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Abstract

Despite being a major public health problem, falls in the elderly cannot be detected efficiently yet. Many studies have used
acceleration as the main input to discriminate between falls and activities of daily living (ADL). In recent years, there has
been an increasing interest in using smartphones for fall detection. The most promising results have been obtained by
supervised Machine Learning algorithms. However, a drawback of these approaches is that they rely on falls simulated by
young or mature people, which might not represent every possible fall situation and might be different from older people’s
falls. Thus, we propose to tackle the problem of fall detection by applying a kind of novelty detection methods which rely
only on true ADL. In this way, a fall is any abnormal movement with respect to ADL. A system based on these methods
could easily adapt itself to new situations since new ADL could be recorded continuously and the system could be re-
trained on the fly. The goal of this work is to explore the use of such novelty detectors by selecting one of them and by
comparing it with a state-of-the-art traditional supervised method under different conditions. The data sets we have
collected were recorded with smartphones. Ten volunteers simulated eight type of falls, whereas ADL were recorded while
they carried the phone in their real life. Even though we have not collected data from the elderly, the data sets were suitable
to check the adaptability of novelty detectors. They have been made publicly available to improve the reproducibility of our
results. We have studied several novelty detection methods, selecting the nearest neighbour-based technique (NN) as the
most suitable. Then, we have compared NN with the Support Vector Machine (SVM). In most situations a generic SVM
outperformed an adapted NN.
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Introduction

Falls in the elderly are one of the major health risks that affect

their quality of life, threatening their independent living.

According to the World Health Organization [1] approximately

28{35% of people aged 65 and over fall every year, increasing to

32{42% for those over 70 years of age. They typically suffer

moderate to severe injuries such as bruises, hip fractures or head

trauma. Therefore, fall prediction, prevention and protection are

major areas for current research. In recent years, the number of

proposed fall detection systems and algorithms developed has

increased dramatically. An overview of the topic can be found in

[2,3] and in our recent review [4], where we highlight the current

challenges and trends in this field. Fall detection systems can be

based on sensors deployed at home (cameras, pressure or motion

sensors) or on accelerometers carried by the user. Every technique

has its merits and demerits. Accelerometer-based systems are very

popular since they measure the body’s movement directly. Devices

specially made for fall detection are worn attached to the body [5–

10], but there is a new trend towards using the accelerometers

integrated into smartphones [11–16], which is the solution we

have adopted in this work. Smartphones are powerful devices and

applications targeting older people are often related to topics such

as health, wellness, safety and mobility [17]. Integration of many

functionalities into a single device is very attractive. Usability

might still be a concern but we think that in the near future more

and more people will get used to these devices and that a careful

design can help to overcome technology barriers [16,18].

Regarding fall detection methods, those based on thresholding

are typical when using acceleration readings. For instance, the

peak value is supposed to exceed a given threshold during a fall

[6,8,11,13]. Other approaches use more sophisticated Machine

Learning methods [10,14]. Threshold-based methods can be

implemented with little effort and their computational load is

minimal, but they are limited when facing real situations. The

Machine Learning approach is more sophisticated and leads to

better detection rates. Nevertheless, these techniques use more

computation resources and can be difficult to implement. At the

moment there is no widely accepted method among researchers in

this field. Besides, some impediments prevent a fair comparison of

methods. There is no public data base available and each author

decides which kind of ADL and falls are included in the study and

how they are recorded. Many details in this process will have an

impact on the classifier’s performance. In this regard, there is an

European project aiming to provide solutions for health promotion

and fall prevention [19]. An android app has been developed to

acquire inertial sensors data with the hope of recording real-world

falls in a standardized format [19,20].
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Although some functional prototypes have been implemented

and several commercial products are available on the market, the

fact is that there is a rejection of such systems by both the wearer

and the caregiver due to the rate of false alarms, which results in

inappropriate alerts, among some other issues [2]. Bagala et al.

[21] performed an extensive comparison of the most popular

acceleration-based fall detection techniques. They found that the

number of false positives per day in real scenarios ranged from 3 to

85 depending on the specific technique, showing a decrease in

performance with respect to laboratory environments. This

number is still not acceptable, which leads to device rejection.

