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Abstract 
The ability to detect faces in images is of critical ecological significance. It is a pre-requisite for other 

important face perception tasks such as person identification, gender classification and affect analysis. 

Here we address the question of how the visual system classifies images into face and non-face patterns. 

We focus on face detection in impoverished images, which allow us to explore information thresholds 

required for different levels of performance. Our experimental results provide lower bounds on image 

resolution needed for reliable discrimination between face and non-face patterns and help characterize the 

nature of facial representations used by the visual system under degraded viewing conditions. Specifically, 

they enable an evaluation of the contribution of luminance contrast, image orientation and local context on 

face-detection performance. 
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1. INTRODUCTION 
One of the most salient aspects of the human visual system is its ability to robustly interpret images under 

conditions that drastically reduce the effective image resolution. Probing the limits of this ability can yield 

valuable insights regarding the nature of the representations that the visual system uses for specific 

recognition tasks.  

 

In this paper, we focus on the task of face-detection under impoverished viewing conditions – determining 

whether an image pattern is a human face or not. Classifying an image fragment as a face is a necessary 

first step for many other facial analyses including identification, gender classification and affect 

recognition. Our emphasis on impoverished viewing conditions is motivated by three factors. First, normal 

viewing conditions are rarely optimal. Viewing distances may be large, the optics of the eyes may have 

refractive errors and the transparency of the atmosphere may be compromised by haze or smoke. Second, it 

may be easier to determine critical attributes necessary for face detection by reducing the amount of 

information available in an image. Third, experiments with impoverished images also implicitly allow us to 

characterize the performance of people with low-vision. Such information is valuable for developing 

rehabilitation programs and devices.  

 

A more pragmatic motivation for undertaking these studies derives from the domain of computer vision. 

The human visual system often serves as the de-facto standard for evaluating machine vision approaches. 

This is particularly true in the domain of face recognition where the versatility and robustness of human 

recognition mechanisms implicitly define the performance goals that artificial systems seek to match and 

eventually exceed. Clearly, in order to be able to use the human visual system as a useful standard to strive 

towards, we need to first have a comprehensive characterization of its capabilities. Considering the 

ecological significance of detecting faces at a distance, we can expect evolution to have endowed the 

primate brain with powerful strategies for accomplishing this task. Knowing the limits of performance of 

these recognition strategies under different conditions and with different cues can allow us to evaluate the 

potential of different proposed computer vision approaches and also how well their performance 

approaches the standard. It is important to stress that the limits of human performance do not necessarily 

define upper bounds on what is achievable. Specialized person detection systems (say those based on novel 

sensors, such as IR cameras) may well exceed human performance. However, in many real-world scenarios 

using conventional sensors, matching human performance remains an elusive goal. We hope that our 

experiments can not only give us a better sense of what this goal is, but also what computational strategies 

we could employ to move towards it and, eventually, past it. 

 

Surprisingly, there has been very little experimental work so far on face-detection. Most of the research 

attention has been directed to face-identification. Pioneering work on face identification with low-

resolution imagery was done by Harmon and Julesz [1973] and Morrone et al [1983]. Working with block 

averaged images of familiar faces (of the kind shown in figure 1), they found high recognition accuracies 

(approximately 95%) even with images containing just 16x16 blocks. More recently, Bachmann [1991] and 

Costen et al. [1994] have presented data that shows the dependence of face identification performance on 

facial images with systematically varied resolution. 

 

 
 
Figure 1. Images such as the one shown here have been used by several researchers to assess the limits 

of human face identification processes.  
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In all of these studies, the images presented were exclusively of faces. The experiments were designed to 

study within-class discrimination (‘whose face is it?’) rather than face classification per se (‘is this a 

face?’). Consequently, no systematic data exist about the dependence of face-detection performance on key 

image attributes such as resolution, contrast polarity and orientation. We have conducted a series of 

experiments to address these issues with the goal of characterizing the nature of facial representations used 

by the human visual system. 

