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Hierarchies occur widely in evolving self-organizing ecological, biological, technological, and social networks,

but detecting and comparing hierarchies is difficult. Here we present a metric and technique to quantitatively

assess the extent to which self-organizing directed networks exhibit a flow hierarchy. Flow hierarchy is a com-

monly observed but theoretically overlooked form of hierarchy in networks. We show that the ecological, neu-

robiological, economic, and information processing networks are generally more hierarchical than their com-

parable random networks. We further discovered that hierarchy degree has increased over the course of the

evolution of Linux kernels. Taken together, our results suggest that hierarchy is a central organizing feature of

real-world evolving networks, and the measurement of hierarchy opens the way to understand the structural

regimes and evolutionary patterns of self-organizing networks. Our measurement technique makes it possible

to objectively compare hierarchies of different networks and of different evolutionary stages of a single net-

work, and compare evolving patterns of different networks. It can be applied to various complex systems,

which can be represented as directed networks. � 2011 Wiley Periodicals, Inc. Complexity 00: 000–000, 2011
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INTRODUCTION

C
omplex systems of various kinds (social, biologi-

cal, physical, technological, etc) frequently take

the form of hierarchy [1, 2]. On one hand, hierar-

chy is one of the central structural schemes that an

architect may use to manage complexities. Products,

organizations, and other artifacts are often designed and

managed hierarchically. On the other hand, hierarchies

emerge and occur widely in self-organizing and evolutionary

systems, such as food webs (ecological), neural networks

(biological), open-source software (technological), and

industrial production networks (economic), etc., which have

no architect. In such cases, hierarchy is viewed as a natural

emergent phenomenon and the consequence of evolution-

ary processes [2, 3].

In complex self-organizing networks, hierarchy, like the

well-studied ‘‘small world’’ phenomenon [4] and the power

law of degree sequence [5, 6], is a global feature shared by

various kinds of network systems (e.g., ecological, biologi-

cal, social, and technological) [7–9]. It is important to
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understand the hierarchy in self-organizing networks,

because as emergence it may reflect important informa-

tion on the functional needs of or constraints on the enti-

ties and their relationships, which collectively form the

network. However, detecting and comparing hierarchies is

difficult in real-world networks, largely because first there

are many types of hierarchy, and secondly hierarchy usu-

ally appears in impure forms in them [10, 11].

Hierarchy is a generic structure in which levels are

asymmetrically ranked according to a specific type of rela-

tion. The ordering of levels, i.e., the rule of asymmetry,

determines a hierarchy. Scholars interested in complex

systems [1–3, 10] have paid attention to various types of

relations existing between the elements that may deter-

mine a hierarchy and have described as many as four

types of hierarchy in general [12]. By the logic construct

for why an upper level is above a lower one, two types of

hierarchies are useful for understanding the more specific

case of network architectures: containment hierarchy and

flow hierarchy.

A containment hierarchy is similar to the concepts of

‘‘nested hierarchy’’ [1, 10, 13] or ‘‘inclusion hierarchy’’ [12,

14] in which nodes are divided into groups that are further

divided into subgroups of groups and so on over multiple

levels. Containment hierarchy can be represented as a

pure tree or dendrogram [11, 15] in which nodes that are

closely connected [9, 11, 15–17], or have close equivalence

measures [15, 18, 19], share lower common ancestors than

more distantly connected or distinctly positioned nodes. A

containment hierarchy can be found for both directed and

undirected complex real-world networks.

Flow hierarchy is only associated with directed net-

works but is observed in many evolving self-organizing

networks such as food webs, neural networks, information

processing networks, and industrial production networks.

In many of these cases, the containment ordering criterion

does not apply and the order of levels is essentially deter-

mined by the direction of the flows of resources essential

to the network. Such flows are crucial because they pro-

vide necessary resources, for the entities to produce,

reproduce, sustain (or remain in useful or necessary exis-

tence), and prosper. Via being connected by flows, the

entities in such self-organizing systems coevolve and may

self-organize into a flow hierarchy. For example, in food

webs, it is energy that flows. In software networks, it is in-

formation that flows as subroutines feed parent routines.

