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Abstract – The recognition of facial expressions in image 
sequences is a difficult problem with many applications in 
human-machine interaction. Facial expression analyzers 
achieve good recognition rates, but virtually all of them 
deal only with prototypic facial expressions of emotions 
and cannot handle temporal dynamics of facial displays. 
The method presented here attempts to handle a large 
range of human facial behavior by recognizing facial 
action units (AUs) and their temporal segments (i.e., onset, 
apex, offset) that produce expressions. We exploit particle 
filtering to track 20 facial points in an input face video and 
we introduce AU-dynamics recognition using temporal 
rules. When tested on Cohn-Kanade and MMI facial 
expression databases, the proposed method achieved a 
recognition rate of 90% when detecting 27 AUs occurring 
alone or in a combination in an input face image sequence. 

Keywords: particle filtering, tracking, facial expression 
analysis, temporal rules. 

1 Introduction 
 The human face is used to regulate the conversation 
by gazing or nodding, to interpret what has been said by 
means of lip reading, and to communicate and understand 
somebody’s affective state and intentions on the basis of 
the shown facial expression [1, 2]. Machine understanding 
of facial expressions could revolutionize human-machine 
interaction technologies and fields as diverse as security, 
behavioral science, medicine, and education [1]. 
Consequently, computer-based recognition of facial 
expressions has become an active research area. 
 Most approaches to automatic facial expression 
analysis attempt to recognize a small set of prototypic 
emotional facial expressions, i.e., fear, sadness, disgust, 
anger, surprise and happiness (for an exhaustive survey of 
the past work on this research topic, see [3]). This practice 
may follow from the work of Darwin and more recently 
Ekman [2], who suggested that basic emotions have related 
prototypic expressions. In everyday life, however, such 
prototypic expressions occur relatively rarely; emotions are 
shown more often by subtle changes in facial display, such 
as flashing the eyebrows in surprise. Instead of classifying 
facial expressions into few basic emotion categories, this 
work attempts to measure a large range of facial behavior 

by recognizing action units (AUs, i.e., atomic facial 
signals) that produce expressions. As described in [4], all 
visually distinguishable facial activity can be described on 
the basis of 44 AUs. Hence, if a computer system would be 
able to detect these 44 AUs automatically, it will be able to 
identify each and every facial expression that the human 
face can possibly display. Few approaches have been 
reported for automatic recognition of AUs in face images 
[1]. Some researchers described patterns of facial motion 
that correspond to a few specific AUs, but did not report on 
actual recognition of these AUs (e.g., [5], [6]). Only 
recently there has been an emergence of efforts in 
automating AU coding of face images. Tian et al. used lip 
tracking, template matching and neural networks to identify 
16 AUs occurring alone or in combination in frontal-view 
face image sequences [7]. They reported an 87.9% average 
recognition rate attained by their method for videos of the 
Cohn-Kanade Facial Expression database [8]. Bartlett et al. 
reported on accurate automatic recognition of 18AUs (95% 
average recognition rate) from full-face videos using Gabor 
filters and Support Vector Machines [9]. Valstar et al. used 
temporal templates (i.e., motion history images) and a 
combined k-Nearest-Neighbor and rule-based classifier to 
recognize 15 AUs from full-face image sequences with an 
average recognition rate of 65% [10].  
 There is now a growing body of psychological 
research that argues that temporal dynamics of facial 
behavior (i.e., the timing and the duration of facial activity) 
is a critical factor for the interpretation of the observed 
behavior [1]. For instance, Schmidt and Cohn [11] have 
shown that spontaneous smiles, in contrast to posed smiles, 
are fast in onset, can have multiple AU12 apexes (i.e., 
multiple rises of the mouth corners), and are accompanied 
by other AUs that appear either at the same time as AU12 
or follow AU12 within 1 second. Since it takes more than 
one hour to manually score 100 still images or a minute of 
videotape in terms of AUs and their temporal segments [4], 
it is obvious that automated tools for the detection of AUs 
and their temporal dynamics would be highly beneficial. 
Nevertheless only a single effort in automating the 
detection of temporal segments of AUs in face image 
sequences has been reported so far. The work in question 
was aimed at automatic recognition of 23 AUs and their 
temporal segments in an input face-profile video [12]. In 
contrast to this previous work, we present here an 
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automated system for recognition of 27 AUs and their 
temporal segments in input frontal-view face videos.  
 Fig. 1 outlines our method. After 20 fiducial points 
are initialized in the first frame of the input face image 
sequence, we exploit particle filtering to track these points 
automatically for the rest of the sequence. Based upon the 
changes in the position of the fiducial points, we measure 
changes in facial expression. Changes in the position of the 
fiducial points are transformed first into a set of mid-level 
parameters for AU recognition. Based upon the temporal 
consistency of mid-level parameters, a rule-based method 
encodes temporal segments (onset, apex, offset) of 27 AUs 
occurring alone or in a combination in the input face 
videos. Fiducial-point tracking, parametric representation 
and AU coding are explained in sections 2, 3 and 4. The 
evaluation of the proposed method using two benchmark 
databases, the Cohn-Kanade [8] and the MMI facial 
expression database [13], is given in section 5.  