Therefore, to improve the level of penetration of these systems it is

essential to find a robust fall detection method.

The existing fall detection studies use traditional supervised

techniques, which need labelled samples for both activities of daily

life (ADL) and falls. Falls have traditionally been simulated by

young volunteers. This may explain the loss in performance when

used in real situations, since a system trained with data from young

subjects is then carried by old people. Although collecting data

from real falls of old people is extremely difficult, data from ADL

can be recorded while they carry smartphones in their everyday

life, thus registering a large number of true movements. Taking

this into account, the aim of the present study is to explore the use

of techniques based on real data which could adapt to different

conditions. Therefore we have resorted to some novelty (or

anomaly) detection methods [22] which need only labels from one

class, the ‘‘normal’’ one. Similar approaches were also proposed in

[23] but using acoustic signals and not acceleration readings as we

do in this paper. These methods only use ADL to train the

detector. Once trained, a new input is considered as a novelty, a

fall in our case, if it is very different from the ADL training data.

Several techniques differ in the way they measure this difference.

An adaptive smartphone application based on novelty detection

should include two functions. The classifier itself and the learning

procedure in which new ADL are collected and the classifier is re-

trained as often as possible. Initially, the application would be

based on pre-defined typical ADL but after some time the classifier

Figure 2. The AUC of kNN (blue points), kNN-sum (red squares)
and K-means+NN (green triangles) for different values of k.
doi:10.1371/journal.pone.0094811.g002

Figure 1. Some examples of acceleration shapes obtained during falls and ADL.
doi:10.1371/journal.pone.0094811.g001
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would be completely adapted to the user’s movements, smart-

phone’s characteristics, phone position, etc. Besides, if something

changed, for instance there were some drift in user’s mobility, the

detector would adapt again automatically since the learning

process never stops. Our first guess was that such a system had

several advantages that cannot be found in traditional supervised

techniques:

N It could be easily personalized when the detector is carried by a

new user, without the need to ask him or her to simulate falls.

N Its behaviour could be easily adapted to new conditions:

changes in user’s movements, position of the phone, phone

use, accelerometer characteristics, etc.

N It would not rely on fall simulations, which may not represent

every possible fall situation. It is unclear how a supervised

method would react when tested with a kind of fall that was

not in the training set.

Thus, the overall goal of this paper is to investigate the use of

novelty detection techniques for fall detection. Although we have

not collected real fall data from older people, we want to test the

adaptability of novelty detectors to different conditions as well as to

compare a state-of-the-art generic supervised method with an

adapted novelty detector. For that purpose, the generic method

will face situations for which it was not trained, while the novelty

detector will use the right ADL in each case. Our off-line analysis

has considered the following items: the person who carries the

detector, the kind of fall, the characteristics of the smartphone and

where it is placed. In this paper, we will show under which

circumstances an adapted classifier is a better option.

In addition, the data sets that we have generated for this work

can be freely downloaded (see next section). Up to our knowledge,

this is the first time such information has been made publicly

available. We hope this improves the reproducibility of our results

and helps other researches to compare their methods.

Materials and Methods

Subjects
The first step of the study was to identify typical fall and ADL

patterns. The study involved young and middle-aged volunteers,

since it would be inappropriate to subject elderly people to

simulate falls. Ten participants, 7 males and 3 females, were

recruited for this study. Volunteers ranged from 20 to 42 years old

(31:3+8:6 years), body mass 54 to 98 kg (69:2+13:1 kg) and

height from 1:61 to 1:84 m (1:73+0:08 m).

Ethics Statement
The study protocol was approved by the Ethical Committee for

Clinical Research of Aragon (CEICA). All subjects received oral

and written information about the study, and written informed

consent was obtained from them.

