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Abstract: Anthropogenic climate change is a key threat to global biodiversity. To 39 

inform strategic actions aimed at conserving biodiversity as the climate changes, 40 

conservation planners need early warning about the relative risks faced by different 41 

species. The IUCN Red List criteria for Threatened Species is widely acknowledged 42 

as useful risk assessment tool for informing conservation under constraints imposed 43 

by limited data. However, doubts have been expressed about the ability of the Red List 44 

criteria to detect risks imposed by potentially slow-acting threats such as climate 45 

change, particularly because criteria addressing rates of population decline are 46 

assessed over time scales as short as 10 years. We used spatially explicit stochastic 47 
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population models coupled with dynamic species distribution models projected to 48 

future climates to ask how long before extinction a species would become eligible for 49 

listing as threatened based on the Red List criteria. In this study, we focussed on a 50 

short-lived frog species (Assa darlingtoni) chosen specifically to represent potential 51 

weaknesses in the criteria to allow detailed consideration of the analytical issues and 52 

to develop an approach for wider application. The results suggest that the criteria are 53 

more sensitive to climate change than previously anticipated, with lead times between 54 

initial listing in a threatened category and predicted extinction varying between 40 55 

and 80 years, depending on data availability. We attribute this sensitivity primarily to 56 

the ensemble properties of the criteria, which assess contrasting symptoms of 57 

extinction risk. Nevertheless, we recommend that the robustness of the criteria 58 

warrants further investigation across species with contrasting life-histories and 59 

patterns of decline. The adequacy of these lead times for early warning depends on 60 

practicalities of environmental policy and management, bureaucratic or political 61 

inertia and the anticipated species response times to adaptation and mitigation 62 

actions. 63 
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Introduction 70 

Anthropogenic climate change is one of the major global threats to biodiversity, with 71 

more than a million terrestrial species potentially 'committed to extinction' by mid-72 

century (Thomas et al. 2004; Parry et al. 2007; Hannah 2012). Accurate predictions of 73 

the risks of such losses are vital to motivate and inform effective remedial actions at 74 

global and local scales, and to focus specific efforts on species and locations that 75 

would benefit most. For these reasons, species at significant risk of extinction as a 76 

result of climate change ought to be included on listings of threatened species 77 

(Westoby & Burgman 2006). 78 

 79 

The IUCN Red List of Threatened Species (e.g. Vie et al. 2009) is widely recognised 80 

as an authoritative and reliable global listing in which species are assigned to 81 

categories representing different levels of extinction risk (IUCN 2001; Mace et al. 82 

2008). The Red List is based on five quantitative assessment criteria, derived from 83 

population theory, that are used to assign species to any of three different threat 84 

categories (Critically Endangered, Endangered or Vulnerable) or else an appropriate 85 

category for taxa not identified as threatened (Extinct in the Wild, Near Threatened, 86 

Least Concern or Data Deficient) (IUCN 2001). Empirical evaluations have shown 87 

that the Red List protocol is consistent and predicts extinction risk accurately (e.g. 88 

Keith et al. 2004).  89 

 90 

Climate change has been identified as a threat to a relatively small fraction of species 91 

currently listed as threatened in Australia (Westoby & Burgman 2006) and globally 92 

(Vie et al. 2009), yet distribution modelling (Thomas et al. 2004; Hof et al. 2011) and 93 



 5 

trait analyses (Foden et al. 2013) suggest that more taxa are at risk. For example, one-94 

quarter of the world's bird and amphibian taxa and half of all coral taxa were found to 95 

possess traits that make them susceptible to climate change, but these taxa are not 96 

currently listed as threatened (Foden et al. 2013). There could be several explanations 97 

for this discrepancy. Firstly, many taxa that are potentially susceptible to climate 98 

change may presently appear safe from extinction due to limited exposure to climate 99 

change or lagged responses (Foden et al. 2013). Secondly, assessors may be reluctant 100 

to consider climate change as a threat to specific taxa due to high levels of uncertainty 101 

about both the magnitude of future climate change and its ecological effects (Westoby 102 

& Burgman 2006). Thirdly, climate change may act in concert with other, more 103 

readily identified threats (Hof et a. 2012). Finally, the Red List criteria may not be 104 

well suited to detection of climate change threats (Hannah 2012).  105 

 106 

One of the Red List's most important roles is as an 'early-warning' system that 107 

identifies species at most immediate risk to inform priorities for conservation action 108 