In the production network of firms, flow hierarchy arises

when there is ‘‘persistent directionality in continuing flows

of intermediate goods’’ [20] and flows of payments in a

reverse direction. In production economies, firms coevolve

in networks of flows.

A directed network may embed and exhibit both flow

hierarchy and containment hierarchy. Figure 1 illustrates

the distinction between these two alternative types of hier-

archical representations for a single network. In Figure

1(A), the solid balls are the actual entities connected by

the flows in the tree network. The flow hierarchy of the

network is self-explanatory. Figure 1(B) is a containment

hierarchy representation of the network in Figure 1(A) in

which the squares stand for the subsystems (and the sub-

systems of subsystems) level by level, downward to the el-

ementary entities (solid balls) of the network in Figure

1(A). Most software systems can be well represented in

both ways: a flow hierarchy—a network of routines con-

nected by directional information flows; as well as a con-

tainment hierarchy—a tree of the system, decomposed

into a number of subsystems, each of which may be fur-

ther sub-decomposed, recursively, until reaching the indi-

vidual routines.

In some cases, only one type of hierarchy is appropri-

ate. In the production network setting (as in food webs),

the concept of flow hierarchy is meaningful, because firms

are essentially involved and connected by the transaction

flows to innovate and produce a coherent set of system

FIGURE 1

Alternative hierarchy representations of a single network.
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products and coevolve. In such cases, a containment rela-

tion/structure is ambiguous.

Imperfect Flow Hierarchy in Networks

Much of the recent interesting work [11, 15, 16, 21] on hi-

erarchy in complex networks has been devoted to contain-

ment hierarchies. Although flow hierarchy also frequently

occurs in various kinds of systems, it has been largely

ignored. This article aims to promote awareness of flow hi-

erarchy as an emergent property of complex self-organiz-

ing networks and as a lens to study and deepen our

understanding on such networks.

The value of interpreting systems as flow hierarchies

has not been fully exploited, partly because flow hierar-

chies usually do not appear in a pure form in complex

self-organizing networks, such as food webs, neural net-

works, etc. Ideally, given a criterion used to link levels

above and below, the links from a predefined lower level

to its adjacent higher level are regarded as hierarchical.

But we often observe links that skip levels, that connect

between nodes on the same level, and that go in the back-

ward direction. With all these irregularities aggregated in

large complex networks, as well as the arbitrary nature of

link type identification based on level assignment, flow

hierarchies may become ambiguous and intractable.

Figure 2 demonstrates several simple example networks,

which embed and exhibit flow hierarchy to varied degrees.

Figure 2(A) is a pure tree. Each node is assigned not

only a rank, but a single link to a higher up node. In Figure

2(B), some nodes have multiple inbound and outbound

links. We call it a ‘‘mixed tree hierarchy.’’ Both the pure tree

and the mixed tree are strictly hierarchical because all the

links regularly connect from a lower level to an adjacent

higher level. In the network C in Figure 2, levels can no lon-

ger be uniquely defined. If node 2 and 6 are defined to be

in the same layer, the link from node 6 to 2 can be viewed

as an ‘‘in-layer link’’ and the link from 6 to 1 is a ‘‘regular

link’’. However, if node 2 is predefined to one level higher

FIGURE 2

Example networks. The dashed red links are involved in cycles.

FIGURE 3

Random networks with the same size (N 5 100, L 5 400) but different hierarchy degrees. N is the number of nodes, L is the number of links.
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than node 6, then the link from 6 to 1 is a ‘‘level-skipping

link.’’ Identification of level-skipping links and in-layer links

relies on the pre-identification of levels. In this case, the lev-

els are not uniquely defined [22]. But at least all the links in

Figure 2(C) follow a general asymmetrical direction, so this

network can be regarded as hierarchical. In cases A, B, and

C, there is strict asymmetric ordering of relationships.

