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Abstract 8 

Fraud is a pervasive problem and can occur as fabrication, falsification, plagiarism or theft. The 9 

scientific community is not exempt from this universal problem and several studies have 10 

recently been caught manipulating or fabricating data. Current measures to prevent and deter 11 

scientific misconduct come in the form of the peer-review process and on-site clinical trial 12 

auditors. As recent advances in high-throughput omics technologies have moved biology into 13 

the realm of big-data, fraud detection methods must be updated for sophisticated computational 14 

fraud. In the financial sector, machine learning and digit-preference are successfully used to 15 

detect fraud. Drawing from these sources, we develop methods of fabrication detection in 16 

biomedical research and show that machine learning can be used to detect fraud in large-scale 17 

omic experiments. Using the raw data as input, the best machine learning models correctly 18 

predicted fraud with 84-95% accuracy. With digit frequency as input features, the best models 19 

detected fraud with 98%-100% accuracy. All of the data and analysis scripts used in this project 20 

are available at https://github.com/MSBradshaw/FakeData. 21 

Introduction 22 

Fraud is a pervasive problem and can occur as fabrication, falsification, plagiarism or theft. 23 

Examples of fraud are found in virtually every field, such as: education, commerce and 24 

technology. With the rise of electronic crimes, specific criminal justice and regulatory bodies 25 

have been formed to detect sophisticated fraud, creating an arms-race between methods to 26 

deceive and methods to detect deception. The scientific community is not exempt from the 27 

universal problem of fraud, and several studies have recently been caught manipulating or 28 

fabricating data [1,2] or are suspected of it [3]. More than two million scientific articles are 29 

published yearly and ~2% of authors admit to data fabrication [4]. When asked if their 30 

colleagues had fabricated data, positive response rates rose to 14-19% [4,5]. Some domains or 31 
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locales have somewhat higher rates of data fabrication; in a recent survey of researchers at 32 

Chinese hospitals, 7.37% of researchers admitted to fabricating data [6]. Overall, these rates of 33 

data fabrication potentially means tens to hundreds of thousands of articles are published each 34 

year with manipulated data.  35 

 36 

Data in the biological sciences is particularly vulnerable to fraud given its size - which makes it 37 

easier to hide data manipulation - and researcher’s dependence on freely available public data. 38 

Recent advances in high-throughput omics technologies have moved biology into the realm of 39 

big-data. Many diseases are now characterized in populations, with thousands of individuals 40 

characterized for cancer [7], diabetes [8] , bone strength [9], and health care services for the 41 

general populace [10]. Large-scale characterization studies are also done for cell lines and drug 42 

responses [11,12]. With the rise of importance of these large datasets, it becomes imperative 43 

that they remain free of errors both unintentional and intentional [13].  44 

 45 

Current methods for ensuring the validity of research is largely limited to the peer-review 46 

process which as of late has proven to be insufficient at spotting blatant duplication of images 47 

[14], let alone subtleties hidden in large scale data. Data for clinical trials can be subject to 48 

reviews and central monitoring [15,16]. However, the decision regarding oversight methodology 49 

and frequency is not driven by empirical data, but rather is determined by clinics’ usual practice 50 

[17]. The emerging data deluge challenges the effectiveness of traditional auditing practices to 51 

detect fraud, and several studies have suggested addressing the issue with improved 52 

centralized and independent statistical monitoring [5,6,16,18]. However, these 53 

recommendations are given chiefly to help ensure the safety and efficacy of the study, not data 54 

integrity. 55 

 56 
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In 1937, physicist Frank Benford observed in a compilation of 20,000 numbers that the first digit 57 

did not follow a uniform distribution as one may anticipate [19]. This pattern holds true in most 58 

large collections of numbers, including scientific data. Comparing a distribution of first digits to a 59 

Benford distribution can be used to identify deviations from the expected frequency, often 60 

because of fraud. Recently Benford’s law has been used to identify fraud in financial records of 61 

international trade [20] and money laundering [21]. It has also been used on a smaller scale to 62 

reaffirm suspicions of fraud in clinical trials [3]. 63 

 64 

The distinction between fraud and honest error is important to make. Fraud is the intent to cheat 65 