 

2. FACE DETECTION EXPERIMENTS 
The specific questions we have investigated in this study are: 

 

Experiment 1: How does face detection accuracy change as a function of available image resolution? 

Experiment 2: Does the inclusion of local context around faces improve face detection performance? 

Experiment 3: How, if at all, do contrast negation and image orientation changes affect face detection? 

 

To be able to conduct these experiments, we have to confront an interesting challenge - what patterns 

should we use as non-faces? Selecting random fragments from non-face images is not a well-controlled 

approach. The face/non-face discrimination can be rendered unnaturally easy for certain choices of non-

face images (for instance, imagine drawing non-face patterns from a sky image). We need a more 

principled approach to generating non-face patterns.  

 

In very general terms, we would like to be able to draw our non-face patterns from the same general area in 

a high-dimensional object space where the face patterns are clustered. Morphing between face and non-face 

patterns is not a satisfactory strategy since all the intermediate morphs do have a contribution from a 

genuine face pattern and cannot, therefore, be considered true non-faces. An alternative strategy lies in 

using computational classification systems that operate by implicitly encoding clusters in multidimensional 

spaces [Yang & Huang, 1994; Sung and Poggio, 1994; Rowley et al, 1995]. Non-face patterns on which 

such systems make mistakes can then serve as the distractors for our psychophysical tasks. This approach, 

though not entirely devoid of shortcomings, is the one we have used in our work. The key caveat to keep in 

mind here is that the multidimensional cluster implicitly used by these computational systems may be 

different from the cluster encoded by the human visual system. However, based on the high-level of 

classification accuracy that at least some of these systems exhibit, it is reasonable to assume that there is a 

significant amount of congruence between the clusters identified by them and human observers. 

 

2.1. Experiment 1: Face detection at low-resolution 
 

What is the minimum resolution needed by human observers to reliably distinguish between face and non-

face patterns? More generally, how does the accuracy of face classification by human observers change as a 

function of available image resolution? These are the questions our first experiment is designed to answer. 

The study of images degraded due to blur provides a measure of the amount of information that is required 

for solving the detection task. 

 

2.1.1. Methods: 
Subjects were presented with randomly interleaved face and non-face patterns and, in a 'yes-no' paradigm, 

were asked to classify them as such. The stimuli were grouped in blocks, each having the same set of 

patterns, but at different resolutions. The presentation order of the blocks proceeded from the lowest 

resolution to the highest. Ten subjects participated in the experiment. They were drawn from undergraduate 

and graduate student populations at MIT and had normal or corrected to normal acuity. Presentations were 

self-timed and the images stayed up until the subject had responded by pressing one of two keys (one for 

‘face’ and the other for ‘non-face’). Stimuli were presented on a 19” Sony Trinitron monitor connected to a 

PIII 750 MHz PC running Windows 2000. 

 

Our stimulus set comprised 200 monochrome patterns. Of these, 100 were faces of both genders under 

different lighting conditions (set 1), 75 were non-face patterns (set 2) derived from a well-known face-

detection program (developed at the Carnegie Mellon University by Rowley et al [1995]) and the remaining 
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25 were patterns selected from natural images that have similar power-spectra as the face patterns (set 3). 

The patterns included in set 2 were false alarms (FAs) of Rowley et al's computational system, 

corresponding to the most conservative acceptance criterion yielding 95% hit rate. Sample non-face images 

used in our experiments are shown in figure 2. All of the face images were frontal and showed the face 

from the middle of the forehead to just below the mouth. Reduction in resolution was accomplished via 

convolution with Gaussians of different sizes (with standard deviations set to yield 2, 3, 4, and 6 cycles per 

face; these correspond to 1.3, 2, 2.5 and 3.9 cycles within the eye-to-eye distance ('ete'). All spatial 

resolutions henceforth are reported in terms of number of cycles between the two eyes). 