Falls and ADL
Participants performed eight different types of simulated falls:

forward falls, backward falls, left and right-lateral falls, syncope,

sitting on empty chair, falls using compensation strategies to

prevent the impact and falls with contact to an obstacle before

hitting the ground. The first six fall types were selected following

the proposal of Noury et al. [24] for the evaluation of fall detectors

and previous research that showed these are the most common

types of falls among the elderly people [6,8,25]. The last two types

were included as they are common in real-life scenarios according

to the studies of Kangas et al. [26] and Klenk et al. [27]. Each fall

was repeated three times for a total of 24 fall simulations per

subject. Falls were completed on a soft mattress in a laboratory

environment. During the falls participants wore a smartphone in

both their two pockets (left and right). Thus a total of 503 records

were obtained (due to some technical problems some falls had to

be repeated in a few cases, so this number is higher than

24|2|10). The ADL study was carried out under real-life

Table 1. Comparison of novelty fall detectors.

Algorithm AUC mean(std) SE SP

kNN k= 1 0.9554 (0.0052) 0.907 0.905

kNN-sum k= 2 0.9548 (0.0052) 0.913 0.901

K-means + 1NN (K = 800) 0.9575 (0.0056) 0.929 0.890

One-Class SVM 0.9439 (0.0060) 0.881 0.890

doi:10.1371/journal.pone.0094811.t001

Table 2. Comparison of 1NN with SVM in terms of AUC (mean and std).

SVM 1NN

Conditions applied AUC AUC Difference p-value

Standard 10-fold CV 0.977 (0.010) 0.956 (0.011) 0.022 (0.006) ,0.01

Fall type-wise CV 0.976 (0.012) 0.956 (0.013) 0.020 (0.012) ,0.01

Phone sampling at 25 Hz 0.969 (0.008) 0.946 (0.010) 0.022 (0.007) ,0.01

Phone sampling at 16.7 Hz 0.961 (0.009) 0.937 (0.010) 0.024 (0.008) ,0.01

Phone in hand bag 0.899 (0.011) 0.951 (0.007) 20.053 (0.007) ,0.01

Different conditions are considered in each row. The first row is the standard cross-validation (CV). In the second row the CV is done by leaving out each time a different
type of fall for testing. In the remaining rows, the validation sets for CV are taken under varying conditions. 1NN is trained and tested with data obtained under the same
conditions, while SVM is trained with data obtained under ‘‘standard’’ conditions (50 Hz, phone in pocket).
doi:10.1371/journal.pone.0094811.t002
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conditions. Participants carried a smartphone in their pocket for at

least one week to record everyday behaviour. On average, about

800 ADL records were collected from each subject during this

period. An additional ADL data set was obtained by 5 of the

volunteers who carried the phone in a hand bag for about one

week, obtaining roughly 400 ADL per subject. During fall

simulations volunteers also carried two hand bags with smart-

phones, allowing us to obtain another fall data set with 523

records. These additional data sets were only used to study the

influence of the phone’s position.

After a pre-processing step (see below), each ADL or fall was

transformed into a vector, which we call a record in this paper,

composed of 51 acceleration values taken at 50Hz and centred at

the peak.

Data acquisition and processing
During the monitoring period, acceleration signals from the

built-in triaxial accelerometer of a smartphone were acquired

continuously. The devices were Samsung Galaxy Mini phones

running the Android operating system version 2.2. The sampling

rate was not stable, with a value of about 45+12Hz. We stored in

an internal file acceleration signals from the three axes together

with temporal information. During the daily life monitoring,

whenever a peak in the acceleration magnitude was detected to be

higher than 1:5g (g=gravity acceleration), a new entry was

appended to the file. This value is below the acceleration peak

during falls reported by previous authors [6,11,13]. Each entry

included information in a time window of 6 s around the peak.

During each fall simulation, we also got a 6 s width time window

around the highest peak. Then, the file was transmitted wirelessly

to a server once the monitoring period was over. Afterwards, the

offset error of each axis was removed, the acceleration magnitude

was calculated and an interpolation was performed to get a sample

every 0:02ms (50Hz). For the analysis presented in this paper, we

kept only the central 1 s. In this way, each ADL or fall was

transformed into a vector with 51 values.

The data sets together some Python scripts to handle them are

available for download at the following address: http://eduqtech.

unizar.es/en/fall-adl-data/.