[5]. This is the definition used throughout this paper. An honest error might be, forgetting to 66 

include a few samples, while intentionally excluding samples would be fraud. Copying and 67 

pasting values from one table to another incorrectly is an honest error but intentionally changing 68 

the values is fraud. In these examples the results may be the same but the intent behind them 69 

differs wildly. In efforts to maintain data integrity, identifying the intent of the misconduct may be 70 

impossible, and is also a secondary consideration after suspect data has been identified.  71 

 72 

Data fabrication is “making up data or results and recording or reporting them” [5]. This type of 73 

data manipulation is free from the above ambiguity relating to the author’s intent. Making up 74 

data is always wrong. We explore methods of data fabrication and detection in molecular omics 75 

data using supervised machine learning and Benford-like digit-frequencies. We do not attempt 76 

to explain why someone may choose to fabricate their data - as other study have done [6,22]; 77 

our only goal is to evaluate the utility of digit-frequencies to differentiate real from fake data.The 78 

data used in this study comes from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) 79 

cohort for endometrial carcinoma, which contains copy number alteration (CNA) measurements 80 

from 100 tumor samples. We created 50 additional fake samples for these datasets. Three 81 

different methods of varying sophistication are used for fabrication: random number generation, 82 
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resampling with replacement and imputation. We show that machine learning and digit-83 

preference can be used to detect fraud with near perfect accuracy. 84 

Methods 85 

Real Data 86 

The real data used in this publication originated from the genomic analysis of uterine 87 

endometrial cancer. As part of the Clinical Proteomics Tumor Analysis Consortium (CPTAC), 88 

100 tumor samples underwent whole genome and whole exome sequencing and subsequent 89 

copy number analysis. We used the results of the copy number analysis as is, which is stored in 90 

our GitHub repository at https://github.com/MSBradshaw/FakeData.  91 

 92 

Fake Data 93 

Fake data used in this study was generated using three different methods. In each method, we 94 

created 50 fake samples which were combined with the 100 real samples to form a mixed 95 

dataset. The first method to generate fake data was random number generation. For every gene 96 

locus, we first find the maximum and minimum values observed in the original data. A new 97 

sample is then fabricated by randomly picking a value within this gene specific range. The 98 

second method to generate fake data was sampling with replacement. For this, we create lists 99 

of all observed values across the cohort for each gene. A fake sample is created by randomly 100 

sampling from these lists with replacement. The third method to generate fake data was 101 

imputation. The R package missForrest [23] was repurposed for data fabrication. A fake sample 102 

was generated by first creating a copy of a real sample. Then we iteratively nullified 10% of the 103 
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data and imputed these NAs with missForrest until every value has been imputed. See 104 

Supplemental Figure 1. 105 

 106 

Machine Learning Training 107 

With a mixed dataset containing 100 real samples and 50 fake samples, we proceeded to 108 

create and evaluate machine learning models which predict whether a sample is real or 109 

fabricated (Supplemental Figure 2). The 100 real and 50 fake samples were both randomly split 110 

in half, one portion added to a training set and the other held out for testing. Using Python’s 111 

SciKitLearn library, we evaluated multiple machine learning models, gradient boosting (GBD), 112 

Naïve Bayes, Random Forest, K-Nearest Neighbor (KNN), Multi-layer Perceptron (MLP) and 113 

Support Vector Machine (SVM). Training validation was done using 10-fold cross validation. We 114 

note explicitly that the training routine was never able to use testing data. After all training was 115 

complete, the held-out test set was then fed to each model for prediction and scoring. We used 116 

simple accuracy as a metric. For each sample in the test set, ML models would predict whether 117 

it was real or fabricated. Model accuracy was calculated as the number of correct predictions 118 

divided by the number of total predictions. The entire process of fake data generation and ML 119 

training/testing was repeated 50 times. Different random seeds were used when generating 120 

each set of fake data. Thus fake samples in all 50 iterations are distinct from each other. All of 121 

the data and analysis scripts used in this project are available at 122 

https://github.com/MSBradshaw/FakeData. 123 

 124 

Benford-Like Digit Preferences 125 

Benford’s Law or the first digit law has been instrumental at catching fraud in various financial 126 

situations [20,21] and in small scale clinical trials [3]. The method presented here is designed 127 

with the potential to generalize and be applied to multiple sets of data of varying types and 128 
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configurations (e.i. different measured variables (features) and different quantities of variables). 129 