(Vie et al. 2009). To perform this role effectively, the Red List criteria should identify 109 

species at risk of extinction with some lead time in advance of the expected extinction 110 

event, irrespective of its cause. The Red List criteria assess declines over time 111 

horizons that are scaled by generation length to account for the fact that long-lived 112 

species are at greater risk of extinction when exposed to elevated annual mortality 113 

rates than short-lived species (Mace et al. 2008). Many vertebrate and invertebrate 114 

species that have generation lengths less than seven years are therefore assessed over 115 

time horizons of 10 - 20 years.  116 

 117 
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In contrast, the majority of studies assessing potential impacts of climate change on 118 

species are based on projections that range from 50 to 100 years into the future 119 

(Cameron 2012). This has led to concerns that the Red List criteria are 'poorly suited 120 

to assessing threats such as climate change, which happen now but have effects years 121 

or decades in the future' (Hannah 2012). Thomas et al. (2004) suggest that the Red 122 

List criteria assess declines using time scales that ‘are not suited to evaluate the 123 

consequences of slow-acting but persistent threats.’ In essence, for many taxa 124 

(especially those with short generation lengths), the assessment time frames within the 125 

Red List criteria may be too short for climate related declines to be apparent, even 126 

though past greenhouse gas emissions have already determined the fate of the species 127 

in the absence of timely remedial action (Akçakaya et al. 2006).  128 

 129 

Several studies have used methods based on the IUCN Red List criteria to identify 130 

species threatened by climate change (reviewed by Akçakaya et al. 2006; also 131 

Levinsky et al. 2007; Thuiller et al. 2008). These studies apply only some of the Red 132 

List criteria (typically only criterion A, which addresses population reduction) and 133 

involve modifications to the time horizons and/or the thresholds of decline. As 134 

Akçakaya et al. (2006) point out, these arbitrary modifications make the criteria less 135 

consistent across different symptoms of extinction risk and across different taxonomic 136 

groups, and consequently make the criteria less capable of identifying the species at 137 

greatest risk of extinction.  138 

 139 

Despite the concerns and speculations about the performance of the Red List criteria 140 

for assessing extinction risks under climate change, we could find no empirical risk 141 

assessments that directly address the issue. To inform the debate and demonstrate how 142 
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the problem may be investigated, we present a detailed assessment of extinction risk 143 

using all five IUCN Red List criteria. Specifically, we ask how soon the Red List 144 

criteria identify a species as threatened by climate change, and which criteria are 145 

crucial for early detection of risk. We chose a short-lived amphibian species for which 146 

climate change appears to be the major current threat. To carry out the risk 147 

assessment, we used a coupled modelling approach capable of addressing species life 148 

history and habitat responses to projected climate scenarios (Keith et al. 2008; 149 

Fordham et al. 2012).  150 

Methods 151 

Study species 152 

Frogs are an extinction-prone group worldwide (Houlahan et al. 2000; Stuart et al. 153 

2004) and thought to be particularly susceptible to future climatic changes (Pounds et 154 

al. 2006). Our study species, Assa darlingtoni Loveridge 1933 (the hip-pocket frog), 155 

family Myobatrachidae, occurs between the Conondale Range (26°42'S) and the 156 

Dorrigo Plateau (30°20'S) in cool moist rainforest or eucalypt forest within several 157 

disjunct montane areas of the coastal escarpment, mostly above 600 m, in central 158 

eastern Australia. Its females lay 8 to 18 relatively large eggs in leaf litter, with the 159 

tadpoles emerging after a short period of embryonic development and wriggling into 160 

lateral pouches of the adult male which cares for them for about 40 days before 161 

emergence as subadults (Tyler 1985, Ehmann and Swann 1985). Breeding occurs in 162 

the spring and summer months, usually after moderate to heavy rainfall. Males call 163 

from secreted positions under leaf litter. Dispersal appears to be very localised, with 164 

few animals likely to move more than a few hundred metres through the leaf litter. 165 

 166 
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Climate change is the most serious plausible threat to the persistence of A. 167 

darlingtoni, given that it is restricted to cool moist montane habitats that are projected 168 

to warm over the coming decades. Although the species range may have previously 169 

been reduced by forest clearing and logging, almost all of its remaining distribution is 170 

protected from further habitat loss within conservation reserves. The species co-171 

occurs with several stream-dependent frogs whose decline is attributed to disease 172 

caused by chytrid fungus. Few individuals of A. darlingtoni have been tested for 173 

susceptibility to the disease, but its populations are apparently not declining. Its 174 

limited reliance on water bodies may limit exposure to chytrid, although some species 175 

with similar life histories are known to be susceptible (Bell et al. 2004). In this study, 176 

we did not model the effects of chytrid on the persistence of A. darlingtoni. Other 177 

threats to the species are localised, including timber extraction, roading, weed 178 

invasion, grazing and frequent burning 179 

(http://www.environment.nsw.gov.au/threatenedSpeciesApp/profile.aspx?id=10070, 180 

downloaded 26/3/2013). Assa darlingtoni is currently classified as Least Concern on 181 

the global Red List (Table 1) 'in view of its wide distribution, presumed large 182 

population, and because it is unlikely to be declining fast enough to qualify for listing 183 

in a more threatened category' (Hero et al. 2004).  184 

Assessment 185 

We assessed the status of A. darlingtoni using IUCN Red List categories and criteria 186 

