different classes to detect. Other, like Caltech Pedestrian Dataset, focus

only on urban videos, and only provide annotations for the pedestrian class.

2.2 Metrics

To compare the algorithm’s detection with the ground truth provided by the dataset,

it is necessary to use some specific metrics, the most common one being mean Average

Precision (mAP). To calculate the mAP, it is necessary to use the Intersection over Union

and Precision and Recall scores.

2.2.1 Intersection Over Union

Intersection over Union (IoU) is the most common way to quantify the similarities

between two bounding boxes. Its value is equal to the area of the two bounding boxes’

intersection divided by their union. Thus, perfectly matching bounding boxes will have

a score equal to 1 (or 100%). In the literature, it is common to consider any IoU value

above 0.5 as a succesful detection (FAWCETT, 2006).

13

2.2.2 Precision and Recall

Succesful detections are classified as True Positives, while incorrect detections are

classified as False Positives and undetected objects represent a False Negative. The Pre-

cision score will be the fraction of the detections that are correct, or True Positives/(True

Positives + False Positives). The Recall score will be the fraction of objects that were

correctly detected, or True Positives/(True Positives + False Negatives).

In object detection, the precision represents how good the detected bounding boxes

are, i. e., the ratio between the amount of objects correctly detected and the total amount of

detections. The recall represents how complete the detection was, i. e., the ratio between

the amount of objects correctly detected and the total amount of objects.

2.2.3 Mean Average Precision

Most algorithms can adjust a detection threshold and make a trade-off between

Precision and Recall. Lower detection thresholds will provide a higher recall as more ob-

jects are detected, but will also provide a lower precision, as false positives are potentially

added. It is possible, then, to plot a precision-recall curve, where the Precision is a func-

tion of the Recall. The Average Precision will be the total area under the Precision-Recall

curve. To get the mAP, the mean from the Average Precision from the complete dataset is

calculated.

2.3 Datasets

There is a wide variety of datasets with ground truth annotations for object de-

tection available. Since this project uses temporal correlation, the first key factor is that

the dataset used must be continuous (e.g., A video). A consideration was also made in

relation to the relevance of possible practical uses of the project’s method. Since self-

driving cars are the main motivation, datasets that contain images from the perspective of

a camera in a moving car were selected.

14

2.3.1 Caltech Pedestrian Dataset

The Caltech Pedestrian Dataset consists of approximately 10 hours of video, with

resolution 640x480 and frame rate 30Hz. It contains multiple segments of video taken

from a moving vehicle driving in a urban environment. Ground-truth annotations for

pedestrians in approximately 250,000 frames were made, totalling 350,000 bounding

boxes and 2,300 unique pedestrians.

2.3.2 KITTI Vision Benchmark Suite

The KITTI Vision Benchmark Suite consists of several separate datasets with dif-

ferent characteristics. These datasets contain data gathered by an autonomous driving

platform of the author’s property, which is equipped with two high-resolution color and

grayscale video cameras, a Velodyne laser scanner and a GPS localization system.

In this project, the only dataset from the KITTI Vision Benchmark Suite used was

the object tracking benchmark from 2012, which consists of 50 sequences of 10Hz videos

with ground-truth annotations for 8 different classes. It also contains stereo, laser and

map information, as well as annotations for 3D bounding boxes. These features are not

considered in the scope of this project.

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of Deep Neural Networks

(DNNs) that efficiently performs object classification and detection. CNNs are exten-

sively used in today’s self-driving vehicles to detect objects in real-time (REDMON et

al., 2015). The main difference from CNNs in relation to other DNNs is the presence of

Convolutional layers in their design. Normally, in fully connected layers, each neuron

has connections to the whole input matrix. In contrast, convolutional layers’ neurons only

have connections to a small area of the input matrix each. This is done by using a set

of learnable filters as the layers’ weights. The filters are then convolved with the input

during the forward pass, creating a spatial dependency between the input and the output,

which is absent from fully connected layers. It is worth noting that convolution can be

effectively mapped to matrix multiplication, making CNNs very efficient when executed

15

on GPUs.

To evaluate the efficacy of the proposed errors detection strategy, two modern

frameworks are considered: You Only Look Once (YOLO) (REDMON et al., 2015) and

Faster Region-based Convolutional Neural Network (Faster R-CNN) (REN et al., 2015),

both sharing the main characteristic of a generic CNN.

2.4.1 R-CNN

Region-based Convolutional Network (R-CNN) is the predecessor of Fast R-CNN,

which is itself the predecessor of Faster R-CNN. R-CNN is an object detection system that

consists of three modules. The first module uses the selective search method to generate

category-independent region proposals. The second module is a CNN that processes the

proposed regions, generating a fixed-lenght feature vector for each of them. The third

module a set of support-vector machines that will classify each region based on the fea-

tures extracted from the CNN.