Machine learning typically cannot handle data where the features are not consistent in number 130 

and type. Converting all measured variables to digit frequencies circumvents this problem. Digit 131 

frequencies are calculated as the number of occurrences of a single digit (0-9) divided by the 132 

total number of features. In the method described in this paper, a sample’s features are all 133 

converted to digit frequencies of the first and second digit after the decimal. Thus for each 134 

sample the features are converted from ~17,000 copy number alterations to 20 digit 135 

preferences. Using this approach, whether a sample has 100 or 17,000 features it can still be 136 

trained on and classified by the same model. 137 

Results 138 

Our goal is to explore the ability of machine learning methods to identify fabricated data hidden 139 

within large datasets. Our results do not focus on the motivations to fabricate data, nor do they 140 

explore in depth the infinite methodological ways to do so. Our study focuses on whether 141 

machine learning can be trained to correctly identify fabricated data. Our general workflow is to 142 

take real data and mix in fabricated data. When training, the machine learning model is given 143 

access to the label (i.e. real or fabricated); the model is tested or evaluated by predicting the 144 

label of data which was held back from training (see Methods).  145 

Fake Data 146 

The real data used in this study comes from the Clinical Proteomic Tumor Analysis Consortium 147 

(CPTAC) cohort for endometrial carcinoma, specifically the copy number alteration (CNA) data. 148 

The form of this real data is a large table of floating point values. Rows represent individual 149 

tumor samples and columns represent genes; values in the cells are thus the copy number 150 
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quantification for a single gene in an individual tumor sample. This real data was paired with 151 

fabricated data and used as an input to machine learning classification models (see Methods). 152 

Three different methods of data fabrication were used in this study: random number generation, 153 

resampling with replacement, and imputation (Supplemental Figure 1). The three methods 154 

represent three realistic ways that an unscrupulous scientist might create novel data. Each 155 

method has benefits and disadvantages, with imputation being both the most sophisticated and 156 

also the most computationally intense and complex. As seen in Figure 1, the random data 157 

clusters far from the real data. Both the resampled and imputed data cluster tightly with the real 158 

data in a PCA plot, with the imputed data also generating a few reasonable outlier samples.  159 

 160 

Figure 1 - Principal Component Analysis of real and fake samples. Copy number data for 161 

the real and fabricated samples are shown. The fabricated data created via random number 162 
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generation is clearly distinct from all other data. Fabricated data created via resampling or 163 

imputation appears to cluster very closely with the real data. 164 

 165 

To look further into the fabricated data, we examined whether fake data preserved correlative 166 

relationships present in the original data (Supplemental Figure 3). This is exemplified by two 167 

pairs of genes. PLEKHN1 and HES4 are adjacent genes found on chromosome 1p36 separated 168 

by ~30,000 bp. Because they are so closely located on the chromosome, it is expected that 169 

most copy number events like large scale duplications and deletions would include both genes. 170 

As expected, their CNA data has a Spearman correlation coefficient of 1.0 in the original data, a 171 

perfect correlation. The second pair of genes, DFFB and OR4F5, are also on chromosome 1, 172 

but are separated by 3.8 Mbp. As somewhat closely located genes, we would expect a modest 173 

correlation between CNA measurements, but not as highly correlated as the adjacent gene pair. 174 

Consistent with this expectation, their CNA data has a Spearman correlation coefficient of 0.27. 175 

Depending on the method of fabrication, fake data for these two gene pairs may preserve these 176 

correlative relationships. When we look at the random and resampled data for these two genes, 177 

all correlation is lost (Supplemental Figure 3 C, D, E and F). Imputation, however, produces 178 

data that closely matches the original correlations, PLEKHN1 and HES4 R2 = 0.97; DFFB and 179 

OR4F5 R2 = 0.32 (Supplemental Figure 3 G and H).  180 

Machine learning with quantitative data 181 

We tested six different methods for machine learning to create a model capable of detecting 182 

fabricated data: Gradient Boosting (GBC), Naïve Bayes, Random Forest, K-Nearest Neighbor 183 