Algorithms and their evaluation
We have used several novelty detection techniques, see [22] for

a brief explanation and further references. All the selected

methods can be trained only with ADL. Despite its simplicity, k-

nearest neighbour (kNN) has shown good performance in many

practical applications. It needs an initial set of ADL training

records. Given a new record, the novelty score is the distance to its

k-nearest neighbour in the training set. If the novelty score is

higher than a given threshold, the new record is classified as a

novelty, a fall in our case. By varying the threshold, the receiver

operating characteristic curve (ROC) can be depicted. In this

paper, the area under the ROC curve (AUC) has been selected as

the main figure of merit of the classifiers. To compare with

previous studies, a specific value of sensitivity (SE) and specificity

(SP) is also provided. These values have been obtained by selecting

the point that maximized their geometric mean,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SP:SE
p

, in a

ROC curve averaged over the cross-validation results. These

figures of merit are insensitive to differences in size between ADL

and fall data sets.

Two variants of kNN have also been considered. In the first

case, the novelty score was also obtained as the sum of distances to

the k nearest neighbours (kNN-sum). Another group of tests was

done using a K-means clustering before applying a 1NN rule (K-

means+NN). In this way, the number of records was reduced and

only the cluster centres were considered afterwards.

Finally, we have also tested a more sophisticated novelty

detection algorithm, the One-Class Support Vector Machine

(One-Class SVM), which tries to estimate the support of a

probability distribution, thus allowing to reject samples that are

unlikely to have being obtained from that distribution [28]. In the

raw One-Class SVM, the sign of the distance to the hyperplane

found in the training process determines the class. By thresholding

this distance, the ROC curve can be drawn.

With respect to traditional supervised methods, we have selected

one of the state-of-the-art classifiers, SVM with a radial basis

function as kernel, which have been successfully applied for non-

linear problems in high dimension spaces. As in the previous case,

thresholding the distance to the hyperplane allows depicting its

ROC curve.

All the algorithms were implemented in Python. For K-means,

One-Class SVM and SVM we used the scikit-learn package

(version 10.0, which comes as a package for Ubuntu 12.04) [28].

The SVM Python interface links in turn to libSVM [29]. One

important point in our case was the difference in size between the

ADL and fall data sets. To account for it, the library allows

defining a weight parameter for each class to deal with unbalanced

data sets. In this way, the error penalty is multiplied by the

corresponding weight when training SVM. Thus, the fall weight

was set to the number of ADL and vice versa. Parameters in SVM

and One-Class SVM (C, c or n) were selected using a grid search

to look for the values that minimized a weighted error in an

internal cross-validation, that is, a cross-validation using only the

training set. The weighted error accounted again for different sizes

in the ADL and fall data sets. The kNN and kNN-sum novelty

detectors were implemented with our own code. We selected the

Euclidean distance as the distance measure.

The evaluation of the algorithms was different depending on the

goal. First, we selected the most suitable detector among the

novelty detection algorithms. For the comparison between them,

we used a 10-fold cross-validation, dividing the ADL data set into

10 groups. Falls were needed mainly to test the algorithms. The

only particular aspect was that we had to kept a 10% of falls out of

the testing phase in each run. This group and the ADL training set

Figure 3. ROC curve for SVM (blue points) and 1NN (red
squares).
doi:10.1371/journal.pone.0094811.g003
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were used to select the parameters of the One-Class SVM

classifier.

After selecting the best novelty detector, we compared it with

SVM. We have summarized in figure 4 the conditions applied to

perform this comparison. First, we performed a standard 10-fold

cross-validation. Then, we simulated situations in which a generic

SVM faced conditions that were not present in its training set and

compared its performance with that of an adapted novelty

detector. This was achieved by selecting suitable train and

validation sets for cross-validation:

N To study the effect of new types of falls, the cross-validation

was carried out by fall type. In this case, in each run of the

cross-validation all the falls of a given type were kept for

validation and the remaining falls were used for training.