R-CNN was very innovative and outperformed all popular object detection meth-

ods at the time of its creation. On the object detection dataset PASCAL Visual Object

Classes (PASCAL VOC) 2012, it achieved a mAP of 53.3%, an improvement of more

than 30% relative to the previous best result.

2.4.2 Fast R-CNN

Fast R-CNN advanced the state-of-the-art by using a similar idea to the existing

R-CNN. The main difference is that the neural network processes the whole image at

once to generate a feature map, instead of multiple regions separately. Then, a region of

interest pooling layer converts these feature maps into fixed-size feature maps, which are

then mapped to feature vector by fully connected layers. After one more fully connected

layer, the softmax probabilities and bounding-box regressions are generated.

Fast R-CNN improved on R-CNN by achieving higher mAP on PASCAL VOC

2012 (65.7%), 9 times faster training and 213 times faster testing.

16

2.4.3 Faster R-CNN

Faster R-CNN introduces a Region Proposal Network (RPN), an alternative to the

region proposal algorithm from Fast R-CNN. An RPN is convolutional network that can

be trained to generate region proposals used by Fast R-CNN. RPN and Fast R-CNN can

share convolutional features, reducing drastically the processing time of the whole system.

Faster R-CNN’s architecture is composed of 13 convolutional layers, shared between the

RPN and the Fast R-CNN, followed by 3 fully connected layers.

Faster R-CNN achieved a frame rate of 5fps and mAP of 70.4% on PASCAL VOC

2012.

2.4.4 YOLO

You Only Look Once does not use region proposal algorithms at all. Instead, it

processes the whole image only once (hence the name of the CNN). The system divides

the image in an SxS grid, and each grid cell predicts a certain number of bounding boxes,

their class probabilities and confidence. YOLO’s architecture is composed of 24 convo-

lutional layers followed by 2 fully connected layers.

YOLO achieved a lower mAP score compared to other state-of-the-art systems,reaching

only 63,4% on PASCAL VOC 2007. Still, YOLO is very relevant as it has much higher

speed than its competitors, achieving a frame rate of 45fps.

17

3 TRANSIENT FAULTS IN OBJECT DETECTION

Atmospheric neutrons, ionizing particles, voltage/temperature/process variations,

and other interferences may perturb a transistor’s state, generating bit-flips in memory or

current spikes in logic circuits that, if latched, lead to an error. A transient error leads to:

(1) no effect on the program output (i.e., the fault is masked, or the corrupted data is not

used), (2) a Detected Unrecoverable Error (DUE), or (3) a Silent Data Corruption (SDC).

Radiation-induced events are particularly critical as they have been found to dominate

modern devices error rate (BAUMANN, 2005).

3.1 Detected Unrecoverable Error

DUEs are errors that keep the system from running in a normal state. Usually, this

kind of error leads to a program crash or system hang. Most times, information will be

lost, and the program will have to be re-run.

3.2 Silent Data Corruption

SDCs are errors where the program continues to run normally, but the output of

the program is incorrect. In the case of Object Detection CNNs, where the output is a list

of bounding boxes with their respective class probabilities, SDCs can cause many kinds

of incorrectnesses on the output, such as missing bounding boxes, extra bounding boxes

or bounding boxes with incorrect size and position.

3.3 SDC Criticality

SDCs can be considered critical or not depending on the practical consequences of

the error caused. A critical error is an error that affects the output in a significant manner.

A non-critical error is an error that affect unimportant parts of the output, making it in-

significant. Examples of possibly non-critical errors are modifications in Least Significant

Bits in the output or changes in unused parts of the output.

Not all the SDCs are critical for object detection. SDCs that modify the probability

in such a way that does not impact an object’s rank or changes the coordinates of a low-

18

probability bounding box are not considered critical. Additionally, an SDC that changes

the bounding box coordinates but still allows a sufficiently good detection can also be

considered as tolerable. According to Fawcett et al. at, detection is useful when the BB

covers at least 50% of the object area.

3.4 Experimental Data Samples

To justify and validate the proposed error detection strategy, a set of errors are

used. These errors were observed in recently performed accelerated neutron beam ex-

periments at the ChipIR facility of the Rutherford Appleton Laboratory (RAL) in Didcot,

UK, and at the Los Alamos Neutron Science Center (LANSCE) facility. The experimen-

tal data has been presented in (Santos et al., 2018) and is made available by authors in a

public repository (UFRGSFCAROL, 2017). The experimental nature of data ensures that

the effectiveness of the proposed object detection strategy is not biased on a specific or

simplified error model. Thanks to the accelerated factor of neutron beams, the available

data is representative of more than 110,000 years of natural exposure, ensuring a wide

sample of the possible neutron effects on CNN execution.