(KNN), Multi-layer Perceptron (MLP) and Support Vector Machine (SVM). Models were given as 184 

features the quantitative data table containing copy number data on 75 labeled samples, 50 real 185 

and 25 fake. In the copy number data, each sample had measurements for ~17,000 genes, 186 
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meaning that each sample had ~17,000 features. After training, the model was asked to classify 187 

held-out testing data containing 75 samples, 50 real and 25 fake. The classification task 188 

considers each sample separately, meaning that the declaration of real or fake is made only 189 

from data of a single sample. We evaluated the model on simple accuracy, whether the 190 

predicted label was correct or incorrect. To ensure that our results represent robust 191 

performance, model training and evaluation was performed 50 times; each time a completely 192 

new set of 25 fabricated samples were made (see Methods). Reported results represent the 193 

average accuracy of these 50 trials. We note that two methods, SVM and MLP, performed 194 

poorly compared to other classification methods. Testing data consisted of 2/3 real data and 1/3 195 

fake data; therefore, baseline accuracy (the accuracy achieved if the model predicting all test 196 

samples as the majority class) is 66%. Both SVM and MLP had an average accuracy at or 197 

below this baseline for classification of the simplest fabrication method (random), and were 198 

excluded from further analysis.  199 

 200 

The remaining four models performed relatively well on the classification task for data fabricated 201 

with the random approach. The average accuracy of 50 trials was: Random Forest 94%, GBC 202 

92%, Naïve Bayes 88%, and KNN 72% (Figure 2A). Mean classification accuracies were lower 203 

for data created with the resampling method, with most models losing ~10% accuracy (Random 204 

Forest 84%, GBC 83%, Naïve Bayes 73%, and KNN 70%). We also note that the variability in 205 

model performance was much higher for classification of the resampled data (Figure 2B). As the 206 

resampling method uses data values from the real data, it is possible that fake samples 207 

sometimes more closely resemble real samples. Imputation classification results fluctuated 208 

(Random Forest 90%, GBC 89%, Naïve Bayes 66%, and KNN 56%). While Random Forest and 209 

GBC both increased in accuracy compared to the resampled data, Naïve Bayes and KNN both 210 

now perform at or below the baseline accuracy (Figure 2C). 211 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2020. ; https://doi.org/10.1101/757070doi: bioRxiv preprint 

https://doi.org/10.1101/757070
http://creativecommons.org/licenses/by/4.0/


 11

 212 

Figure 2 - Classification accuracy using copy number data. Fabricated data was mixed with 213 

real data and given to four machine learning models for classification. Data shown represents 214 

50 trials for 50 different fabricated dataset mixes. Features in this dataset are the copy number 215 

values for each sample. A. Results for data fabricated with the random method, mean 216 

classification accuracy: Random Forest 94% (+/- 3.1%), GBC 92% (+/- 4.5%), Naïve Bayes 217 

88% (+/- 3.5%), and KNN 72% (+/- 2.6%). B. Results for data fabricated with the resampling 218 

method, mean classification accuracy: Random Forest 84% (+/- 6.5%), GBC 83% (+/- 5.2%), 219 

Naïve Bayes 73% (+/- 15.2%), and KNN 70% (+/- 0%). C. Results for data fabricated with the 220 

imputation method, mean classification accuracy: Random Forest 90% (+/- 3.4%), GBC 89% 221 

(+/- 6.4%), Naïve Bayes 66% (+/- 7.4%), and KNN 56% (+/- 5.3%). 222 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2020. ; https://doi.org/10.1101/757070doi: bioRxiv preprint 

https://doi.org/10.1101/757070
http://creativecommons.org/licenses/by/4.0/


 12

 223 

Machine learning with digit preference 224 

We were unsatisfied with the classification accuracy of the above models. One challenge for 225 

machine learning in our data is that the number of features (~17,000) far exceeds the number of 226 

samples (75). We therefore explored ways to reduce or transform the feature set, and also to 227 

make the feature set more general and broadly applicable. Intrigued by the success of digit 228 

frequency methods in the identification of financial fraud [21], we evaluated whether this type of 229 

data representation could work for bioinformatics data as well. Therefore, all copy number data 230 

was transformed into 20 features, representing the digits 0-9 in the first and second place after 231 

the decimal of each gene expression value. While Benford’s Law describes the frequency of the 232 

first digit, genomics and proteomics data are frequently normalized or scaled and so the first 233 

digit may not be as characteristic. For this reason, our method may be accurately referred to as 234 