(IUCN 2001). The five criteria assess: A) population reductions over 10 years or three 187 

generations, whichever is longer; B) geographic range size in combination with severe 188 

fragmentation, number of locations, continuing declines and extreme fluctuations; C) 189 

population size in combination with continuing declines, population structure and 190 

extreme fluctuations; D) population size and range size in isolation of other factors; 191 
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and E) quantitative estimates of extinction risk. The criteria were interpreted in 192 

accordance with IUCN guidelines (IUCN 2011).  193 

 194 

Although the available data permit a limited assessment of current status, they were 195 

insufficient for comprehensive assessments of the criteria at multiple temporal 196 

reference points. We therefore used a population model to estimate all the variables 197 

required for Red List assessment. The model was constructed and parameterised from 198 

available data and expert knowledge (see below). We incorporated uncertainty by 199 

constructing fuzzy estimates of population variables comprising best estimates (mean 200 

of all simulations) with plausible upper and lower bounds drawn from the 5th and 201 

95th percentiles of the model output (Akçakaya et al. 2000). We used RAMAS Red 202 

List (Akçakaya et al. 2007) to calculate the risk categories from the fuzzy estimates. 203 

To examine the robustness of assessment outcomes to missing data, we re-assessed 204 

the overall status after excluding the criterion that returned the highest category of risk 205 

(Keith et al. 2000). 206 

 207 

In implementing Red List assessments, RAMAS Red List allows users to specify their 208 

attitude to risk and uncertainty by setting values to represent their risk tolerance and 209 

dispute tolerance (Akçakaya et al. 2000). Values of risk tolerance range from 0 (an 210 

extremely risk-averse precautionary attitude to risk and uncertainty), to a 1 (an 211 

extremely risk-prone evidentiary attitude). For all assessments, we set risk tolerance to 212 

0.45, representing a slightly more precautionary attitude than the balance of evidence, 213 

consistent with IUCN's (2001) recommendation that assessors take a 'precautionary 214 

but realistic' attitude to risk and uncertainty. Values of dispute tolerance range from 0 215 

for inclusion of all estimates to 1 for inclusion of only the consensus estimates (in this 216 
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case the best estimate). For all assessments, we set dispute tolerance at 0.5, excluding 217 

the most extreme estimates of each variable (Akçakaya et al. 2000, 2007).  218 

 219 

Predictive modelling 220 

Species distribution model 221 

Locality data were assembled from survey records and specimens held by the NSW 222 

Office of Environment and Heritage, the Queensland Environmental Protection 223 

Authority, and the Australian and Queensland Museums. All records were checked by 224 

experts (HH, MM) to remove erroneous and unreliable records. The 758 reliable 225 

records were then randomly thinned so that each location was separated by a 226 

minimum distance of 1.5 km to reduce spatial dependence and survey bias. A further 227 

seven records were discarded because they were located at sites outside the mapped 228 

area of native forest, on which this species is wholly dependent. This is likely to have 229 

resulted from small positional inaccuracies rather than forest loss after the species was 230 

recorded. Remaining records were transposed onto a 9 arc-second (approximately 285 231 

m) grid, producing a final data set for modelling that included 127 presence records. 232 

A set of 9100 background sample points (Phillips et al. 2006) was generated on the 233 

same 285 m grid from within a region defined by four bioregions (South Eastern 234 

Queensland, NSW North Coast, New England, and Nandewar), and two subregions 235 

(the Banana-Auburn Ranges and Eastern Darling Downs) within the Brigalow Belt 236 

South bioregion (IBRA7, 237 

http://www.environment.gov.au/parks/nrs/science/bioregion-238 

framework/ibra/index.html#ibra). Background sites were only taken from sites with 239 

native vegetation. The use of bioregions was intended to constrain the absence records 240 
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to ecologically plausible regions of species occurrence under present day or future 241 

climatic conditions, thereby sharpening the predictions of suitable habitat.  242 

 243 

A set of environmental data layers (9 arc-second grid cells) was selected by experts 244 