The available data refer to YOLO and Faster RCNN executed on three NVIDIA

GPUs architectures, Tesla K40, Tegra X1, and Titan X. It is also possible to compare data

obtained with Error Correction Code (ECC) enabled and disabled for the Tesla K40. The

fact of considering different architectures, different transistor layout, and ECC, widens

the applicability of this project’s strategy and increases the confidence in its validation.

The Tesla K40 supports the Kepler ISA and is fabricated in 28nm standard CMOS

technology. The register files shared memory, and caches are protected by ECC, while the

read-only data cache is parity protected. We can then compare data obtained with ECC

enabled and disabled for the Tesla K40. The Tegra X1 is an embedded version of the

Maxwell GPU, and includes an ARM quad-core CPU. It is fabricated in 20nm standard

CMOS technology. The third microarchitecture Titan X is designed with the Pascal

architecture, in 16nm FinFET technology. The fact of considering different architectures,

different transistor layout, and ECC, widen the applicability of our strategy and increases

the confidence in its validation.

Figure 3.1 shows the percentage of critical errors (i.e., detection is significantly

modified) and tolerable errors (i.e., detection is sufficiently good) observed during the

radiation experiments. The comparison of the error rates between devices and algorithms

19

Figure 3.1: Percentages of experimentally observed tolerable and critical errors in CNNs.

Source: The Author

is presented in (Santos et al., 2018).

For all the tested configurations but the Faster R-CNN executed on the Tegra X1,

a significant number of the radiation-induced errors that propagate to the output are toler-

able. The percentage of critical SDCs is much lower for Faster R-CNN than for YOLO,

independent of the architecture. For YOLO, the portion of critical errors is 8% for an

unhardened Tesla K40, 61% for the Tesla K40 with ECC ON, and 18% on the Titan X.

For Faster R-CNN, the critical SDCs are 5% for an unhardened Tesla K40 and 25% for

the Tesla K40 with ECC ON. On the Titan X, for Faster R-CNN, none of the hundreds

of observed SDCs had an impact on detection. Faster R-CNN is less prone to critical

errors as it performs detections combining several overlapping regions and it describes

the object more reliably than YOLO (details in (Santos et al., 2018)). Tegra X1 has only

critical errors for Faster R-CNN as the complexity of the CNN makes it necessary to over-

load the small Tegra X1, making any error very critical. Finally, a valuable insight that

derives from the comparison of Tesla K40 with ECC ON and OFF is that ECC increases

the percentage of critical errors (but eventually reduces the overall number of errors). Un-

fortunately, ECC is not effective in masking critical errors as these errors are typically

caused by faults in unprotected resources like internal queues, scheduler, etc. (detailed

in (Santos et al., 2018)). It is not safe to rely on ECC to improve the reliability of CNN.

Novel and smart error detection strategies are necessary.

20

4 METHODOLOGY

4.1 Basic Idea

CNNs analyze each frame as a new set of data, without using any correlation with

the previously analyzed frames. It is possible to take advantage of the strong correlation

between frames and the correspondent detection to identify possible execution errors and

incorrect detections. The idea of this project is based on the fact that CNNs are determin-

istic systems, that is, they will always have the same output if given the same input. If two

consecutive frames from a video are exactly the same, the output will also be exactly the

same. A necessary condition for object detection to be different in two images is that the

images themselves are different. Of course, the scenario where both images are exactly

the same is unrealistic in a practical implementation of object detection. However, it is

still possible to claim that if nothing moves on a video, the frames will be very similar

and, then, the outputs of the CNN will also be very similar. On the other hand, if all the

objects in a scene move a lot, both the detection and the input image will change signifi-

cantly. The goal is to demonstrate that the correlation between the input variation and the

output variation can be fruitfully exploited to detect errors. In other words, if no object

in the scene moves but the output of CNN is entirely different from the previous output,

there is a very high chance that an error has occurred during detection.

The difference between two images is quantified by the amount of change in the

color and the shape of any form present in it. As for Bounding Boxes, the differences in

their sizes and positions are considered. In this project, the algorithm used to compare

images will be the Sum of Squared Differences (SSD), a standard image comparison

algorithm. This algorithm compares two images pixel per pixel. Every color and shape

difference between the two images will be sensed by the SSD. While there may be other

image processing algorithms more suitable than SSD, SSD was chosen just to have a

preliminary validate the proposed idea. The efficacy comparison of different algorithms

is left as future work. As for CNN, SSD (and most image processing algorithms) exploits

the GPU Single Instruction, Multiple Threads (SIMT) architecture very efficiently. As

such, SSD will execute very efficiently in the device that runs the CNN, guaranteeing low

computational overhead of this strategy. To compare the detection of a frame with the

detection computed for the previous frame, the Precision and Recall is measured between

the BBs of the two outputs. With these metrics, it is possible to identify if the detected

21

Figure 4.1: Error Detection Idea

Source: The Author

objects have the same area, shape, and position as in the last computed frame and if some

boxes are absent, moved or even if there are newly detected objects in the processed

image.