2 Facial Point Tracking 
 Facial muscle activity produces changes in the 
appearance of the facial components (eyes, nose, lips, etc.); 
their shape and location can alter immensely with facial 
expressions (e.g., pursed lips vs. jaw dropped). To reason 
about the shown facial expression and about the facial 
muscle actions that produced it, we track a set of 20 facial 
fiducial points (Fig. 1), the location of which alters during 
the facial expressions. At the first frame of the sequence, a 
number of windows that are interactively positioned around 
each of the facial points, define a number of color 
templates. Let us denote such a color template with o = {oi} 
where i is the pixel subscript. We subsequently track each 
color template for the rest of the image sequence with the 
auxiliary particle filter that was introduced by Pitt and 
Shepard [14]. Particle filtering has become the dominant 
tracking paradigm due to its ability to deal successfully 
with noise, occlusion and clutter. In order to adapt it for the 
problem of color-based template tracking, we define an 
observation model that is based on a robust color-based 
distance between the color template o = {oi | i = 1…M} and 
a color template c = {ci | i = 1…M} at the current frame. 
We attempt to deal with shadows by compensating for the 

global intensity changes. We use the distance function d, 
see (1), where M is the number of pixels in each template, 
mc  (and mo) is the average intensity of template c = {ci} 
(and, respectively, of template o = {oi}), i is the pixel 
index, 

1
. is the 1L  norm and ρ is the absolute value. 

 We proceed under 2 assumptions (as defined for the 
face image sequences of both the Cohn-Kanade [8] and the 
MMI facial expression database [13]): (1) the input image 
sequence is non-occluded nearly frontal-view of the face, 
and (2) the first frame shows a neutral expression and no 
head rotations. To handle possible (small) head rotations 
and variations in scale of the observed face, we register 
each frame of the input image sequence with the first frame 
based on three referential points (Fig. 1): the tip of the nose 
(N) and the inner corners of the eyes (B and B1). We use 
these points as the referential points because of their 
stability with respect to non-rigid facial movements: facial 
muscle actions do not cause physical displacements of 
these points. Each frame is registered with the first frame 
by applying an affine transformation. Except of N, B and 
B1, which are tracked in unregistered input video 
sequences, other facial fiducial points are tracked in the 
registered input image sequence. Typical results are shown 
in Fig. 2. 