 

 
 
Figure 2. A few of the non-face patterns used in our experiments. The patterns comprise false alarms of a 

computational face-detection system and images with similar spectra as face images.  

 

 From the pooled responses of all subjects at each blur level, we computed the mean hit-rate for the 

true face stimuli and false alarm rates for each set of distractor patterns. These data indicated how subjects’ 

face-classification performance changed as a function of image resolution. Also, for a given level of 

performance, we were able to determine the minimum image resolution required. 

 

2.1.2. Results: 
Figure 3 shows data averaged across 10 subjects. Subjects achieved a high hit rate (96%) and a low false-

alarm rate (6% with Rowley et al’s FPs and 0% with the other distractors) with images having only 3.9 

cycles between the eyes. Performance remained robust (90% hit-rate and 19% false-alarm rate with the 

Rowley et al's FA distractor set) at even higher degrees of blur (2 cycles/ete). In proceeding from 2 to 1.3 

cycles/ete, the hit-rate fell appreciably, but subjects were still able to reliably distinguish between faces and 

non-faces. 

 
 

Figure 3. Results from experiment 1.The resolution units are the number of cycles eye to eye 
(ete). 
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To the best of our knowledge, this is the first systematic study of face-detection across multiple resolutions. 

The data provide lower-bounds on image-resolution sufficient for reliable discrimination between faces and 

non-faces. They indicate that the internal facial representations encode, and can be matched against, facial 

image fragments containing merely 2 cycles between the two eyes (cycles/eye to eye). The data also show 

that even under highly degraded conditions, humans are correctly able to reject most non-face patterns that 

the artificial systems confuse for faces. To further underscore the differences in capabilities of current 

computational face detection systems and the HVS, it is instructive to consider the typical image resolution 

needed by a few of the proposed machine-based systems: 19x19 pixels for Sung and Poggio [1994]; 20x20 

for Rowley et al [1995]; 24x24 for Viola and Jones [2001] and 58x58 for Heisle et al. [2001]). Thus, 

computational systems not only require a much larger amount of facial detail for detecting faces in real 

scenes, but also yield false alarms that are correctly rejected by human observers even at resolutions much 

lower than what they were originally detected at. 

 

Impressive as this performance of the HVS is, it may be an underestimate of observers’ capabilities. It is 

possible that the inclusion of context can improve performance further. In other words, in experiment 1, 

subjects made the face vs. non-face discrimination on the basis of the internal structure of faces. It has 

traditionally been assumed that this is the pattern that defines a face. However, it is not known whether the 

human visual system can use the local context around the internal features to improve its discrimination 

and to better tolerate image resolution reductions. Experiment 2 addresses this issue. 

 

2.2. Experiment 2: The role of local context in face-detection 
The prototypical configuration of the eyes, nose and mouth (the 'internal features') intuitively seems to be 

the most diagnostic cue for distinguishing between faces and non-faces. Indeed, machine based face 

detection systems typically rely exclusively on internal facial structure [Sung & Poggio, 1994; Rowley et 

al., 1995; Leung et al. 1995]. External facial attributes such as hair, facial bounding contours and jaw-line 

are believed to be too variable across individuals for inclusion in a stable face representation. These 

attributes constitute the local context of internal facial features. To assess the contribution of local context 

to face-detection, we repeated experiment 1 with image fragments expanded to thrice their sizes in each 

dimension (see figure 4). The experimental paradigm was the same as for experiment 1. Subject pools for 

experiments 1 and 2 were mutually exclusive. 

 

             
 
Figure 4. Faces (left set) and non-faces (right set) with local context. 