N The sampling rate is another source of variation because not

all the smartphones sample at the same frequency. Let’s

assume that a generic SVM has been trained with records at a

given sampling frequency and over a given time span, in our

case 51 samples at 50Hz, a bit more than 1 s. Thus, the

classifier requires a 51D vector as input. If the classifier were

run in a new phone sampling at a lower frequency, the data

acquired by the phone would have to be interpolated. To

simulate such a situation, the validation set for SVM was

subjected to a two-step process. Firstly, the original data set

was subsampled at a lower frequency. In this way we obtained

the kind of records that would be acquired in the new phone.

Secondly, since SVM still requires a 51D vector at 50Hz, the

records obtained after the first step were interpolated again to

50Hz and the corresponding samples around the peak were

selected to feed SVM. In this two-step process, the original

data were not recovered exactly and some information was

lost. On the other hand, an adapted novelty detector would use

directly the data acquired with the new phone, including those

to train the detector itself. Thus, both training and validation

sets for the novelty detector were obtained by subsampling the

original data.

N The position of the phone has also an impact on the detector’s

performance. A 10-fold cross-validation was performed for the

novelty detector using only data acquired with the smartphone

in a hand-bag. In each run, SVM was tested against the same

validation set, but trained using different ADL and falls each

time selected from those obtained with the phone in the

pocket. For a fair comparison, the sizes of ADL training sets

for the novelty detector and SVM were the same. In this way,

we simulated again an adapted system based on a novelty

detector, in which new records for training can be acquired by

each user with the phone in a different position.

N Finally, we studied the effect of personalization. For each

subject, we tested the algorithms with part of his or her own

data. The novelty detector was trained with the rest of his or

her own data while SVM was trained with data from the

remaining people. Thus, the novelty detector was personalized

whereas SVM was generic. For a fair comparison, we took the

same number of ADL records in both training sets. This was

repeated ten times for cross-validation.

An implicit assumption of our proposal is that personalization

should improve the detector’s performance. To check this issue,

we have also compared the novelty detector with and without

personalization. This comparison followed the same selection of

train and validation sets as explained in the last paragraph (in fact,

we took advantage of the same cross-validation runs to estimate

the performance and we will present the results in the same table).

Results

Two data sets, falls and ADL, were collected from ten

volunteers. Some examples of falls and ADL acceleration shapes

are shown in figure 1. These data sets were used for the off-line

analysis that follows.

Comparing and selecting a novelty detector
In figure 2 we compare the AUC of kNN, kNN-sum and K-

means+NN for different values of k. Increasing k for kNN or

summing the distances to the k nearest neighbours did not help to

improve the results, while for K-means+NN the optimum was

found at K= 800, which roughly implies 9 records per cluster.

In table 1 we present the results of the nearest neighbour-based

methods (best k values) and those of the One-ClassSVM. In terms

of AUC, One-Class SVM obtained the worst results

(p{valuev0:01 when comparing to each of the other three in a

one-sided t-test). In terms of AUC, K-means+NN is the best.

However, although the difference with respect to 1NN is

statistically significant (p{valuev0:01), its value is about one

order of magnitude smaller than the differences obtained in the

comparison with SVM using the same data set (see below and

table 2). Therefore, due to its simplicity for a smartphone

application and to the ease of updating with new records, we

picked 1NN for further analysis in our study.

Adapting 1NN and comparing with SVM
We compared 1NN with a supervised method SVM, under

different conditions as explained in section ‘‘Materials and

Methods’’. The results are shown in table 2 for AUC and in

table 3 for specificity and sensitivity. The last column in table 2 is

the p-value of a one-sided t-test applied to the difference in

AUC. The first row is the result of the standard 10-fold cross-

validation taking into account all the data. SVM clearly

outperformed 1NN. This is also graphically shown in figure 3,

in which the differences between the ROC curves can be

appreciated. Until the true positive ratio (TPR) reaches a value

of 80%, the ROC curve of 1NN is displaced with respect to that of

SVM roughly up to a 2:5% in the value of the x-axis, the false

positive rate (FPR).

The results when the cross-validation was performed by fall type

are presented in the second row of tables 2 and 3. Although there

was a small decrease in performance, SVM still outperformed

1NN.