Networks often exhibit layered structures [23], that is,

level hierarchy [12], as shown in Figure 2(D). In this exam-

ple, the links in cycles are symmetrical to each other and

lose their global direction to some extent. However, if the

nodes in the same directed cycle are presumed to be in a

layer (then the links are ‘‘in-layer links’’), the other links pro-

ceed in one direction from layer to layer. Thus, the network

D in Figure 2 is not purely hierarchical but still has certain

degree of hierarchy, that is, partially hierarchical. The

example in Figure 2(E) simply shows how the emergence

of a cycle may destroy the overall direction or asymmetry

of a network. The examples in Figure 2 together indicate

that cycles violate the directionality of a network, that is,

the asymmetry in flows, which is the fundamental principle

of flow hierarchy (i.e. things move in one general direction).

The networks in Figure 2 are simple, so we can intui-

tively observe and sense the different degrees of hierarchy

embedded in them. When given more complex and larger

networks, the identification of flow hierarchy can be

difficult. Figure 3 visualizes two random networks with

the same numbers of nodes (100) and links (400), but

vastly different degrees of hierarchy embedded. It is not

surprising but important that such visualization while use-

ful does not allow one to objectively see significant

differences in hierarchy between different networks. Our

technique introduced in next paragraph will reveal the

large difference in hierarchy between the two networks in

Figure 3.

The Measurement of Flow Hierarchy

Centered on the concept of flow hierarchy and its core prin-

ciple, network directionality, we present a hierarchy metric

that detects and measures the extent to which all the local

flows follow a holistic overall ‘‘underlying direction.’’ The

hierarchy metric is calculated as the percentage of links that

retain their overall direction in the network, that is, the

percentage of links that are not included in any cycle,

h ¼

PL
i¼1 ei
L

(1)

where L is the number of links in the network and ei 50 if

link i is in a cycle (1 otherwise). In weighted networks, the

metric can be calculated as the ratio of the weights of the

links, which are not included in any cycles over the total

weight of all links,

hw ¼

PL
i¼1 wiei
PL

i¼1 wi

(2)

where wi is the weight of link i. In this article, we will

focus on unweighted networks.

We applied the flow hierarchy metric to the simple

networks shown in Figure 2 and the larger examples

shown in Figure 3. The calculated hierarchy degrees (see

Table 1) capture the same understanding based upon

direct observations on the networks in Figure 2. In par-

ticular, the metric performs well in assessing layered hi-

erarchy but other potential metrics do not. For the

example of network D in Figure 2, if we alternatively

count the portion of nodes rather than links, all the

nodes are involved in cycles so the alternative hierarchy

metric will be zero and fail to capture the sense of lay-

ered hierarchy of this network. In general this metric is

unambiguous in differentiating the hierarchical compo-

nents and non-hierarchical components [23]. It is also

advantageous in its clarity and ease of computation, in

comparison to other potential metrics (An assessment of

alternative metrics is provided in the Supporting Infor-

mation.). The Supporting Information, as well as network

data and computer codes implementing the methods,

can be found online at (http://www.mit.edu/�cmagee/

luo_hierarchy/).