(HH, MM) as potential predictors of suitable habitat for A. darlingtoni (Table 2). A 245 

series of alternative Species Distribution Models (SDMs) with different subsets of 246 

predictors was fitted using a Maximum Entropy algorithm, MAXENT (Phillips et al. 247 

2006), which performed well in comparative tests with other methods (Elith et al. 248 

2006). The models were constructed using hinge features with a regularisation 249 

multiplier of 1.5 to create reasonably smooth responses that would extrapolate in a 250 

biologically realistic manner (Elith et al. 2010). Model outputs were evaluated using 251 

the Area Under the Receiver Operating Characteristic Curve (AUC) for the training 252 

points used in model fitting and subjective review by experts familiar with the species 253 

habitat and distribution (HH, MM). The most suitable model included seven 254 

predictors (Table 2) and was masked to exclude cleared land.  255 

Future projections 256 

The predicted distribution of A. darlingtoni was projected into the future using 257 

changes in the climatic variables included in the SDM (Table 2).  Changes in climatic 258 

variables were projected using four Global Circulation Models (GCMs; IPCC 2007) 259 

found to perform well for temperature and rainfall anomalies in eastern Australia 260 

(Suppiah et al. 2007): CSIRO-Mk3; GDFL-CM2; MPMP-ECHAM5; and UKMO-261 

HADCM3. Two greenhouse gas emission scenarios were used from each model 262 

(A1FI and A2), of which A1FI has a larger temperature increase that most closely 263 

resembles the realised trajectory (Peters et al. 2013). In addition to projecting models 264 

to baseline (1990) conditions, projections were generated for years 2030, 2050, 2070 265 
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and 2100. Projected distributions were then generated for each year between 2000 and 266 

2099 by linear interpolation (Keith et al. 2008).  267 

Demographic model 268 

A spatially explicit, stochastic matrix population model based on annual time steps 269 

was constructed in RAMAS Metapop v5 (Akçakaya & Root 2005). Three life history 270 

stages were recognised in the model: tadpoles; juveniles; and adults. Only females 271 

were modelled, because we assumed that the availability of males (which can care for 272 

multiple clutches) did not limit population growth. Mean rates of survival and 273 

fecundity were estimated from literature (Ehmann and Swann 1985) and the authors' 274 

unpublished data and expert knowledge on small terrestrial ectothermic vertebrates 275 

(Table 3). Mean observed clutch sizes (range 8 to 18, mean = 13 eggs) were doubled 276 

to estimate annual fecundity because females are capable of depositing two clutches 277 

in a season.  278 

 279 

In the absence of a population census time series, the mean rates were assumed to 280 

vary year to year due to environmental stochasticity, with small coefficients of 281 

variation (Table 3) reflecting the relatively stable conditions on the rainforest floor 282 

and assuming that adult survival was less sensitive to environmental stochasticity than 283 

other life history processes. The environmental stochasticity of all vital rates was 284 

modelled using a lognormal distribution. Variation in survival and fecundity were 285 

assumed to be correlated within populations acccording to a distance function derived 286 

from annual rainfall data from stations in the region (Fordham et al. 2012). 287 

Demographic stochasticity was incorporated using a binomial distribution for survival 288 

and a Poisson distribution for fecundity (see Akcakaya & Root 2005). 289 

 290 
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Density dependence in A. darlingtoni was represented by a ceiling model (Akçakaya 291 

& Root 2005) because the species has a short generation length and lacks territorial 292 

behaviour and strong aggressive interactions between individuals. Thus, if the 293 

carrying capacity was exceeded, the size of a population was adjusted to the carrying 294 

capacity, in the subsequent year. The carrying capacity of each population was 295 

estimated from the habitat suitability values predicted by the SDM (Keith et al. 2008).  296 

 297 

Populations were defined spatially as 10 × 10 km grid cells to enable computationally 298 

practical modelling of dispersal between adjacent cells in the landscape and to 299 

average local variations in habitat suitability. Dispersal rates were estimated by 300 

experts familiar with movement of A. darlingtoni in the field (MM, HH), assuming 301 

that only juveniles move, and only between adjacent cells, mostly over distances less 302 

than 100 m. Based on the geometry of the grid, we estimated that the annual 303 

probability of a juvenile dispersing to a neighbouring cell was 0.002. 304 

Model integration 305 

The SDM and population model were coupled using the procedure described by Keith 306 

et al. (2008). Modelled 285 m cells with habitat suitability values less than the fifth 307 

percentile of values at training points (0.082) were assumed to be unsuitable and set to 308 

zero. These 285 m cells were then aggregated into a 9975 m (c. 10 km) grid, in which 309 

each cell was defined as a population unit for modelling purposes. Based on call data 310 

for males recorded in the field, and field sampling of leaf litter indicating a 1:1 sex 311 

ratio (M. Mahony, unpubl. data), optimal habitat was estimated to be capable of 312 

supporting 160 adult female frogs per hectare (1300 per 285 m cell, aggregating to 313 