 
2.2.1. Results: 
We tested 10 subjects on the ‘expanded’ version of images used in experiment 1. Figure 5 shows the 

results. Performance improved significantly following this change. Faces could be reliably distinguished 

from non-faces even with just 4 cycles across the entire image (which translates to 0.87 cycles/ete). At this 

resolution, the internal facial features become rather indistinct and, as the results from experiment 1 

suggest, they lose their effectiveness as good predictors of whether a pattern is a face or not. It is also 

important to note that the contextual structure across different stimuli used in this experiment is very 

different. Faces were photographed against very different backgrounds and no effort was made to 

normalize the appearance of the context. Given that there is not enough consistent information within the 

face or outside of it for reliable classification, the likely explanation for the human visual system's 

impressive performance is that bounding contour information is incorporated in facial representations used 

for detection. As figure 5 shows, for comparable levels of performance, the use of bounding contours 

nearly halves the resolution lower-bounds needed for distinguishing faces from non-faces relative to the 

internal features only condition. Thus, the inclusion of bounding contours allows for tolerance to greater 

refractive errors in the eyes and/or longer viewing distances. This result also provides a useful hint for the 
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design of artificial face detection systems. By augmenting their facial representation to include bounding 

contours, computational systems can be expected to improve their performance markedly.  

 

 
 

Figure 5. Results from experiment 2. 

 

In summary, experiments 1 and 2 allow us to systematically characterize human face detection performance 

at very low resolutions and demonstrate a remarkable tolerance of the face-detection processes to severe 

reductions in resolution. Besides suggesting that both internal and external features contribute to facial 

encoding, the results also allow us to demarcate zones along the resolution dimension within which the two 

kinds of features are most effective.  

 

Having characterized face-detection performance as a function of resolution, we next explore the roles of 

two other key image attributes – contrast polarity and orientation. 

 

2.3. Experiment 3: Role of contrast polarity and face orientation in face 
detection 
 

In studies of face identification, it has been found that contrast negation and vertical inversion have 

significant detrimental effects on performance [Galper, 1970; Bruce & Langton, 1994]. These findings 

have allowed researchers to make important inferences regarding the nature of facial information used for 

making identity judgments. However, it is unknown what role these factors play in the face-detection task. 

A priori, it is not clear whether these transformations should have any detrimental effects at all. For 

instance, it may well be the case that though it is difficult to identify people in photographic negatives or in 

mis-oriented images, the ability to say whether a face is present may be unaffected. Experiment 3 is 

designed to test this issue. The basic experimental design follows from experiments 1 and 2. However the 

stimulus set of experiment 3 was augmented to include additional stimuli showing the faces and non-faces 

contrast negated, inverted and both (figure 6 shows a few stimuli). We expected contrast negation to have 

little or no effect on face detection performance since this operation preserves the basic geometry of the 

face. As for vertical inversion, past research [Tong et al, 2000] has presented some preliminary data 

suggesting that this transformation has negligible impact on face-detection performance. The results we 

describe below show that our expectations regarding both of these transformations need to be revised.  
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Figure 6. Stimuli that have been contrast negated and/or vertically inverted (3 cycles / image). 
 

2.3.1. Results 
Figure 7 shows results from the ‘internal features only’ and ‘faces with local context’ conditions 

respectively. Both contrast negation and vertical inversion influenced detection performance. Interestingly, 

we got very different patterns of results in the two conditions. While for internal faces, contrast negation 

had a much greater detrimental effect than vertical inversion, the two had about equal effects when local 

context was included; contrast negation overall had a smaller influence on performance with local context 

than without it. It appears that is that the existence of facial bounding contours renders subjects’ 

performance more robust against contrast negation. 

 

It is interesting that contrast negation has a strong detrimental effect on detection performance with internal 

features given that this transformation leaves the geometric information unchanged. The reason may lie in 

the statistics of the stimuli that the visual system encounters. Since, in the real world, faces have strong 

photometric structure (for instance the regions of the eye is systematically darker than forehead, nose and 

cheeks [Thoresz & Sinha, 2001; Sadr et al., 2001]), those regularities are diagnostic of face patterns and 

should play a mayor role in the internal representation of a face pattern. Contrast reversal of face patterns 

destroys the diagnostic information that allows detecting low-resolution faces. In order to be able to 

classify a contrast-reversed face as a face, it is necessary to increase the resolution so that the individual 

face features can be identified. However, in the case of facial bounding contours, the inputs mandate 

insensitivity to contrast polarity since faces can appear against light or dark backgrounds.  