Benford’s Law inspired or Benford-like. These features were tabulated for each sample to create 235 

a new data representation and fed into the exact same machine learning training and testing 236 

routine described above. Each of these 20 new features contain decimal values ranging from 237 

0.0 to 1.0 representative of the proportional frequency that digit occurs. For example, one 238 

sample’s value in the feature column for the digit 1 may contain the value 0.3. This means that 239 

in this sample’s original data the digit 1 occurred in the first position after the decimal place 30% 240 

of the time.  241 

 242 

In addition to reducing the number of features, converting all features into digit frequencies 243 

improves the model’s generality. Machine learning typically cannot handle data where the 244 

features are not consistent in number and type. Converting all measured variables to digit 245 

frequencies circumvents this problem. For instance, if you had a data set of CNA and 246 

transcriptomic data a machine learning model could not train and test on both of these. The 247 
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features in these datasets would differ in the number of features and what these features 248 

represent. But once all information has been converted into digit frequencies the number and 249 

type of features are standardized, enabling the model to work any number of different datasets. 250 

 251 

In sharp contrast to the models built on the quantitative copy number data, machine learning 252 

models which utilized the digit frequencies were highly accurate and showed little variability over 253 

the 50 trails (Figure 3). When examining the results of the data fabricated via imputation (both 254 

the most sophisticated and most realistic), the models achieved impressively high accuracy. As 255 

an average accuracy for the 50 trials, both random forest and the gradient boosting models 256 

achieved 100% accuracy. The naïve Bayes model was highly successful with a mean 257 

classification accuracy 97%. 258 

 259 

Figure 3 - Classifications accuracy using digit frequency data. Fabricated data was mixed 260 

with real data and given to four machine learning models for classification. Data shown 261 

represents 50 trials for 50 different fabricated dataset mixes. Features in this dataset are the 262 
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digit frequencies for each sample. A. Results for data fabricated with the random method, mean 263 

classification accuracy: Random Forest 99% (+/- 1.0%), GBC 100% (+/- 0.2%), Naïve Bayes 264 

100% (+/- 0.0%), and KNN 93% (+/- 3.4%). B. Results for data fabricated with the resampling 265 

method, mean classification accuracy: Random Forest 98% (+/- 1.3%), GBC 94% (+/- 3.5%), 266 

Naïve Bayes 97% (+/- 2.1%), and KNN 92% (+/- 2.8%). C. Results for data fabricated with the 267 

imputation method, mean classification accuracy: Random Forest 100% (+/- 1.0%), GBC 100% 268 

(+/- 0.7%), Naïve Bayes 97% (+/- 1.1%), and KNN 89% (+/- 3.8%). 269 

 270 

Machine learning with limited data 271 

With 17,000 CNA gene measurements, the digit frequencies represent a well sampled 272 

distribution. Theoretically, we realize that if one had an extremely limited dataset with CNA 273 

measurements for only 10 genes, the sampling of the frequencies for the 10 digits will be poor. 274 

To understand how much data is required for a good sampling of the digit-frequencies, we 275 

iteratively downsampled our measurements from 17,000 to 10. With the gene-features 276 

remaining in each downsample, the digit frequencies were re-calculated. Downsampling was 277 

performed uniformly at random without replacement. For each measurement size 100 replicates 278 

were run, all with different permutations of the downsamples. Results from this experiment can 279 

be seen in Figure 4. The number of gene-features used to calculate digit frequencies does not 280 

appear to make a difference at n > 500. In the 100 gene-feature trial, both Naive Bayes and 281 

KNN have a significant drop in performance, while the Random Forest and Gradient Boosting 282 

model remained relatively unaffected down to approximately 40 features. Surprisingly, these top 283 

performing models (GBC and Random Forest) do not drop below 95% accuracy until they have 284 

less than 20 gene-features.  285 

 286 
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One hesitation for using machine learning with smaller datasets (i.e. fewer gene-features per 287 

data point) is the perceived susceptibility to large variation in performance. As noted, these 288 

downsampling experiments were performed 100 times, and error bars representing the standard 289 

error are shown in Figure 4. We note that even for the smallest datasets, performance does not 290 

noticeably vary between the 100 trials. In fact the standard error for small datasets (e.g. 20 or 291 