This metric of flow hierarchy potentially provides a way

to characterize and detect different structural regimes of

discrete systems with a potential direction, analogously to

the different regimes of the continuous fluid flows. For

example, the networks A and B in Figure 4 are strictly hier-

archical (uni-directional) and similar to the ‘‘laminar flow’’

regime of fluid flows. In network C of Figure 4, some of the

local flows (i.e., links) are involved in cycles (similar to

eddies or vortexes of fluid flows). The system is no longer

purely hierarchical, that is, partially hierarchical, and is in a

‘‘transitional flow’’ regime. In network D, all the flows are

involved in cycles, so this case is analogous to the

‘‘turbulent’’ regime of fluid flows. Thus, as the Reynolds

TABLE 1

Hierarchy Degrees of the Example Networks in Figures 2 and 3

Networks

Figure 2 Figure 3

A B C D E A B

Hierarchy Degree 1 1 1 0.40 0.67 0.33 1

4 C O M P L E X I T Y Q 2011 Wiley Periodicals, Inc.
DOI 10.1002/cplx



Number [24, 25] characterizes different flow regimes, such

as laminar, turbulent, or transitional flow, the flow hierarchy

metric also potentially characterizes the structural regimes

of discrete network systems, such as production markets,

food webs, and software.

To compute the flow hierarchy metric for large-scale

complex networks, we use the following algorithm: First,

we construct the link adjacency network and matrix for

the original node adjacency network. For example, Figure 5

shows the link adjacency network transformed from and

equivalent to the original node adjacency network. The

seven squares in Figure 5(B) correspond to the seven links

of the network of Figure 5(A), respectively.

We name the cell (i,j) in the link adjacency matrix xij.

xij 5 1 if and only if the end of link i is directly connected

to the start of link j by a node. Otherwise, xij 5 0. Second,

we raise the link adjacency matrix’s power p to find the

link distance matrix Md. We name the cell (i,j) in the link

distance matrix dij. The dij is the distance from link i to j,

defined as the minimum number of unique nodes which a

uni-directed flow has to travel through from the end of

link i to the start of link j. The dij is found as the value of

the power, at which cell (i,j) of the power matrix Mp has a

non-zero value for the first time. When p 5 1, the power

matrix M1 is the same as the link adjacency matrix, so that

if xij 5 1, the distance from i to j is 1. If xij 5 0, and x[2]ij

> 0, then the distance is found as 2. And so forth. Conse-

quently, the first power p for which the x[p]ij element is

non-zero gives the distance from i to j, that is, the value of

dij in the link distance matrix Md. Mathematically, dij 5

minpx[p]ij > 0, for p from 1 to L, the total number of links

(equal to the length of the longest possible cycle of links).

We leave dij empty if the end of link i is neither directly

nor indirectly connected to the start of link j. Note that al-

ternative algorithms, such as depth-first search, can also

be applied to find the link distance matrix.

Figure 6 illustrates the process to derive the link distance

matrix for the example network in Figure 5. Given the final link

distance matrix (at the bottom right corner of Figure 6), we are

able to judge if a link is on any directed cycle by examining its

main diagonal. If dii is empty, then link i is not involved in any

cycle (i.e., ei5 1, 0 otherwise). In this case, only ddd is empty, and

this agrees with our direct observation on Figure 5—only link d

is not included in any cycle. Thus, the hierarchy degree is 1/7.

FIGURE 4

A network with 72 nodes and 176 directed links, oriented toward different directions in four scenarios. The links in blue color in (B) and (C) either skip

levels or connect between nodes in the same level. Such links add complexity and difficulty in determining the levels and ranks, but do not destroy the

overall network directionality, that is, flow hierarchy. The nodes and links colored in red are involved in cycles.

FIGURE 5

The link network equivalent to the original node network.
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RESULTS AND DISCUSSIONS

By definition, a pure random directed network embeds no

hierarchy. However, the hierarchy degree is not necessarily

zero for the networks created by existing random network

models. We have examined hierarchy degrees of networks

generated by a simple model similar to the ‘‘Poisson ran-

dom network’’ [9]. Networks are constructed by assigning

L directed links to randomly chosen pairs from N nodes.

No multiple uni-directed links between a chosen pair and

no self-links are allowed.