 

Also surprisingly, prior knowledge of the transformation did not influence the results. Half the subjects 

were told beforehand that the faces may appear contrast negated and/or vertically inverted. Data from the 

two populations were not significantly different. It appears that cognitive knowledge about possible 

transformations is of limited use for at least this pattern classification task. 

 

      
    
Figure 7. Results from contrast negated and inverted stimuli without (left panel) and with (right panel) 

context. Axis and line-labels are the same for the two panels (same color code for the graphs).  
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To better characterize the influence of face orientation on detection performance, we also conducted 

experiments with graded changes in orientation. Data in figure 8 show hit and false alarm rates for internal 

faces and heads as functions of image orientation (under normal and contrast reversed conditions) averaged 

across 20 observers. Specifically, we were interested in determining whether misorientations along certain 

axes were particularly disruptive for performance. Vertical bilateral symmetry is often considered an 

important defining attribute of faces [Reisfeld and Yeshurun, 1992; Thornhill and Gangested, 1993; Sun et 

al, 1998]. We expected, therefore, that detection performance would be disrupted disproportionately for 

orientations that destroyed the vertical bilateral symmetry. However, we found no statistically significant 

evidence in support of this hypothesis. The data show a graded decrease in performance as the orientation 

rotates away from the vertical. It is possible, however, that bilateral symmetry per se, without the 

requirement of the axis of symmetry being vertical, may be a determinant of face detection performance. 

We are undertaking experiments that explicitly manipulate facial symmetry to determine its role in face 

detection. 

 
Figure 9 summarizes the results from this experiment by showing information requirements for achieving 

80% correct performance (considering both hits and correct rejections) using inner only or inner and 

external features as a function of orientation and contrast polarity. When using both inner and external 

features (lower blue and green curves), contrast inversion does not significantly change the resolution 

required to attain 80% of performance. However, when using only inner facial features, contrast inversion 

has a large effect and increases the resolution-demands by more than 200% in order to have enough 

information to be able to compensate for the anomalous photometric distribution. 

 

 
 
Figure 8. Influence of orientation on face detection performance. From left to right, top row shows 
data corresponding to 1.3, 2, 2.5 and 3.9 cycles/ete conditions for the inner facial features alone, 
and bottom row shows data corresponding to 0.4, 0.6, 0.8 and 1.2 cycles/ete for inner and 
external facial features. The blue and yellow curves correspond to the false alarm rates with 
distractor patterns. 
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Figure 9. Information requirements for 80% of performance (considering both correct detected 
and correct rejected patterns) using inner only or inner and external features as a function of 
orientation and contrast polarity. See text for details.  
 

 

GENERAL DISCUSSION: 
 

We have conducted three experiments with the goal of characterizing the nature of representations used by 

human observers for classifying patterns as faces or non-faces. Our experimental results allow us to derive 

the following inferences: 

 

1. The lower bounds on image resolution needed for a particular level of face-detection performance: Faces 

can be reliably distinguished from non-faces even at just 1.3 cycles eye-to-eye using only the internal facial 

information. We can also demarcate zones on the resolution axis where specific facial attributes (internal 

features, bounding contours) suffice for achieving a given level of detection performance. 

2. The role of local context in face-detection: The inclusion of facial bounding contour substantially 

improves face detection performance, indicating that the internal facial representations encode this 

information. 

3. The role of luminance contrast polarity: Contrast polarity is encoded in the representation since polarity 

reversals have significant detrimental effects on detection performance, particularly with inner features. 

The visual system is more tolerant to contrast negation in the presence of bounding contours perhaps by 

encoding these contours in a contrast invariant manner. 