1,592,500 per 9975 m cell). The carrying capacity of each population was therefore 314 

estimated as ths*1300, where ths is the sum of habitat suitability values within 315 
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respective 9975 m  cells. A second threshold based on the first percentile of summed 316 

habitat suitability (29.7) was applied to exclude 9975 m cells with a very small and 317 

potentially diffuse area of suitable habitat. The remaining 9975 m cells were 318 

designated as individual 'populations'.  319 

 320 

For each population we calculated trends in carrying capacity under climate change 321 

using the projections of the SDM from each combination of GCM and emission 322 

scenario. These trends were incorporated into the model simulations. Nine model 323 

scenarios were run, including the eight GCM-emission combinations and a stable 324 

climate scenario, in which carrying capacities of all populations were held constant. 325 

The simulations were run over 1000 replicates of 100 annual time steps (2000 – 326 

2099). Mean estimates of extinction risk and population size (the number of adult 327 

females) and their standard deviations, and the spatial configuration of populations for 328 

each time step were extracted from the model output to calculate the variables 329 

required for assessing the IUCN Red List criteria. Assessments were made every 20 330 

years from 2010 to 2090. 331 

Results 332 

The current total population of A. darlingtoni was estimated to include approximately 333 

1.7 million mature females. The population remained stable for 100 years when 334 

modelled under a stable climate (Fig. 1). Under all modelled future climate change 335 

scenarios, however, the population remained stable only until about 2040-2050, with 336 

subsequent declines projected to occur at different rates for different combinations of 337 

GCM and emission scenario. Under the most severe projection (CSIRO-Mk3 A1FI), 338 

the species had become Extinct in the Wild by 2095 (Fig. 1). In other projections, the 339 
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species remained extant, but total population size had been reduced by between 39% 340 

(GDFL-CM2 A2 scenario) and 96% (CSIRO-Mk3 A2 scenario) over the 100-year 341 

period (Fig. 1). 342 

 343 

According to the Red List criteria, A. darlingtoni would become eligible for listing as 344 

a threatened species as early as 2010 or as late as 2050, depending on the pattern of 345 

decline in the population and distribution projected under different GCMs and 346 

emission scenarios (Table 4). In contrast, under a stable climate scenario, the status of 347 

the species remained as Least Concern throughout the twenty-first century. The 348 

species qualified for listing in 2010 in only one projection (CSIRO-Mk3 A1FI). In all 349 

eight combinations of GCM and emission scenario, early eligibility for listing was 350 

dependent on criterion E and/or B, with both criteria supporting the first listing in two 351 

of the eight cases (Table 4). The estimates of extinction risk over 100 years (required 352 

to assess the Vulnerable category under criterion E) were uncertain in the assessments 353 

carried out for years later than 2010 because projections were only available to 2100. 354 

Hence we used the shape of the population trajectory to estimate whether extinction 355 

was a plausible outcome over 100-year time frames ending in 2110, 2130, 2150, 2170 356 

and 2190. The plausible bounds of these assessment outcomes always included the 357 

Least Concern category, recognising the uncertainty of an extinction outcome. 358 

Criterion B and, to a lesser extent criterion A, had an influence on the overall status of 359 

the species in the second half of the century, and often over-rode criterion E by 2070 360 

or 2090 (Table 4). Criteria C and D did not determine the overall status of A. 361 

darlingtonii in any of the assessments (Table 4). 362 

 363 
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In later years, the Red List assessments became more robust because the overall status 364 

was generally supported by more criteria and more subcriteria than in early years 365 

(Table 4). Consequently, the overall status always remained threatened when data for 366 

the highest-risk criterion were omitted from assessments carried out in 2070 and 2090, 367 

but was reduced to Least Concern for some combinations of GCM and emission 368 

scenario when data for the highest-risk criterion were omitted from assessments 369 

carried out in 2030 and 2050.   370 

Discussion 371 

Early detection of extinction risks under climate change 372 

Despite short time frames for assessing population declines, our results for A. 373 

darlingtoni suggest that, for some species with short life cycles, the IUCN Red List 374 

criteria may be more sensitive to extinction risks posed by climate change than 375 

anticipated. Under the most extreme modelled scenario in which extinction occurred 376 

in 100% of simulations by 2095, A. darlingtoni first qualified under criterion A 377 