The directed Poisson random networks alone also ex-

hibit important properties regarding hierarchy. Figure 7(A)

shows that network size (N) has little influence on hierar-

chy degree (h), especially when N is sufficiently large. This

agrees with our intuition that hierarchy is an architectural

property independent of scale, and allows one to use ran-

FIGURE 6

Deriving link distance matrix by raising power of link adjacency matrix. We pair Mp and the Md with the state of knowledge after p steps. M
1 is the

link adjacency matrix for the link network in Figure 5B and the original network in Figure 5A. The distance identified at each intermediate step is bold

and its cell is shadowed. In particular, the values on the diagonal of the final Md (after 6 steps in this case) give the length of the shortest link cycles

in which each link is included.

FIGURE 7

Hierarchy degrees of randomly-generated directed networks. The value at each data point is the average of hierarchy degrees of 1,000 randomly-gener-

ated networks given the same N and k. Data points are connected by straight lines.
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dom networks with a relatively small N to estimate h of

those with large N but the same k (5 L/N). Figure 7(B)

shows the increase of average degree (k) significantly

decreases h. When k is at its minimum 1/N, h will be

exactly 1, because only one pair of nodes will be con-

nected and one node is unambiguously above the other in

this dyad flow hierarchy. When k is sufficiently high, h

tends to zero because there are many cyclic pathways

through which flow can travel back to its origin. A holistic

direction does not exist among links in densely connected

random networks. These results are of use when compar-

ing h found from empirical networks.

We calculated the hierarchy metrics of a diverse set of

empirical evolving self-organizing networks: the Bridge

Brook Lake food web [26, 27] and the Northeastern US

Shelf food web [28, 29], Japanese supplier-producer net-

works in automotive and electronics production sectors

[30–32], two biological information-processing networks

including the synaptic connections between neurons in

the nematode worm Caenorhabditis elegans [33] and de-

velopmental transcription network of Drosophila Mela-

nogaster [33], the call networks of the kernels of two oper-

ation system software, Linux [34] and Apple computer’s

Mac OS X (Darwin) [35]. We used the algorithm detailed

above to compute the hierarchy degrees of these large-

scale empirical networks. Then, hierarchy degrees of these

empirical networks are compared with those of compara-

ble Poisson random networks with the same numbers of

nodes (N) and links (L). Results are listed in Table 2.

Domain-specific knowledge is needed to understand

the detected difference in hierarchy degree of empirical

networks of the same type. For the specific example of the

two production networks, the automotive sector is signifi-

cantly more hierarchical than the electronics sector (Table

2). This difference in hierarchy degree may imply and

result from some important differences in the strategies

and behaviors of individual firms and differences in the

technological environments in the two production sec-

tors.1

However, in the results (Table 2), there is no clear evi-

dence to show that system types (e.g., biological vs. pro-

duction) differentiate networks in terms of flow hierarchy.

In general, from a network science perspective, the results

show all of these typical empirical networks exhibit stron-

ger hierarchical architectures than comparable random

networks with the same sizes and average degrees, indicat-

ing flow hierarchy as a significant feature of real-world

self-organizing networks.

The flow hierarchy metric can also be used to quantita-

tively detect the evolving patterns of self-organizing net-

works. For containment hierarchy, Simon [1] hypothesized

that hierarchy emerges inevitably through a wide variety

of evolutionary processes because hierarchical structures

are stable [1, 36]. However, quantitative evidence has not

been reported previously, largely due to the lack of an

appropriate measure. The hierarchy metric and technique

in this article allows us to detect how flow hierarchy

changes over the course of system evolution.