Figure 4.1 illustrates the basic idea for this method. Using the ideas mentioned

above applied to the CNN executions on the Caltech dataset, it was found out that some

combinations of variations in the input and the output can never occur. Then, data from

previous radiation experiments can be used to see which errors can be identified and

which ones cannot. In a second part of the project, the same basic ideas are applied to

the KITTI dataset ground truth annotations, finding out the combinations that could never

occur in a perfect detection scenario. Then, data from fault-free CNN executions on the

KITTI dataset are analyzed, with the main goal of detecting false positives generated by

the CNN.

4.2 Implementation Details

YOLO and Faster R-CNN are the two CNNs considered. YOLO is designed to

detect objects in real time, while Faster R-CNN is a high precision framework created

using Python and cuDNN libraries. They process images given as input and return a

22

list of BBs and the respective confidence associated with each of them as output. Each

frame is examined separately. It is worth noting that, since the frames are treated in a

chronological order, whenever a frame is processed, the output from the preceding frame

is already available.

Firstly, the difference between the current frame and the previous one is found

using SSD. Since a big part of the image usually does not have relevant objects, only the

frame sub-regions contained in the union of the BBs detected in the current and previous

frame are examined. This is necessary to avoid differences in the landscape like clouds

moving, billboards flashing, etc., that do not participate in object detection to bias the

comparison. The union of the BBs is considered, as it is not known a priori which of

the two detections contains an error (if any). Then, SSD algorithm is applied in these

sub-images and they are normalized according to the BBs size.

Secondly, the outputs of the CNN from the current and previous frames are com-

pared. Both the precision and recall are calculated, comparing the BBs detected in the

current frame with the BBs in the previously computed frame. In the image processing

community, a threshold of IoU >= 0.5 is used to trigger the reduction of precision or recall.

In other words, if at least 50% of the object area is detected, the detection is considered

successful. Setting a simple threshold to precision and recall function is not enough for

the purposes of this project, as detecting smaller movements is needed as well. Several

different thresholds were chosen and weighted to refine the results. When analyzing de-

tections that remain the same across two frames, the expectation is that the input images

also to remain the same. Similarly, for worse Bounding Box matches, the input images

should show more differences.

p =
∑

i∈I

prec(i)

|I|

Here, p is the final precision value used for a detection, considering the range of

detection thresholds. I is the list of detection thresholds utilized. prec(i) is the precision

calculated for a detection, with an detection threshold i. The same calculation is used for

the recall.

For the experiments on the Caltech dataset, the detection thresholds are I =

(0.5, 0.5 + k, 0.5 + 2k, · · · , 1), with k being the smallest step possible. Hence, all thresh-

olds from IoU >= 0.5, the standard detection threshold, to IoU >= 1, the threshold where

the boxes match perfectly, are considered. A linear function was used to simulate these

23

thresholds, simplifying the implementation of the calculations. Since the KIITI dataset

has a significantly lower frame rate, the detection thresholds considered are I = (0.3, 0.3+

k, 0.3 + 2k, · · · , 1) for the experiments utilizing it. This adjustment was made to account

for the fact that objects tend to move greater distances from frame to frame when there is

a lower frame rate (KITTI has a 10Hz frame rate, compared to Caltech’s 30Hz). With a

lower threshold, it is possible to detect bigger movements, as bounding box matches will

be facilitated.

Some Neural Network ’glitches’ were also observed in some detections, detecting

objects that are not there. Usually, when this happens, the CNN outputs a confidence

value that is above the detection thresholds but is lower than the average detection. To

account for this, the Bounding Box matches are weighted according to their confidence,

making the error detection method more robust.

prec(i) =

∑
c∈T c

∑
c∈T c+

∑
c∈F c

Here, T is the list of confidences for all the detections considered true positives

in the bounding box comparison with the given detection threshold i. F is the list of

confidences considered false positives. For the recall calculations, the only difference is

the consideration of false negatives instead os false positives.

Note that the input and output comparisons can be made in parallel, as they do not

depend on each other.

4.3 Overhead

In real-time applications, the execution time of an algorithm is crucial to its correct

and optimized functioning. Even though researchers suggest there are ways to reduce

CNN computational costs, it is still an issue for some application requirements [15]. This

method adds very little overhead to a complete system. A simple CPU-only test was

made, using YOLO’s CPU version and a CPU version of our algorithm. In this test,

the overhead measured was less than 5%. The computational bottleneck of the strategy

is the image comparison, which can be efficiently computed with a single instruction in

SIMT architectures used in GPUs, potentially reducing the overhead even more when

transitioning to a GPU version. The whole images are also not compared, but just the

regions covered by the BBs. The time complexity of this comparison is linear (i.e., O(n))

24

relative to the BB sizes. This means that the method also scales well for higher resolution

images.