(population decline) for listing as threatened (Vulnerable category) in 2050. Under the 378 

four least severe scenarios, A. darlingtoni did not qualify for listing as threatened 379 

under criterion A at any time during the twenty-first century and the risk of extinction 380 

by 2100 was estimated to be zero. Risks could not be quantified beyond 2100, the 381 

shapes of population trajectories suggest that species persistence could be certain for 382 

several decades into the twenty-second century. 383 

 384 

More importantly, criterion A was not the only criterion that identified when A. 385 

darlingtoni was at appreciable risk of extinction. In most cases, A. darlingtoni 386 

qualified for threatened status under criteria B (distribution size) and/or E 387 
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(quantitative estimates of extinction risk) before it met criterion A, and the overall 388 

outcome of assessments never relied upon criterion A alone. Under the most severe 389 

scenario, the species was assessed as Vulnerable under criterion E as early as 2010 390 

and, by the time it qualified as Vulnerable under criterion A in 2050, it also qualified 391 

at that level under criterion B. Hence the Red List criteria identified the species as 392 

being at risk of extinction 85 years before it actually went extinct and 40 years before 393 

it met criterion A. Under criterion A alone, the species qualified for listing 45 years 394 

before its modelled extinction. For all other modelled climate change scenarios, A. 395 

darlingtoni qualified for threatened listing at least 80 years prior to its inferred date of 396 

extinction based on the shape of its population trajectory in the late twenty-first 397 

century. 398 

 399 

It is noteworthy that the time frames for assessing criterion E (10 years or 3 400 

generations, 20 years or five generations and 100 years, respectively for CR, EN and 401 

VU) are longer than those for criterion A (10 years or 3 generations for all threat 402 

categories), and that criterion B does not specify explicit time frames (only qualitative 403 

evidence of a continuing decline). These differences between individual criteria 404 

underpin their ensemble properties and buffer against extreme sensitivity of risk 405 

assessment outcomes to short generation lengths. 406 

 407 

By indicating that A. darlingtoni is likely to qualify for threatened status 40-80 years 408 

before it goes extinct (depending on which criteria are assessable), our results suggest 409 

that that the Red List criteria perform reasonably well as an early-warning system for 410 

conservation planners and managers. How much lead time an 'early-warning' system 411 

should give depends on the practicalities of environmental policy and management, 412 
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bureaucratic or political inertia and the anticipated species response times to various 413 

actions. This mix of factors suggests a need for a minimum of several decades 414 

warning between initial listing and extinction with longer lead times required if a 415 

desire for greater certainty or socio-economic costs motivated a delay in action until 416 

Endangered or Critically Endangered listing. The long lags associated with climate 417 

change mitigation and some adaptation measures underscores the need for early 418 

action.. 419 

Limitations of analysis 420 

In this paper we examined only a single species chosen specifically to represent an 421 

identified potential weakness in the Red List criteria, namely the short time frame for 422 

assessing future declines relative to the expected time scale of climate change 423 

impacts. Our focus on A. darlingtoni, with contrasting population trajectories under 424 

different future climates, permitted a detailed examination of the assessment processes 425 

and development of an analytical approach.  This approach will be useful for 426 

evaluating the sensitivity of the Red List criteria to climate change impacts on a larger 427 

group of species with more diverse life histories. Additional studies of short-lived 428 

species with different temporal patterns of decline, and of longer-lived species with 429 

different climate-life history dependencies would further advance understanding of 430 

how the Red List criteria perform as an early warning system for climate change 431 

impacts. 432 

 433 

We assumed that our study species would not show any appreciable evolutionary 434 

response to climate change that may influence its future persistence. This assumption 435 

warrants further exploration because species with short generation lengths, such as A. 436 

darlingtonii, might experience mutation and natural selection at rates that are rapid 437 
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enough to enhance fitness under changing climates (Hoffmann and Sgro 2011). 438 

Phenotypic or behavioural plasticity may also influence in situ persistence of 439 

populations under a changing climate. Although our capacity to predict which short-440 

lived species might undergo evolutionary responses to climate change is currently 441 

limited, such effects have been demonstrated in a range of short-lived species (Skelley 442 

et al. 2007; Franks and Hoffmann 2012). We expect evolutionary responses to delay 443 

the time at which listing in a threatened category is triggered, as well as the time to 444 

eventual extinction. This is unlikely to result in shorter warning times, and hence our 445 

conclusions should be conservative whether not evolutionary responses occur. Species 446 

with long generation times, however, may be more sensitive to climate change 447 

because genomic change is less likely to keep pace with climate change. 448 

 449 

For analytical economy, we used averaged estimates of population size and 450 

distribution (with confidence intervals) across 1000 simulations for the variables 451 

addressed by the criteria. In reality, each of the 1000 replicates represents an 452 

alternative future scenario that could be assessed individually against the criteria. 453 