In the third and fourth rows of tables 2 and 3 we present the

results of an analysis to study the effect of sampling frequency,

again repeated 10 times for cross-validation. The performance of

both SVM and 1NN deteriorated being 1NN still the worst.

In the last row of tables 2 and 3, we investigated the importance

of the way the phone is carried. The adapted 1NN experienced a

slight decrease in performance, while the generic SVM got clearly

worse. In this case, 1NN outperformed SVM.

Finally, we studied the effect of personalization. In tables 4 and

5 the results for each volunteer are presented. P-values were

obtained as explained above. Three cases are considered. In two of

them the detector was generic, denoted as SVMG and 1NNG,

while the last one was personalized, 1NNP. Concerning the

comparison between SVMG and 1NNP, in eight out of ten people

SVMG outperformed 1NNP, but for two people the personalized

detector was a better option. In average, the difference between

SVMG and 1NNP gets smaller when personalizing the detector,

see the last row of table 4 and the first row of table 2. In table 5 we

show the results in terms of SE and SP. In this table the geometric

mean obtained using 1NNP is higher for four people. Concerning
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Table 3. Comparison of 1NN with SVM in terms of SE and SP.

SVM 1NN

Conditions applied SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE
:

SP
p

SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE
:

SP
p

Standard 10-fold CV 0.954 0.924 0.939 0.910 0.903 0.907

Fall type-wise CV 0.953 0.926 0.939 0.904 0.915 0.909

Phone sampling at 25 Hz 0.930 0.918 0.924 0.891 0.901 0.896

Phone sampling at 16.7 Hz 0.893 0.919 0.906 0.895 0.880 0.887

Phone in hand bag 0.903 0.7912 0.845 0.910 0.893 0.902

Different conditions are considered in each row. The first row is the standard cross-validation (CV). In the second row the CV is done by leaving out each time a different
type of fall for testing. In the remaining rows, the validation sets for CV are taken under varying conditions. 1NN is trained and tested with data obtained under the same
conditions, while SVM is trained with data obtained under ‘‘standard’’ conditions (50 Hz, phone in pocket).
doi:10.1371/journal.pone.0094811.t003

Figure 4. Schematic summary of cross-validation conditions. ADL and FALL represent the original data set (50 Hz, phone in pocket). Between
parentheses, we add additional conditions. For instance, FALL(type= t) means the falls of a given type t. ADL-Hand bag and FALL-Hand bag are the
data sets obtained while carrying the phone in a hand bag.
doi:10.1371/journal.pone.0094811.g004
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the effect of personalization on the novelty detector, the difference

in AUC between 1NNP and 1NNG is positive for nine people and

negative only for person 4, but being very small (v0:001) and

without statistical significance (p{value~0:436).

Discussion

In recent years there has been an increasing number of studies

using smartphones to detect falls. Smartphones are suitable devices

because they have built-in accelerometers, powerful processors

and built-in communications protocols that allow alarms to be

sent. Unlike previous studies using Machine Learning methods, in

this paper we sought to test novelty detection methods to

discriminate falls. In this way, we had a set of records, ADL,

that represented the normal behaviour. Given a new record, we

wanted to decide whether it belonged to the same distribution. If

not, it should be classified as a potential fall and an alarm should

be triggered. Being only based on true ADL, these methods

seemed to be good candidates to adapt to varying conditions.

However, our guess was not confirmed. SVM outperformed

1NN when using all the records together. This was not surprising

considering that SVM used all the information available, but the

same result was still valid even if the cross-validation was made by

type of fall. It seems that the degree of similarity between falls was

high enough to allow SVM to classify all of them in the same

group, regardless of their kind. Running SVM in a smartphone

with lower sampling frequency than the frequency used for

training was also better than an adapted 1NN. On the positive side

of novelty detectors, our results show that SVM was very sensitive

to the position of the phone. Previous studies always considered

Table 5. Comparison between generic SVM and 1NN detectors (SVMG, 1NNG) and a personalized 1NN detector (1NNP) in terms of
SE and SP.