3 Parameters for AU Recognition 
 Facial muscle actions alter the shape and location of 
the facial components. Some of these changes in facial 
expression are observable from the changes in the position 
of the tracked points. To classify the tracked changes in 
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Fig. 1. Outline of the proposed method for recognition of 
AUs and their temporal segments from full-face video 

Fig. 2. Results of the facial point tracking 
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terms of AUs and their temporal segments, these changes 
are transformed first into a set of mid-level parameters. 
 We defined two mid-level parameters: up/down(P) 
and inc/dec(PP’). Parameter up/down(P) = y(Pt1) – y(Pt) 
describes upward and downward movements of point P. If 
y(Pt1) – y(Pt) > ε, point P moves up. Otherwise, it moves 
down. Pt1 is point P localized in the first frame of the input 
image sequence. Pt is point P tracked in frame t. The value 
of y(P) is the y-coordinate of P. Parameter inc/dec(PP’) = 
PP’t1 – PP’t describes the increase or decrease of the 
distance between points P and P’. If PP’t1 – PP’t < ε, 
distance PP’ increases. Otherwise, it decreases. Distance 
PP’ is calculated as the Euclidian distance between points 
P and P’. The two parameters are calculated for various 
points (see Table 1), for each input frame.  

4 Temporal Rules for AU Recognition 
 We transform the calculated mid-level parameters 
into a set of AUs describing the facial expression captured 
in the input video. We use a set of temporal rules to code 
27 AUs occurring alone or in combination in an input face 
video. To minimize the effects of noise and inaccuracies in 
facial point tracking and to enable the recognition of the 
temporal dynamics of displayed AUs, we consider the 
temporal consistency of the mid-level parameters. 

 We divide activation of each AU into three temporal 
segments: the onset (beginning), apex, and offset (ending). 
Each temporal rule utilized for AU recognition is further 
defined in terms of the mid-level parameters (for the full 
list of mid-level parameters used to discriminate 27 
different AUs, see Table 1) and each encodes a specific 
temporal segment of a single AU in a unique way. For 
instance, to recognize the temporal segments of AU4, 
which pulls the eyebrows closer together, we exploit the 
following temporal rules (ε is ± 2 pixels, i.e., 3% DD1t1): 

IF ([inc/dec(DD1)]t > [inc/dec(DD1)]t-1 + ε)  
AND inc/dec(DD1) > ε THEN AU4-onset 

IF | [inc/dec(DD1)]t – [inc/dec(DD1)]t-1 | ≤ ε  
AND inc/dec(DD1) > ε THEN AU4-apex 

IF ([inc/dec(DD1)]t < [inc/dec(DD1)]t-1 – ε)  
AND inc/dec(DD1) > ε THEN AU4-offset 

Fig. 3 illustrates the meaning of these rules for the video 
from the Cohn-Kanade database shown in the 2nd row of 
Fig 2. The horizontal axis represents the time dimension 
(i.e., the frame number) and the vertical axis represents the 
value that the distance DD1 takes. As suggested by Fig. 3, 
distance DD1 should decrease and its value should be less 
than its neutral-expression value to label a frame as an 
“AU4 onset”. The decrease of the value that the distance 
DD1 takes should terminate, resulting in a (relatively) 
stable temporal value of parameter inc/dec(DD1), for a 
frame to be labeled as “AU4 apex”. Eventually, distance 
DD1 should increase toward its neutral-expression value to 
label a frame as an “AU4 offset”. Since each and every 
video of the Cohn-Kanade database depicts only the onset 
and the apex of the recorded expression, the offset of AU4 
could not be depicted in Fig. 3.  
 Generally, for each and every AU, it must be possible 
to detect a temporal segment (an onset, apex, or offset) 
continuously over at least 5 consecutive frames for the 
facial action in question to be scored. Incited by the 
research findings that suggested that temporal changes in 
neuromuscular facial activity last from ¼ of a second (e.g., 
a blink) to several minutes (e.g., a jaw clench) [4], the 
temporal duration has been determined empirically based 