Averaging may have under-estimated the trends in some scenarios. The risk 454 

assessment outcomes from averaged estimates may approximate modal or median 455 

assessments based on individual trajectories, but this remains to be tested. 456 

 457 

Although we incorporated uncertainty into our analysis by implementing fuzzy 458 

calculations on best estimates with upper and lower bounds for all input variables 459 

(Akçakaya et al. 2000), our assessments are likely to have underestimated the 460 

uncertainty relative to real-world assessments. This is because our simulated 461 

population trajectories did not incorporate observer error, which is likely to be a 462 
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significant source of uncertainty in real-world estimates of population sizes based on 463 

field surveys (Burgman et al. 1999; Regan et al. 2002). Furthermore, although we 464 

incorporated model uncertainty by using projections based on multiple GCMs, we 465 

ignored other components of model uncertainty, such as in the demographic model 466 

and SDM. For example, biophysical models may project different distributions to 467 

those produced by correlative SDMs (Kearney & Porter 2009). More realistic levels 468 

of uncertainty could be achieved by i) using simulations based on several plausible 469 

demographic models and SDMs; and ii) adding a random error to modelled estimates 470 

to simulate field sampling (Zurell et a. 2010). 471 

Factors influencing performance of Red List criteria under climate change 472 

Several factors potentially influence the performance of the Red List criteria for 473 

species threatened by climate change. Firstly, in our analysis the earliest detection of 474 

threat was reliant upon a single criterion. Often this was criterion E, which is more 475 

likely to detect extinction risks than are other criteria (McLean & Wilson 2011), but is 476 

typically more data-demanding and time-consuming to assess. When criterion E was 477 

not evaluated, several simulations showed that a taxon could remain listed as Least 478 

Concern for several decades despite being at appreciable (>10%) risk of extinction 479 

within a century. This could be problematic when data are insufficient to support a 480 

quantitative analysis of extinction risk. Indeed, few of the currently Red-Listed taxa 481 

have been assessed for criterion E (IUCN 2011). This may sometimes be due to 482 

limited expertise or time to construct appropriate models, rather than a lack of data. 483 

Assa darlingtoni, for example, had not previously been assessed under criterion E, 484 

even though sufficient data were available. 485 

 486 
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Risk assessments for later in the twenty-first century were shown to be robust to 487 

missing data. Nevertheless, our results reinforce IUCN's recommendation that 'each 488 

taxon should be evaluated against all the criteria' (IUCN 2001, p5). In some cases this 489 

may require engaging additional expertise or resources to support assessments. Our 490 

study showed that the models necessary to assess criterion E also have the capacity to 491 

produce bounded estimates of population size, distribution area and their trends, 492 

enabling more comprehensive assessments of criteria A - D than otherwise possible.  493 

 494 

Secondly, optimal performance of the Red List categories and criteria relies on correct 495 

interpretation of the criteria and supporting concepts. Our risk assessments closely 496 

followed the current guidelines to derive quantitative estimates of the required 497 

variables over the appropriate time frames and spatial scales (IUCN 2011). We also 498 

incorporated uncertainty into the calculations to determine the range of plausible risk 499 

assessment outcomes. Akçakaya et al. (2006) noted that several assessments of 500 

extinction risk under climate change used modified or incomplete versions of the 501 

criteria. This may affect the performance and consistency of the criteria and their 502 

ability to estimate relative risks.  503 

 504 

Thirdly, to inform proactive policy and management as climate change and its impacts 505 

unfold, an early warning system relies upon monitoring of species populations and 506 

distributions to support regular risk assessments (Butchart et al. 2010). Responsive 507 

management would likely require more frequent assessments than are currently 508 

implemented. The most recent global Red List assessment for A. darlingtoni was 509 

conducted a decade ago (Hero et al. 2004).  510 
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Table 1. Current status of Assa darlingtoni in different geographic domains. 639 
Domain List Status  Source 

Global IUCN Red 
List of 
threatened 
species 

Least 
Concern 

http://www.iucnredlist.org/details/full/411
30/0, downloaded 14/1/2013 

National Australian 
Environment 
Protection 
and 
Biodiversity 
Conservation 
Act 1992 

Not listed http://www.environment.gov.au/cgi-
bin/sprat/public/publicthreatenedlist.pl?w
anted=fauna, downloaded 14/1/2013 

State Queensland 
Nature 
Conservation 
Act 1992 

Near 
Threatened 

http://www.ehp.qld.gov.au/wildlife/threat
ened-species/near-
threatened/near_threatened_animals.html, 
downloaded 14/1/2013 