25

5 RESULTS

5.1 Validation for Detection of Errors from Radiation

To validate the method, the CNN execution is first considered in a fault-free en-

vironment. Each frame and the correspondent object detection are compared with the

previous one. The goal is to identify a correlation between the difference in two consecu-

tive frames and the correspondent difference between the detected Bounding Boxes in the

two images. If some unlikely or impossible correlations are found in the whole dataset, it

will be used to identify possible errors during operation. The dataset used was the Caltech

dataset.

To visualize the correlation between the differences of the input frames with the

differences in the correspondent detection, the SSD of two consecutive input frames is

plotted against the precision and, separately, the recall of the detected Bbs.

Figure 5.1 and Figure 5.2 show the correlation between the SSD of two consec-

utive frames with the precision and recall resulting from the comparison of the BBs de-

tected in the two frames, respectively. Each point in the figures represents the correlation

between the SSD of two consecutive frames and the precision (Figure 5.1) or recall (Fig-

ure 5.2) of the correspondent detection. A low SSD means that the two input frames are

incredibly similar. A low precision indicates that a significant number of new objects

were detected in the current frame compared with the previous frame while a low recall

indicates that a high number of objects disappeared in the current frame compared with

the previous frame. When precision and recall are close to 1, it means that the number,

shape, and position of the detected objects in the current frame are incredibly similar

to the results for the previous frame. The color of the points represents the level of the

detection/classification confidence, being black for high confidence (higher than 0.45),

light blue for medium confidence (between 0.35 and 0.45) and yellow for low confidence

(lower than 0.35, but higher than 0.25, the CNN’s detection threshold). Higher confidence

intervals showed no significantly different behavior and were, for this reason, unified in

the graph.

Even though Figure 5.1 and Figure 5.2 seem similar, it is important to notice that

they represent two different (while correlated) concepts. Precision and recall were plotted

separately to have a deeper analysis, considering errors that lead the CNN to miss objects

(recall) or false positives (precision). Additionally, the precision and recall values can be

26

Figure 5.1: Precision and SSD calculated over the Caltech dataset in a fault-free environ-
ment.

Source: The Author

27

Figure 5.2: Recall and SSD calculated over the Caltech dataset in a fault-free environ-
ment.

Source: The Author

28

completely different in some specific frame pairs. Thus, points in the same position of

Figure 5.1 and Figure 5.2 could be the results of a completely different pair of frames.

Figure 5.1 and Figure 5.2 show that a significant number of images are very similar

to the previous image, resulting in a small SSD value. More than 57% of frames have a

SSD lower than 1% with respect to the previous frame. Additionally, it is noticeable that

when two consecutive frames show very different BBs (low precision or low recall), the

input image comparison tends to also be different, especially for detections with greater

confidence. As expected, it is possible to find some regions in both figures in which, in

the absence of errors, it is improbable to have SSD - precision or recall correlation. In

Figure 5.1 and Figure 5.2, the regions where two input images are very similar, but the

output detection is entirely different were highlighted. Those unlikely correlations could

be used to detect errors.

Two regions were selected, a bigger (and, thus, more aggressive) and a smaller

one. It is worth noting that there are 18 different frame pairs fall into the bigger region

(light yellow). This actually won’t cause a correct detection to be detected as erroneous.

Only 2 of the 18 points in the regions appears in both the precision and the recall graphs.

Hence, the strategy will not trigger error detection for the 16 points that fall in the de-

tection region only for precision and recall. The two points that are inside the detection

regions for both precision and recall will trigger error detection. Nevertheless, looking at

the frames and correspondent detection of the two points we found that they are false posi-

tives: the CNN detects an object which does not exist (thus reducing precision) and, in the

next frame, the (inexistent) object disappears, (reducing recall). While those two points

are not radiation-induced errors, they are false positives, and their detection is likely to

improve the reliability of the CNN. Additionally, a less aggressive possibility is shown by

the smaller region (orange), which contains no points that would be identified as an error.

5.2 Detection of Errors from Radiation

The analysis performed on the error-free dataset execution suggests that a frame

pair that falls in the highlighted regions in both Figure 5.1 and Figure 5.2 can be identified

as an anomalous behavior, possibly caused by an error. To test our method, we considered

the errors observed during previously performed radiation experiment campaigns. All

data is publicly available on a public Github repository [14]. It is worth noting that having

experimental data is essential to prove the effectiveness of the proposed strategy without

29

Figure 5.3: Precision and SSD calculated over the experimentally observed errors.