Table 1: Mid-level parameters for AU recognition 
 Parameters  Parameters 
AU1 up/down(D) > ε OR 

up/down(D1) > ε 
AU2 up/down(E) > ε OR 

up/down(E1) > ε 
AU4 inc/dec(DD1) > ε AU5 up/down(F) > ε OR 

up/down(F1) > ε 
AU6 (T1 > inc/dec(FG) > ε  

AND up/down(G) > ε  
AND up/down(I) > ε) OR 
(T1 > inc/dec(F1G1) > ε  
AND up/down(G1) > ε 
AND up/down(J) > ε) 

AU7 (T1 > inc/dec(FG) > ε  
AND up/down(G) > ε 
AND |up/down(I)| ≤ ε) OR
(T1 > inc/dec(F1G1) > ε 
AND up/down(G1) > ε 
AND |up/down(J)| ≤ ε) 

AU10 inc/dec(KN) > ε AU15 up/down(I) < -ε OR 
up/down(J) < -ε 

AU12 (up/down(I) > ε AND  
inc/dec(NI) < -ε) OR 
(up/down(J) > ε AND  
inc/dec(NJ) < -ε ) 

AU13 (up/down(I) > ε AND 
inc/dec(NI) ≥ ε) OR 
(up/down(J) > ε AND  
inc/dec(NJ) ≥ ε ) 

AU16 inc/dec(LM) > ε AU18 T2 > inc/dec(IJ) > ε 
AND 
inc/dec(KL) ≤ ε 

AU20 inc/dec(IJ) < -ε AND  
|up/down(I)| ≤ ε AND  
|up/down(J)| ≤ ε 

AU23 inc/dec(KL) > ε AND  
inc/dec(IJ) ≤ ε 

AU24 inc/dec(KL) > ε AND  
T2 > inc/dec(IJ) > ε 

AU25 inc/dec(KL) < -ε AND 
|inc/dec(NM)| ≤ ε 

AU26 T3 < inc/dec(NM) < -ε AU27 inc/dec(NM) < T3 
AU28 |KL| ≤ ε AU35 inc/dec(IJ) > T2 
AU38 inc/dec(HH1) < -ε AU39 inc/dec(HH1) > ε 
AU41 (inc/dec(FG) > T1 AND  

|up/down(G)| ≤ ε) OR  
(inc/dec(F1G1)> T1 AND 
|up/down(G1)| ≤ ε) 

AU44 (inc/dec(FG) > T1 AND  
up/down(G) > ε) OR  
(inc/dec(F1G1) > T1 AND
up/down(G1) > ε) 

AU43 |FG| ≤ ε AND |F1G1| ≤ ε AU45 |FG| ≤ ε AND |F1G1| ≤ ε 
AU46 |FG| ≤ ε OR |F1G1| ≤ ε   

 

Fig. 3. Onset and apex of AU4 indicated by the ground 
truth (dashed line) and those detected by the method (full 
line) based upon the value that distance DD1 takes in the 
case of the Cohn-Kanade database sample shown in the 
2nd row of Fig. 2. 
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on a video frame rate of 24 frames/second (i.e., 5 frames 
have a duration of less than ¼ of a second). However, since 
the samples of the Cohn-Kanade database have been 
acquired at an extremely low frame rate (12 or even less 
frames/second), the temporal duration was set to 3 frames 
for the samples from the Cohn-Kanade database. 
 Both inaccuracies in facial fiducial point tracking and 
occurrences of non-prototypic facial activity may result in 
temporal segments that are unlabeled (i.e., neither the 
onset, nor the apex, nor the offset) or in frames and 
temporal segments that are labeled incorrectly. The latter 
may arise, for instance, when an apex frame or an apex 
temporal segment of an AU is detected either between two 
onset segments or between two offset segments of that AU. 
To handle such situations, we employ a memory-based 
process that takes into account the dynamics of facial 
expressions. More specifically, we examine the labels of 
both the previous and next frame / segment and re-label the 
current frame / segment according to the ruled-based 
system summarized in Table 2. For instance, any unlabeled 
temporal segment and/or any apex segment and/or any 
offset segment of an AU that has been detected between 
two onset segments of that AU are re-labeled as “onset”. 
Finally, an AU should be recognized, in general, only when 
the full temporal model of that AU is observed (onset → 
apex→ offset). Yet, in order to deal with samples coming 
from the Cohn-Kanade database, we score AUs even if the 
relevant offsets are missing.  