4. The role of image orientation: Changes in image orientation away from the upright decrease face 

detection performance. Given the largely monotonic decrease in going from upright to vertically inverted 

faces, our data do not support the idea that vertical bilateral symmetry per se may be a significant 

determinant of face detection performance.  

 

Besides helping us characterize the nature of facial representations, these data may also allow us to address 

some important issues regarding the neural bases of face-detection. By employing our stimulus set in an 

imaging or single unit recording setting, we can obtain relative levels of neural activation for different 

image transformations (such as vertical inversion or contrast polarity reversal). Co-modulation of neural 

activity with behaviorally observed data as a function of the different transformations would allow us to 

infer which cortical sites, besides those already identified [Kanwisher et al, 1997], may be involved in the 

task of face-detection. 

 

Several open questions remain. Although so far we have focused on face detection using full facial images, 

under some circumstances, classification may need to rely on fragmentary information. Partially occluded 



 

 10

faces constitute one such situation. The importance of fragmentary information is also highlighted by 

configurally deviant facial images such as those that Picasso often included in his paintings (figure 10). In 

these situations, the severely distorted facial geometry likely induces a greater reliance on the individual 

parts rather than their mutual relationships. It will be interesting to investigate how well observers are able 

to recognize partial fragments of faces as a function of image resolution. 

 

 
 
Figure 10. A face by Picasso. Individual features are more diagnostic than their overall (unnatural) 

configuration. 

 

The lower-bounds on image-resolution for individual features can be translated into effective whole-face 

resolutions so that one may directly compare this data with that from experiments 1 and 2. This comparison 

will allow us to demarcate zones along the resolution axis where the information used by the visual system 

is exclusively overall configuration based and those where it may be both configuration and parts based. 

Such a distinction would be invaluable for future studies in the developmental domain (children's use of 

configural or featural information) [Mondloch et al. 1999] and in neurophysiology (is the response of an 

area/cell cue invariant or driven primarily by configural or featural information?). 

 

Also interesting would be an assessment of face-detection performance as a function of eccentricity. Based 

on the available data regarding how acuity changes away from the fovea, we can predict how face-detection 

performance should decline with increasing eccentricity. It would be interesting to determine whether 

actual data do indeed match predicted levels of performance or whether the adaptive significance of face 

detection has led to heightened sensitivity to facial patterns in the periphery. 

 

The task of face-detection, besides being interesting in its own right, also serves as a launching pad for 

many other important investigations. First, how do the resolution requirements for face-detection compare 

to those for other face-perception tasks such as face identification, emotion recognition and gender 

classification? We have begun exploring this question in a series of experiments and the results will be 

described in a forthcoming publication [Torralba and Sinha, in preparation]. Second, in images even more 

highly degraded than the ones we have considered here, how does the visual system perform the task of 

person detection? Figure 11 illustrates the problem. The people in the image on the left are so small that 

detecting them by their facial structure or even body shape is not a tenable strategy. In such circumstances, 

contextual cues appear to be more important than the highly impoverished intrinsic object cues. We are 

addressing this problem by psychophysically estimating the contribution of scene-context to person 

detection performance and developing a computational model of contextual influences on object detection 

[Torralba and Sinha, 2001]. The model is yielding promising results such as the one shown in the right 

panel of figure 11. It is able to localize people in the image based on contextual rather than intrinsic object 

cues.  
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Figure 11. Person detection in large scenes where intrinsic information about faces and bodies 
may be highly impoverished. Left panel: a sample scene. Right panel: Results from a 
computational model for incorporating context in object detection tasks. Selection of image 
regions with high priors about people presence. 
 

Our data are beginning to allow us to benchmark face-detection performance of the human visual system 

by systematically characterizing the consequences of key image transformations. They already point 

towards important clues regarding the nature of internal facial representations and serve as guides in our 

attempts at creating better computational models for face and person-detection.   
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