Source: The Author

being biased on the fault model.

The experimental data graphs (Figures 5.3 and 5.4) show the frames-detection

correlation as explained in Section 6.1, but instead of comparing two error-free detection,

the comparison was made between a frame with erroneous output and its preceding frame.

The observed errors were separated based on the tested architecture and the criticality of

the error. The colors on these graphs represent the architecture and criticality of the error,

with red, black and purple being a critical error for a specific architecture and green being

a tolerable error (for all architectures). We recall that a tolerable error is an error that does

not impact detection and, thus, will not modify an autonomous vehicle behavior, while

a critical error is an error that affects the detection and can change the vehicle behavior,

potentially causing accidents.

Figures 5.3 and 5.4 are very similar to Figures 5.1 and 5.2. It is clear to see that

most tolerable errors are distributed in the graph in a very similar way to the error-free

dataset. These errors cannot be detected by this method, as they do not show different

behavior when compared to error-free data. However, they do not impact detection and,

thus, their detection is less important. Critical errors, though, tend to create significant

differences in the output detections, even when the input images are very similar. As we

30

Figure 5.4: Recall and SSD calculated over the experimentally observed errors.

Source: The Author

can see, most critical errors are located in the highlighted anomalous regions. All the

critical errors that are found inside these regions in one graph are also located inside this

region in the other graph, so we can use the intersection of the errors detected in the pre-

cision and recall graphs to filter our results and quickly identify them. The reported data

shows that a sufficient condition for errors to be critical is that detection precision/recall

does not correlate well with the input images SSD.

Using this method, 80% of the critical errors were detected with the more ag-

gressive strategy (light yellow region) or 68% with the less aggressive strategy (orange

region). The critical errors that went undetected consisted mostly of detections where

some Bounding Boxes are correct or almost correct, resulting in higher overall precision

and recall score for the whole image. Even though the tested architectures do have dif-

ferent error rates and critical error rates, the critical errors produced behaved similarly for

every architecture. All architectures produced detectable critical errors as well as critical

errors that went undetected, showing no significantly different behavior relative to the

method.

31

5.3 Validation for Detection of Errors in Fault-Free Executions

To validate the method on fault-free executions, a similar approach to the previous

validation is made. The key difference is that the ground truth annotations from the dataset

are used, instead of CNN executions. Each frame and its corresponding ground truth

annotations are compared with the previous one, with the goal of identifying a correlation

between their differences. Again, if an unlikely or impossible correlation is found in the

dataset, it will be used to identify errors later. The dataset used was the KITTI dataset.

Figure 5.5 and Figure 5.6 show the correlation between the SSD of two consec-

utive frames with the precision and recall resulting from the comparison of the bounding

boxes from the ground truth annotations from both frames. Each point in the figures

represents the correlation between the SSD of two consecutive frames and the precision

(Figure 5.5) or recall (Figure 5.6) of the correspondent ground truth annotation. A low

SSD means that the two input frames are incredibly similar. A low precision indicates

that the current frame contains a significant number of new objects compared with the

previous frame while a low recall indicates that a high number of objects disappeared in

the current frame compared with the previous frame. When precision and recall are close

to 1, it means that the number, shape, and position of the objects in the current frame are

incredibly similar to the previous frame.

Similar to Figures 5.1 and 5.2, Figures 5.5 and 5.6 represent precision and recall

separately to have a deeper analysis. Even considering the ground truth annotations to

be a perfect representation of the objects present in each frame, some frame pairs have a

low amount of objects, which may lead to larger differences between the precision and

recall scores. Thus, points in the same position of Figure 5.5 and Figure 5.6 could be the

results of a completely different pair of frames.

It is noticeable that when two consecutive frames show very different BBs (low

precision or low recall), the input image comparison tends to also be different. Also,

most frame pairs with low precision scores do not have low recall scores. It is possible

to find some regions in both figures in which, in the absence of errors, it is improbable to

have SSD - precision or recall correlation. Similar to Figure 5.1 and Figure 5.2, regions

which correspond to unlikely correlations were highlighted. These regions could be used

to detect incorrect CNN detections.

Three regions were selected. Region 1 is the smaller region (dark blue in the

graph), a conservative detection threshold. Region 3 is the bigger region (light blue in

32

Figure 5.5: Precision and SSD calculated over the KITTI ground truth annotations.

Source: The Author

Figure 5.6: Recall and SSD calculated over the KITTI ground truth annotations.