30 gene-features) is lower than when there were thousands. Thus we believe that the digit-292 

frequency based models will perform well on both large-scale omics data and also on smaller 293 

‘targeted’ data acquisition paradigms like multiplexed PCR or MRM proteomics.  294 

 295 

Figure 4 - Classifications accuracy vs number of features. The original 17,000 CNA 296 

measurements were randomly downsampled incrementally to 10 and converted to digit-297 

frequency training and test features for machine learning models. When 1,000+ measurements 298 

are used in the creation of digit-preference features, there appears to be little to no effect on 299 

mean accuracy. Below 1,000 Naive Bayes and KNN models begin to lose accuracy quickly. 300 
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GBC and Random Forest do suffer in accuracy as the number measurements used to generate 301 

features lowers but remain above 95% accurate until less than 20 measurements are included. 302 

Discussion 303 

We present here a proof of concept method for detecting fabrication in biomedical data. Just as 304 

has been previously shown in the financial sector, digit frequencies are a powerful data 305 

representation when used in combination with machine learning to predict the authenticity of 306 

data. Although the data used herein is copy number variation from a cancer cohort, we believe 307 

that the Benford-like digit frequency method can be generalized to any tabular numeric data. 308 

While multiple methods of fabrication were used, we acknowledge there are more subtle or 309 

sophisticated methods. We believe that fraud detection methods, like the models presented 310 

herein, could be refined and generalized for broad use in monitoring and oversight.  311 

 312 

There is an increasing call for improved oversight and review of scientific data[5,6,16,18], and 313 

various regulatory bodies or funding agencies could enforce scientific integrity through the 314 

application of these or similar methods. For example, the government bodies charged with 315 

evaluating the efficacy of new medicine could employ such techniques to screen large datasets 316 

that are submitted as evidence for the approval of new drugs. For fundamental research, 317 

publishers could mandate the submission of all data to fraud monitoring. Although journals 318 

commonly use software tools to detect plagiarism in the written text, a generalized 319 

computational tool focused on data could make data fraud detection equally simple. 320 
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Supplemental Figure 1 - Methods of Data fabrication. (A) The random method of data 381 

fabrication identifies the range of observation for a specific locus and then randomly chooses a 382 

number in that range. (B) The resampling method chooses values present in the original data. 383 

(C) The imputation method iteratively nullifies and then imputes data points from a real sample. 384 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2020. ; https://doi.org/10.1101/757070doi: bioRxiv preprint 

https://doi.org/10.1101/757070
http://creativecommons.org/licenses/by/4.0/


 23

 385 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 21, 2020. ; https://doi.org/10.1101/757070doi: bioRxiv preprint 

https://doi.org/10.1101/757070
http://creativecommons.org/licenses/by/4.0/


 24

Supplemental Figure 2 - Training and testing overview. After creating 50 fake samples using 386 

any one of the three methods of fabrication, the 100 real samples and 50 fake samples were 387 

randomly split into a train and test set of equal size and proportions (50 real and 25 fake in each 388 

set). The training sets were then used to train various machine learning models using 10-fold 389 

cross validation. Next, trained models were used to make predictions on the testing data. 390 

Predictions were then scored with total accuracy.  391 

 392 
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Supplemental Figure 3 - Data relationships in fabricated data. The correlation between pairs of 393 

genes is evaluated to determine whether fabrication methods can replicate inter-gene patterns. 394 

Plots on the left hand side (A,C,E, and G) display data from two correlated genes PLEKHN1 395 

and HES4, adjacent genes found on 1p36. Plots on the right hand side (B,D,F, and H) display 396 

genes DFFB and OR4F5 gene with marginal Spearman correlation in the real data (0.27). The 397 

plots reveal that random and resample data have little to no correlation between related genes. 398 

Imputation produces data with correlation values that are similar to the original data (0.97 and 399 

0.35, respectively). 400 
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