5 Experimental Results 
5.1 Test Data Sets 
 In the last decade, the research on automatic analysis 
of facial expressions has become a central topic in machine 
vision research. Nonetheless, there is a glaring lack of a 
comprehensive, easily accessible reference set of images of 
facial expressions that could be used as a basis for 
benchmarks for efforts in the field [3].  
 To date, the Cohn-Kanade facial expression database 
[8] is the most comprehensive and the most commonly 
used database in research on automated facial expression 
analysis. It contains over 2000 AU-coded gray-scale image 
sequences of facial expressions in nearly frontal view 
shown by 210 adults (69% female, 81% Caucasian) being 
18 to 50 years old. From those some 480 samples were 
made publicly available. The main drawbacks of this data 

set are as follows. First, each recording ends at the apex of 
the shown facial display. This makes research of facial 
expression temporal activation patterns (onset  apex  
offset) less feasible using this data set. Further, many 
recordings contain the date/time stamp recorded over the 
chin of the subject. This makes changes in the appearance 
of the chin less visible and motions of the chin obscured by 
changes of the time/date stamp. Also, the database does not 
contain images of all possible single-AU activations; it 
contains mainly recordings of facial displays of emotions. 
Besides, the image sequences have been acquired at an 
extremely low frame rate (12 or even less frames/second). 
This makes fast neuromuscular facial activity (e.g., blink 
that lasts approximately ¼ of a second) difficult to observe 
and to track. Finally, the database is neither easily 
accessible nor easily searchable. Once permission for usage 
is issued, large, unstructured files of material are sent. In 
spite of these drawbacks we used the Cohn-Kanade facial 
expression data set to evaluate the performance of our 
method. We did so in order to make the results achieved by 
our method comparable to those accomplished by the 
previously reported facial expression analyzers that have 
been tested using this database (e.g., [7], [9], [10]).  
 The lack of easily accessible, suitable, and common 
training and testing material forms the major impediment to 
comparing, resolving, and extending the issues concerned 
with automated facial expression analysis from face 
images. It is this critical issue that we tried to address by 
building a novel face image database, which we call the 
MMI Facial Expression Database [13]. The MMI Database 
has been developed to address most (if not all) the issues 
mentioned above. It contains some 850 image sequences 
and 750 static images of faces in frontal and in profile view 
displaying various facial expressions of emotion, single AU 
activation, and multiple AU activation. The samples are all 
true color (24-bit) images which, when digitized, measure 
720×576 pixels. They picture 52 different faces, ranging in 
age from 19 to 62, having either a European, Asian, 
African, or South American ethnic background. The image 
sequences are of variable length (40 – 520 frames), taken at 
24 Hz frame rate, picturing one or more neutral-expressive-
neutral facial behavior patterns. To date, approximately two 
thirds of the samples have been FACS coded for target 
AUs. Of these, 169 image sequences have been FACS 
coded per frame for temporal segments of target actions. 
Finally, the database has been developed as a web-based 
direct-manipulation application, allowing easy access and 
easy search of the available images [13].  

5.2 Validation Studies 
 In order to evaluate the performance of our method, 
we used 90 image sequences of the Cohn-Kanade database 
picturing the activation of the following AUs: 1, 2, 4-7, 9, 
10, 12, 15, 16, 20, 23-27, 38, 39, 44 and 45. To include into 
this test set more samples of facial displays of AUs 10, 13, 
18, 28, 35, 41, 43, 45 and 46 we also used 45 image 
sequences of the MMI Facial Expression Database 

Table 2: Rules for resolving temporal conflicts. The rules 
are used for both frames and temporal segments that are 
unlabeled or labeled incorrectly. UL ↔ “unlabeled”. 