Source: The Author

33

the graph), a very aggressive detection threshold. Region 2 is the middle-ground (blue in

the graph). There are several points that fall into all three regions, but only the ones that

fall in both graphs will be cause a error detection. With this strategy, Region 1 does not

trigger any error detection in the ground truth, which is the ideal scenario. 0.2% of the

frame pairs triggered a wrong detection on Region 2 and 3.5% of the frame pairs triggered

a wrong detection on Region 3 (Figure 5.7).

5.3.1 CNN Error Distribution

Since the main goal of the application of this method in fault-free executions is

to detect false positives, an analysis of the fault-free CNN detections is made. For this

analysis, the precision and recall were calculated for the CNN detections in relation to

the dataset, with a detection threshold of IoU >= 0.5. Detections with precision < 1 were

labeled as false positives, since the CNN detected an object that is not present in the

image. The rest of the detections were categorized according to the recall score. Lower

recall scores indicate a high amount of false negatives in relation to the total amount of

objects in the image. Higher recall scores indicate a lower amount of false negatives, since

most, if not all, objects were detected. It is worth noting that very few image detections

had a precision and recall scores of 1.

Images which generated no false positives were categorized in three groups ac-

cording to the proportion of false negatives (FN). Since the error detection method does

not make any distinction between error types, it is expected that detections with a high

amount of false negatives also trigger the error detection.

Figure 6 shows that 24% of the detections contained false positives, 58% missed

more than 50% of the objects (FN>50%), 8% missed between 20% and 50% of the objects

(50%>FN>20%) and 10% missed less than 20% of the objects (FN<20%).

5.4 Detection of Errors in Fault-Free Executions

The analysis performed on the ground truth annotations suggests that a frame pair

that falls in the highlighted regions in both Figure 5.5 and Figure 5.6 can be identified as

an anomalous or, at the very least, uncommon behavior. To test the method, the CNN was

run with the same dataset as the ground truth annotations, in a fault-free environment.

34

Figure 5.7: CNN Error Distribution

Source: The Author

The experimental data graphs (Figures 5.8 and 5.9) show the frames-detection

correlation, similar to Figures 5.3 and 5.4, but this time with falut-free CNN detections

and utilizing the detection regions obtained in the ground truth validation. The detections

were separated based on the previous CNN error distribution analysis. The colors on

these graphs represent the CNN detection categories, with black being detections that

contained at least one false positive, red being detections with more than 50% of false

negatives, yellow being between 50% and 20% and green being less than 20%.

The graphs show that detections that contain a lower amount of false negatives and

no false positives (green and yellow points) tend to behave in a very similar form to the

ground truth annotations. Very few of them are located inside the error detection regions.

Detections that contain false positives or a higher amount of false negatives do appear in

a significant amount inside the detection regions.

Figure 5.10 shows an analysis of the error detections for each region. Any point

on Figures 5.8 and 5.9 triggers the error detection if, and only if, it falls into the respective

region in both precision and recall graphs.

Region 1 detected 9% of the false positives and 2.2% of the frames with higher

false negatives, and did not detect any of the frames with lower false negatives. Thus,

Region 1 was able to detect a significant amount of false positives, and even though it

detected some frames that did not contain false positives, these frames generated a high

amount of false negatives and their detection would probably improve the reliability of

the CNN.

35

Figure 5.8: Precision and SSD calculated over the KITTI dataset.

Source: The Author

36

Figure 5.9: Recall and SSD calculated over the KITTI dataset.

Source: The Author

Figure 5.10: Analysis of the error detections for each region.

Source: The Author

37

Region 2 detected 14% of the false positives and 5% of the frames with higher

false negatives, but it also detected 2% of the frames in each of the other two categories.

Even though it did detect more false positives than Region 1, the detection of frames that

did not generate false positives or a high amount of false negatives makes this region less

precise.

Finally, Region 3 detected 20% of the false positives and 11% of the frames with

higher false negatives, but it also detected a much higher amount of the frames of the other

two categories (8% and 9%) when compared to Region 2. It still has a higher density of

false positives when compared to the whole dataset, but it is considerably less precise than

Region 2.

38

6 CONCLUSION

In this project, an efficient detection method for radiation induced errors in object

detection was presented, based on the spatio-temporal correlation from any two consecu-

tive frames and their respective detected objects. The Caltech dataset was analyzed and

the method succeeded in identifying unlikely frames-detection correlations in a fault-free

environment. Whenever a discrepancy was found between the comparison of subsequent

input images and their respective detected objects, an error was detected. The method was

applied to radiation experimental data, and shows that most critical errors are detectable,

validating the effectiveness of the proposed error detection strategy.

The method was also presented as a false positive detector for object detection

CNNs. The KITTI dataset was analyzed and the method succeeded in identifying unlikely

frame-bounding box correlations in the ground truth annotations. In this application, the

method was not as efficient, but it did succeed in detecting a significant amount of false

positives. A deeper analysis showed that it is possible to detect a higher number of false

positives if a certain percentage of wrong detections are acceptable.