SVMG 1NNG 1NNP

Person SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE
:

SP
p

SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE
:

SP
p

SE SP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE
:

SP
p

Person 0 0.908 0.946 0.927 0.827 0.871 0.849 0.867 0.925 0.895

Person 1 0.992 0.923 0.957 0.983 0.901 0.941 0.964 0.945 0.955

Person 2 0.861 0.942 0.900 0.892 0.894 0.893 0.932 0.894 0.913

Person 3 0.970 0.929 0.950 0.904 0.857 0.880 0.952 0.901 0.926

Person 4 0.877 0.939 0.907 0.944 0.878 0.911 0.952 0.876 0.913

Person 5 0.866 0.784 0.824 0.804 0.545 0.662 0.950 0.909 0.929

Person 6 0.961 0.859 0.909 0.898 0.831 0.864 0.950 0.859 0.903

Person 7 0.917 0.965 0.941 0.919 0.930 0.924 0.955 0.930 0.942

Person 8 0.961 0.953 0.957 0.900 0.884 0.892 0.953 0.907 0.930

Person 9 0.981 0.925 0.953 0.932 0.812 0.870 0.940 0.912 0.926

Average 0.929 0.917 0.922 0.900 0.840 0.869 0.941 0.906 0.923

For each person, the personalized 1NN is trained only with part of his or her own data, and tested with the remaining data. The generic SVM or 1NN in turn are trained
with data from the remaining people but tested on the same validation set. This is repeated ten times for cross-validation.
doi:10.1371/journal.pone.0094811.t005

Table 4. Comparison between generic SVM and 1NN detectors (SVMG, 1NNG) and a personalized 1NN detector (1NNP) in terms of
AUC (mean and std).

SVMG 1NNG 1NNP SVMG-1NNP 1NNP-1NNG

Person AUC AUC AUC Difference p-value Difference p-value

Person 0 0.976 (0.007) 0.929 (0.017) 0.955 (0.013) 0.021 (0.009) ,0.01 0.026 (0.008) ,0.01

Person 1 0.986 (0.010) 0.974 (0.012) 0.979 (0.012) 0.007 (0.008) 0.014 0.005 (0.002) ,0.01

Person 2 0.941 (0.007) 0.941 (0.012) 0.950 (0.011) 20.009 (0.012) 0.023 0.090 (0.004) ,0.01

Person 3 0.983 (0.012) 0.9410(0.014) 0.965 (0.009) 0.018 (0.011) ,0.01 0.024 (0.007) ,0.01

Person 4 0.963 (0.007) 0.954 (0.010) 0.953 (0.012) 0.009 (0.009) ,0.01 20.000 (0.004) 0.436

Person 5 0.921 (0.022) 0.653 (0.053) 0.962 (0.013) 20.040 (0.022) ,0.01 0.309 (0.046) ,0.01

Person 6 0.964 (0.014) 0.912 (0.024) 0.950 (0.020) 0.014 (0.013) ,0.01 0.038 (0.013) ,0.01

Person 7 0.971 (0.007) 0.952 (0.010) 0.965 (0.011) 0.007 (0.007) ,0.01 0.013 (0.005) ,0.01

Person 8 0.988 (0.007) 0.948 (0.022) 0.966 (0.019) 0.022 (0.018) ,0.01 0.019 (0.011) ,0.01

Person 9 0.988 (0.006) 0.945 (0.012) 0.977 (0.010) 0.011 (0.006) ,0.01 0.032 (0.009) ,0.01

Average 0.968 0.915 0.962 0.006 0.047

For each person, the personalized 1NN is trained only with part of his or her own data, and tested with the remaining data. The generic SVM or 1NN in turn are trained
with data from the remaining people but tested on the same validation set. This is repeated ten times for cross-validation.
doi:10.1371/journal.pone.0094811.t004
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standardized positions. If the phone can be used as a phone and

placed in different positions, an algorithm that can adapt itself to

these situations can improve the results. For instance, if some

people carried the phone in a hand bag, 1NN could learn this

situation by recording new ADL and it would outperform SVM

trained with data taken in the ‘‘assumed’’ position, the pocket.