 Previous 
frame 

Current frame 
(old label) 

Next 
frame 

Current 
(new label)

R1 Onset UL / Apex / Offset Onset Onset 
R2 Onset UL Apex Apex 
R3 Apex UL / Onset / Offset Apex Apex 
R4 Apex UL Offset Apex 
R5 Offset UL / Onset / Apex Offset Offset 
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picturing the facial expressions in question. The metadata 
(i.e., the human judgments about displayed AUs) 
associated with these 135 image sequences represent the 
ground truth with which we compared the judgments 
generated by our method. The accuracy of the method was 
measured with respect to the misclassification rate of each 
“expressive” segment of the input sequence, not with 
respect to each frame. The results for the Cohn-Kanade-
database samples are summarized in Table 3 and these for 
the MMI-database samples are given in Table 4. Overall, 
we achieved an average recognition rate of 90% sample-
wise for 27 different AUs occurring alone or in a 
combination in an input video sample.  
 As far as misidentifications produced by our method 
are concerned, most of them arose from confusion between 
similar AUs (AU41 and AU43, AU23 and AU24) and from 
omission of fast blinks (i.e., AU45 having a duration of less 
than n frames in either onset or offset, where n = 3 for the 
Cohn-Kanade-database samples and n = 5 for the MMI-
database samples). Both AU41 and AU43 cause the upper 
eyelid to drop down and narrow the eye opening. Only the 
height of the eye opening distinguishes AU41 from AU43, 
causing misidentification of AU41 in the case where the 
observed subject has long eyelashes or an eye opening that 

is naturally narrow. Since both AU23 and AU24 tighten the 
lips and reduce the height of the lips (vertical direction), 
only the length of the lips (horizontal direction) 
distinguishes AU24 from AU23, causing misidentification 
of AU23 in cases when the mouth corners are tracked more 
toward the center of the mouth (rather than toward the 
cheeks). Note that AU23 and AU24 are also often confused 
by human FACS coders [4] and by other automated AU 
analyzers (e.g., [9]). In addition, note that the temporal 
pattern of feature motion in AU23 activation is very similar 
to the one occurring in AU24 activation. The same is the 
case with AU41 vs. AU43 activation. Hence, the distinction 
between these two pairs of AUs may be more amenable to 
appearance-based analysis than to feature motion analysis. 
 As can be seen from Fig. 3 and 4, the temporal 
segments of the AUs indicated by the ground truth varied 
slightly from those detected by our method. For most of 
AUs, in general, the boundaries of temporal segments of 
AUs were detected either at the same moment or a little bit 
later than prescribed by the ground truth. The measured 
delays take up to 1-2 frames on average for Cohn-Kanade-
database samples, that is, up to 1/6 of a second. However, in 
the case of AUs whose activation becomes apparent from 
the movement of the mouth corner (AU12, AU13, AU15, 
and AU20), the temporal segments were almost always 
detected later than indicated by the ground truth. The 
measured delays have an average duration of 3 frames for 
Cohn-Kanade-database samples (up to ¼ of a second). The 
reason for these delays is the temporal rules used for AU 
recognition. It seems that human observers detect 
activation of the AUs in question not only based on the 
presence of a certain movement (e.g., an upward movement 
of the mouth corner for AU12) but also based on the 
appearance of the facial region around the mouth corner. 
Since appearance-based analysis is not performed by the 
system, only the movement of the mouth corner, which is 
detected usually later than the actual occurrence of the 
movement (due to thresholding), indicates the presence of 
the AUs in question, causing a delayed detection of these 
AUs.  
 Finally, upon a close inspection of the temporal rule 
used to recognize AU27 activation (see Table 1), one may 
conclude that the onset of AU27 will always be detected 
later than indicated by the ground truth. Namely, since both 
AU26 and AU27 pull down the lower jaw, only the extent 
of that pull distinguishes AU27 from AU26, causing 

Fig. 4. Onset, apex and offset of AU27 indicated by the 
ground truth (dashed line) and those detected by the 
method (full line). Horizontal axis: the frame number. 
Vertical axis: the value that parameter inc/dec(NM) takes 
for a AU27-activation sample out of the MMI database. 