We calculated the flow hierarchy metrics of the call net-

works of various historical versions of the Linux kernel

from its origin, version 0.01 to 2.3.0. The Linux kernel is

an open source system developed by self-organized con-

tributors around the world. As indicated in Figure 8(A),

TABLE 2

Hierarchy Degrees of Empirical Networks and Comparable Random Networks

Network Type N L k hreal ĥrand r̂rand

Bridge Brook Lake Food Web 25 104 4.160 0.9809 0.0213 0.0338

NE US Shelf Food Web 79 1378 17.443 0.8273 0 0

Japanese Automobile Sector Production 679 2437 3.589 0.9988 0.0601 0.0114

Japanese Electronics Sector Production 227 648 2.855 0.5957 0.1338 0.0310

C. elegans Biological 280 2170 7.750 0.1171 0.0009 0.0018

D. melanogaster Biological 107 301 2.813 0.3289 0.1308 0.0444

Darwin XNU-123.5 Software 646 4351 6.735 0.4872 0.0024 0.0021

Linux Kernel 1.1.70 Software 287 1385 4.826 0.8065 0.0159 0.0082

hreal is the hierarchy degree of the empirical network. ĥrand and r̂rand are the average and standard deviation of the hierarchy degrees of an ensemble

of 1,000 randomly-generated networks with the same N and L (or k) of the empirical network. We extracted the software call networks using the archi-

tecture analysis software Understand C11. In the call networks, a link from source code B to source code A exists if any function in A calls and relies

on any function located in B. In the industrial production networks, a link from firm B to firm A exists if firm A procures any products from firm B.

1Reference [32] attempts to explain why different industrial

sectors may exhibit different degrees of hierarchy in the spe-

cific industrial and economic context.
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the hierarchy degree of the Linux kernel has been gener-

ally increasing over its life cycle. The first version (0.01)

was built and released by a single person. After that, many

people contributed subroutines to the project, and thus hi-

erarchy degree declined for a little while. During the most

of its life as an open-source system, the hierarchy degree

has increased as the self-organizing system grows, stabil-

izes, and matures. The observation of a general increase of

k as the system evolves [Figure 8(B)] affirms the hierarchi-

cal tendency of this system since increases in k alone

would work to decrease the hierarchical metric.

Network decompositions may reveal certain underlying

architectures and interesting methods to detect modularity

have been developed recently [11, 16, 19, 21, 37–39]. We

also calculated the optimal modularity of the Linux kernel

networks, using Newman’s eigenvector-based algorithms

for both undirected [38] and directed networks [39], and

found unclear trends during the same period of time, if

not slightly decreasing. No theoretical or observational in-

dication has been found about how modularity of self-

organizing networks should change in evolutionary proc-

esses. Compared to the flow hierarchy metric, the useful-

ness of modularity in terms of tracking the evolving pat-

terns of self-organizing networks may be limited.

CONCLUSION

In general, this article explores a commonly observed but

theoretically overlooked form of hierarchy in networks—

flow hierarchy. Our measurement technique makes it pos-

sible to objectively compare hierarchies of different net-

works, detect the structural regime or evolutionary stages

of a single network, and compare the evolving patterns of

different networks. Our analysis shows that the ecological,

neurobiological, economic, and information processing

networks are generally more hierarchical than their com-

parable random networks. We further discovered that hier-

archy degree has increased over the course of the evolu-

tion of Linux kernels. Taken together, the results may sug-

gest that flow hierarchy is a central organizing feature of

real-world evolving networks.

Our major purpose of this article is not to argue flow hi-

erarchy must increase or decrease in the evolutionary

course of a complex system, but to quantitatively examine

flow hierarchy and show the power of the flow hierarchy

metric to detect evolving patterns of self-organizing net-

works. This article is not intended as the final word on flow

hierarchy, but a beginning of further and boarder research

on it. Important questions, such as what flow hierarchy

means to the functional performance of a network and how

flow hierarchy emerges from the behaviors and interactions

of individual network nodes, have not been answered.

We anticipate application of the hierarchy metric and

measurement technique to more systems, such as ecologi-

cal, biological, brain, and neural, social and technological

systems, to help understand better their domain-specific

architectures and evolutionary patterns. Like the contribu-

tion of Reynolds Number for the development of the overall

field of fluid mechanics, the flow hierarchy metric may also

potentially provide great value for designing and managing

complex network systems, but further research is needed.
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