After personalizing the detector, 1NN was able to beat SVM for

some participants, but it is difficult to decide in advance who could

be in that group. In average, the performances of both algorithms

became closer and even the choice of the figure of merit (AUC or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE:SP
p

) could change the selection of the algorithm for a given

person. In contrast, personalizing 1NN clearly improved its results

with respect to its generic version. According to these results,

personalization is a valuable option which can increase the

detector’s performance. This aspect deserves further research in

the future with a larger number of participants. For 1NN,

customization could be easily achieved in the user’s smartphone.

However, for more complex algorithms, re-training the algorithm

in the phone is likely to imply too much computation burden, but

solutions considering the communication with an external server

could be envisaged.

Concerning the relation with previous studies, most papers

characterized the detector’s performance using specificity and

sensitivity. In the case of accelerometers attached to the body, even

simple algorithms based on thresholds seemed to be almost

perfect. For instance values as good as SP~100% and SE~98%

have been reported [7]. However, their performance under real-

life conditions decreased dramatically as shown in [21]. In

addition, accelerometers built into smartphones are unlikely to

reach the range and accuracy of specialized devices. Our work can

be compared more directly with studies based on smartphones.

Using threshold based methods, Lee et al. [13] obtained SP~81%

and SE~77%, while Fang et al. [15] obtained SP~74% and

SE~77%. More sophisticated Machine Learning methods were

used in [14], where accuracies of 98% were reported. Other works

achieved very good performance but relying on additional external

sensors, like a magnetic accessory in [2], or another accelerometer

in [16]. In our work, the average performance for 1NN in the base

experiment was SP~90% and SE~91%, while SVM achieved

SP~92% and SE~95%, see table 3. Thus, we got better results

than threshold-based methods, as expected due to their simplicity,

but worse than those of [14]. This can be due to several reasons:

N The position of the smartphone was fixed on the back of the

subject with a special belt in [14], while we just asked the

volunteers to carry the phone in their pocket, thus being only

loosely fixed. Besides, they could also use the phone to call.

N The features extracted were different. In [14] features such as

moments, histograms or Fourier components were extracted.

On the contrary we used the raw acceleration values.

N The time window was larger in [14], a time span of 10 s.

Although analyzing an extended period after the acceleration

peak can help to reduce some false alarms, we feel that during

falls simulated by volunteers the information included in the

time before them is far from being realistic and it is highly

conditioned by the researcher conducting the experiment. Falls

themselves have been reported to be very short [24] and we

took only 1 s around the acceleration peak.

N Accelerometers might not have the same properties. For

instance, in our experiments we did not sample any

acceleration component higher than about 2g.

The limitations of our study should also be acknowledged. We

evaluated the algorithms using a restricted set of falls simulated by

young and middle age people, all of them healthy subjects. Thus,

they form a homogeneous group. It is still an open question if these

records can be representative of older people’s real falls since their

movements are expected to be different from those of young or

mature people [26,27]. With regard to the information fed into the

classifier, we have restricted this work to discriminate the

acceleration shape during falls. Other features like the orientation

change during the fall could help to reject many false alarms.

We must also mention some technical problems that we have

faced when testing different mobile phones which could hinder the

performance of a smartphone application. Smartphones were not

originally intended for safety critical applications and special care

is needed to ensure that programs run without interruption.

Conclusions

This work was motivated by the possibility of using a

smartphone for fall detection in real-world scenarios. We have

explored a new type of approach based on novelty detection that

allows an easy personalization of the detector because it is only

trained with true ADL. We have compared it with a traditional

SVM, which uses both falls and ADL for training. Even though a

generic SVM has shown to perform better than an adapted NN in

most of the situations that we have simulated using our public data

base, the ultimate test should be carried out with real data from

the elderly. This remains an opportunity for further research. We

have shown that personalization boosts performance and this

encourages us to test fall detectors with large groups of older

people in real environments. Being different from laboratory set-

ups, adaptability would be a key property to lower false alarms.

Finally, novelty detection is a field with an intensive research

where new algorithms and methods are being developed. Given

that single algorithms are already very good in terms of error rate,

our attention will turn towards the use of different features and

combination of methods.
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