Table 3: AU recognition results for 90 samples from the 
Cohn-Kanade database. 
Legend: Upper face AUs: 1, 2, 4, 5-7, 9, 44, 45. AUs affecting 
the nose: 38, 39. AUs affecting the mouth: 10, 12, 15, 16, 20, 
23-25. AUs affecting the jaw: 26, 27. # denotes the number of 
samples. C denotes correctly recognized samples. MA denotes 
the number of samples in which some AUs were missed or 
they were scored in addition to those depicted by human 
experts. 

 # C MA Rate 
upper face 73 69 4 94.5% 
nose 10 10 0 100% 
mouth 82 76 6 92.7% 
jaw 43 41 2 95.3% 
all samples 90 84 6 93.3% 

 

Table 4: AU recognition results for 45 samples from the 
MMI Facial Expression database.  
Legend: Upper face AUs: 41, 43, 45, 46. AUs affecting the 
mouth: 10, 13, 18, 28, 35. # denotes the number of samples. C 
denotes correctly recognized samples. MA denotes the number 
of samples in which some AUs were missed or they were scored 
in addition to those depicted by human experts.  

 # C MA Rate 
upper face 30 26 4 86.7% 
mouth 25 23 2 92% 
all samples 45 39 6 86.7% 
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misidentifications in the onset of AU27, that is, it causes a 
delayed detection of the onset of AU27. To handle this, any 
“onset AU26” segment that has been detected before the 
“onset AU27” segment is re-labeled as “onset AU27”. In 
turn, the onset of AU27 is detected without delays (Fig. 4). 
 
6 Conclusions 
 Automating the analysis of facial actions (i.e., AUs) is 
important to advance the studies on human emotion, to 
design multimodal human-machine interfaces, and to boost 
various applications in fields such as security, medicine and 
education. In this paper, we presented a novel method for 
AU detection based upon changes in the position of the 
facial points tracked in a nearly frontal view face video. 
 The presented approach extends the state of the art in 
automatic AU detection from face image sequences in two 
ways including the temporal segments of AUs (onset, apex, 
offset) and the number of AUs (27 in total) handled. Based 
upon the presented validation studies, it can be concluded 
that the proposed method exhibits an acceptable level of 
expertise. The achieved results are similar to those reported 
for other automated FACS coders of face video. Compared 
to the AFA system [7], our method achieves an average 
recognition rate of 90% for encoding of 27 AU codes and 
their combinations in 135 test samples, while the AFA 
system achieves an average recognition rate of 87.9% for 
encoding of 16 AUs and their combinations in 113 test 
samples. In comparison to the system proposed by Bartlett 
et al. [9], our method achieves an average recognition rate 
of more than 93.5% AU-wise (see Tables 3 and 4) for 
encoding of 27 AUs and their combinations, while their 
system achieves an average recognition rate of 94.5% AU-
wise for encoding of 18 AUs and their combinations. 
Except the number of AUs and temporal dynamics handled, 
our method also improves other aspects of automated AU 
detection compared to earlier works. The performance of 
the proposed method is invariant to occlusions like glasses 
and facial hair as long as these do not entirely occlude 
facial fiducial points (e.g., point M in the case of a long 
beard). Finally, due to the usage of the color-based 
observation model, the method performs well 
independently of changes in the illumination intensity. 
 However, the method cannot recognize the full range 
of facial behavior (i.e., all 44 AUs defined in FACS); it 
detects 27 AUs occurring alone or in combination in a 
nearly frontal-view face image sequence. Further research 
efforts are necessary if the full range of human facial 
behavior is to be coded in an automatic way. 
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