State NSW 
Threatened 
Species 
Conservation 
Act 1995 

Vulnerable http://www.environment.nsw.gov.au/threa
tenedspeciesapp/profile.aspx?id=10070, 
downloaded 14/1/2013 

 640 
641 
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Table 2. Environmental variables used as predictors of suitable habitat for Assa 642 
darlingtoni. Six (x) of the predictors were included in the best model, while a 643 
substrate mask (+) was applied to exclude predicted suitable habitat from coastal 644 
sands. 645 

Predictor layer Source 
Best 
model 

Annual mean temperature BioClim v6.0 x 
Mean diurnal temperature range BioClim v6.0 x 
Temperature seasonality BioClim v6.0  
Annual mean moisture index BioClim v6.0  
Mean moisture index of the lowest 
quarter BioClim v6.0 x 
Maximum topographic wetness index  x 
Slope  x 

Substrate mask (excluding coastal sands) 
Keith (2011) with additions 
for SE Qld + 

Native vegetation (present/absent) 
Keith (2011) with additions 
for SE Qld x 

 646 
 647 
 648 
 649 
 650 
 651 
 652 
 653 
 654 
 655 
 656 
 657 
 658 
 659 
 660 
 661 
 662 
 663 
Table 3. Estimated vital rates (and coefficients of variation) for the matrix population 664 
model for A. darlingtoni. 665 
 Tadpole Juvenile Adult 
Tadpole  0 0 5(2%) 
Juvenile 0.6(2%) 0 0 
Adult 0 0.2(2%) 0.4(1%) 
 666 

667 
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Table 4. IUCN Red List status of Assa darlingtoni assessed for present day (2010) 668 
and four future dates under a stable climate and using projections from four different 669 
Global Circulation Models (bold) and two emission scenarios. Status is based on best 670 
estimate with plausible bounds in parentheses. The criteria determining the overall 671 
status are listed (in parentheses if the best estimate matches overall status, but 672 
plausible bounds span lower categories of risk). Omission shows the overall status if 673 
data were omitted for the criterion supporting the highest status. 674 
 675 
    A1FI scenario     A2 scenario   
Year Status Criteria Omission Status Criteria Omission 

Stable climate      
2010 LC(LC-LC) - LC    
2030 LC(LC-LC) - LC    
2050 LC(LC-LC) - LC    
2070 LC(LC-LC) - LC    
2090 LC(LC-LC) - LC    

CSIRO-Mk3      
2010 VU(VU-VU) E LC LC(LC-LC) - LC 
2030 VU(VU-VU) E LC VU(VU-VU) B1,B2,E VU 
2050 VU(VU-EN) (A2),B2,E VU EN(EN-EN) B1 VU 
2070 EN(EN-EN) B1,B2 VU EN(EN-EN) B1,B2 VU 
2090 CR(CR-CR) A3,A4,B1,B2,E CR CR(CR-CR) A3,A4 EN 

GDFL-CM2      
2010 LC(LC-LC) - LC LC(LC-LC) - LC 
2030 LC(LC-LC) - LC LC(LC-LC) - LC 
2050 VU(VU-VU) B1 LC VU(VU-VU) B1 LC 
2070 EN(VU-EN) B1 VU VU(VU-VU) B1,B2,E VU 
2090 EN(EN-EN) B1 VU EN(EN-EN) B1 VU 

MPMP-ECHAM5      
2010 LC(LC-LC) - LC LC(LC-LC) - LC 
2030 VU(LC-VU) E LC VU(LC-VU) E LC 
2050 EN(EN-EN) B1 VU VU(VU-EN) B1,B2,E VU 
2070 EN(EN-EN) B1,B2 VU EN(EN-EN) B1 VU 
2090 EN(EN-EN) A2,A3,B1,B2,E EN EN(EN-EN) B1,B2 EN 

UKMO-HADCM3      
2010 LC(LC-LC) - LC LC(LC-LC) - LC 
2030 VU(LC-VU) B1,E VU VU(LC-VU) E LC 
2050 EN(VU-EN) B1 VU VU(VU-VU) B1,B2,E VU 
2070 EN(EN-EN) B1,B2 EN EN(EN-EN) B1 VU 
2090 EN(EN-EN) B1,B2,E EN EN(EN-VU) B1,B2 EN 

 676 
677 
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Figure 1. Population trajectories- of Assa darlingtoni under alternative future climate 678 
projections: (a) stable climate and CSIRO Mk3; (b) MPMP-ECHAM5; (c) UKMO-679 
HADCM3; and (d) GDFL-CM2. Population size expressed as percentage of initial 680 
number of mature females. 681 
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