39

REFERENCES

BANERJEE, S. S. et al. Hands off the wheel in autonomous vehicles?: A systems
perspective on over a million miles of field data. In: 2018 48th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN). [S.l.: s.n.],
2018. p. 586–597. ISSN 2158-3927.

BAUMANN, R. Radiation-induced soft errors in advanced semiconductor technologies.
Device and Materials Reliability, IEEE Transactions on, v. 5, n. 3, p. 305–316, Sept
2005. ISSN 1530-4388.

DONGARRA, J.; MEUER, H.; STROHMAIER, E. ISO26262 Standard. 2015.
Available from Internet: <https://www.iso.org/obp/ui/\#iso:std:iso:26262:-1:ed-1:v1:
en>.

FAWCETT, T. An introduction to roc analysis. Pattern recognition letters, Elsevier,
v. 27, n. 8, p. 861–874, 2006.

FERNANDES, F. et al. Evaluation of histogram of oriented gradients soft errors
criticality for automotive applications. ACM Trans. Archit. Code Optim., ACM, New
York, NY, USA, v. 13, n. 4, p. 38:1–38:25, nov. 2016. ISSN 1544-3566. Available from
Internet: <http://doi.acm.org/10.1145/2998573>.

HUVAL, B. et al. An empirical evaluation of deep learning on highway driving. arXiv

preprint arXiv:1504.01716, 2015.

OLIVEIRA, D. et al. Radiation-Induced Error Criticality in Modern HPC Parallel
Accelerators. In: ACM. Proceedings of 21st IEEE Symp. on High Performance

Computer Architecture (HPCA). [S.l.], 2017.

OLIVEIRA, D. et al. Modern gpus radiation sensitivity evaluation and mitigation through
duplication with comparison. Nuclear Science, IEEE Transactions on, v. 61, n. 6, p.
3115–3122, Dec 2014. ISSN 0018-9499.

RECH, P. et al. Threads distribution effects on graphics processing units neutron
sensitivity. Nuclear Science, IEEE Transactions on, v. 60, n. 6, p. 4220–4225, Dec
2013. ISSN 0018-9499.

REDMON, J. et al. You only look once: Unified, real-time object detection. CoRR,
abs/1506.02640, 2015. Available from Internet: <http://arxiv.org/abs/1506.02640>.

REN, S. et al. Faster R-CNN: Towards real-time object detection with region proposal
networks. In: Advances in Neural Information Processing Systems (NIPS). [S.l.:
s.n.], 2015.

Santos, F. F. d. et al. Analyzing and increasing the reliability of convolutional neural
networks on gpus. IEEE Transactions on Reliability, p. 1–15, 2018. ISSN 0018-9529.

SAXENA, N. R. Autonomous Car is the New Driver for Resilient Computing and
Design-for-Test. In: Silicon Errors in Logic - System Effects (SELSE) Keyonte. [s.n.],
2016. Available from Internet: <http://www.selse.org>.

https://www.iso.org/obp/ui/\#iso:std:iso:26262:-1:ed-1:v1:en
https://www.iso.org/obp/ui/\#iso:std:iso:26262:-1:ed-1:v1:en
http://doi.acm.org/10.1145/2998573
http://arxiv.org/abs/1506.02640
http://www.selse.org

40

UFRGSFCAROL. Log database from beam experiments. 2017. Github. Available from
Internet: <https://github.com/UFRGS-CAROL/transaction_on_reliability_2018>.

https://github.com/UFRGS-CAROL/transaction_on_reliability_2018

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	Contents
	1 Introduction
	2 Object Detection and Convolutional Neural Networks
	2.1 Object Detection
	2.2 Metrics
	2.2.1 Intersection Over Union
	2.2.2 Precision and Recall
	2.2.3 Mean Average Precision

	2.3 Datasets
	2.3.1 Caltech Pedestrian Dataset
	2.3.2 KITTI Vision Benchmark Suite

	2.4 Convolutional Neural Networks
	2.4.1 R-CNN
	2.4.2 Fast R-CNN
	2.4.3 Faster R-CNN
	2.4.4 YOLO

	3 Transient Faults in Object Detection
	3.1 Detected Unrecoverable Error
	3.2 Silent Data Corruption
	3.3 SDC Criticality
	3.4 Experimental Data Samples

	4 Methodology
	4.1 Basic Idea
	4.2 Implementation Details
	4.3 Overhead

	5 Results
	5.1 Validation for Detection of Errors from Radiation
	5.2 Detection of Errors from Radiation
	5.3 Validation for Detection of Errors in Fault-Free Executions
	5.3.1 CNN Error Distribution

	5.4 Detection of Errors in Fault-Free Executions

	6 Conclusion
	References

