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Abstract—State estimation is an important power system
application that is used to estimate the state of the power
transmission networks using (usually) a redundant set of sensor
measurements and network topology information. Many power
system applications such as contingency analysis rely on the
output of the state estimator. Until recently it was assumed
that the techniques used to detect and identify bad sensor
measurements in state estimation can also thwart malicious
sensor measurement modification. However, recent work by Liu
et al. [1] demonstrated that an adversary, armed with the
knowledge of network configuration, can inject false data into
state estimation that uses DC power flow models without being
detected. In this work, we explore the detection of false data
injection attacks of [1] by protecting a strategically selected set
of sensor measurements and by having a way to independently
verify or measure the values of a strategically selected set of state
variables. Specifically, we show that it is necessary and sufficient
to protect a set of basic measurements to detect such attacks.

I. INTRODUCTION

THe power grid is a complex system of interconnected
networks each of which consists of electric power gener-

ators and power consumers (loads) connected by transmission
and distribution lines. To ensure safe and reliable operation
of the power grid, each of the interconnected networks is
continuously monitored and controlled by a control center1

using an industrial control system known as Supervisory Con-
trol and Data Acquisition (SCADA) system. SCADA system
collects measurements from sensors in the network, every 2
to 4 seconds. These sensor measurements are fed into a State
Estimator which, as the name indicates, estimates the state of
the power network based on the sensor measurements. Local
grid operators use this estimate of the current state to take
corrective control actions if necessary and to plan for any
contingencies (e.g., loss of a transmission line or generator).
Thus state estimation plays an important role in the reliable
operation of the power grid.

The power grid, being critical infrastructure, is an attrac-
tive attack target. Adversaries may attempt to manipulate
sensor measurements, insert fake control commands, delay
measurements and/or control commands, and resort to other
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1In order to ensure reliability of the interconnected networks as a whole,
designated entities known as reliability coordinators monitor the network over
a wide region and provide oversight and reliability coordination between
control centers.

malicious actions. Therefore, it is crucial to protect power
system applications against such malicious activity to ensure
safe and reliable operation of the power grid. Until recently,
it was generally assumed that the techniques used to detect,
identify and correct [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16] bad sensor measurements
in state estimation are sufficient to detect and recover from
sensor measurement manipulation. However, recent work by
Liu et al. [1] demonstrated that an adversary, armed with the
knowledge of the network configurations, can inject false data
into state estimation that uses DC power flow models without
being detected.

One of the key reasons behind such attack demonstrations
is that current bad data detection techniques were designed
to deal with errors and not coordinated malicious activity.
Therefore, there is a need to develop advanced defense strate-
gies for protecting state estimation and other power system
applications. The aim of this work is to take the first step
in this direction and develop defense strategies for protecting
DC state estimation against the false data injection attacks
proposed in [1]. While the work of Liu et al. [1] presented
the false data injection attacks from an adversary’s point of
view and showed what it takes for an adversary to launch a
successful attack, we look at the problem from the power grid
operator’s point of view and ask what it takes to defend against
such attacks. Intuitively, there are two approaches to protecting
control applications such as state estimation. The first is to
design robust control algorithms that can detect or tolerate
malicious data modification. The second is to protect the
sensor measurements and other data from being manipulated.
These two approaches are not necessarily mutually exclusive
but can complement each other.

The first approach of handling malicious data injection at the
application layer might mean reduced application efficiency
with higher development costs. Furthermore, changing algo-
rithms that the grid operators are used to and have gained
significant experience with is not lightly done. More often
than not, new algorithms are first introduced as research and
development prototypes and are not commissioned for pro-
duction use until the operators gain some experience and get
comfortable with using the new algorithm. Thus, the second
approach of fundamentally thwarting sensor data manipulation
at the lower layer is the only alternative until the new algorithm
is accepted for production use. This second approach can mean



simpler power applications and higher performance. However,
it may not be feasible to protect all sensor measurements,
either due to budgetary constraints or the legacy nature of the
measurement device and its communications. In this work,
we explore bringing application awareness to the second
approach in order to reduce the burden of protecting all sensor
measurements.

Specifically, we investigate whether it is possible to sig-
nificantly reduce the risk of undetectable false data injection
attacks of [1] against DC state estimation by 1) protecting a
carefully chosen subset of the sensor measurements, and 2)
having ways to independently verify or measure the values
of a carefully chosen set of state variables, both for a given
network topology. The intuition behind this approach is that for
a given topology some sensor measurements influence more
state variables than others and hence might provide better cost
to benefit ratio when protected. Similarly, some state variables
are dependent on more sensor measurements than others and
hence independently verifying their estimate might limit the
attackers ability in manipulating sensor measurements without
being detected.

Such an analysis is very useful for state estimation, and
any deployed control algorithm in general, as it allows grid
operators to make informed decisions regarding how to invest
their protection budget. Even when a grid operator is willing
and has the resources to protect all sensor measurements and
upgrade their state estimation algorithm, this change will not
be effected overnight. Thus, our investigation is useful in
prioritizing which sensor measurements to protect first from
a security point of view. Besides, this approach is general in
nature in the sense that it can be combined with solutions that
handle malicious data at the upper layers.

Our results show that our defense strategy is very effective
in thwarting undetectable false data injection attacks of [1] on
DC state estimation. Our main contribution in this context
is showing that protecting a set of basic measurements is
a necessary and sufficient condition for detecting false data
injection attacks of [1] on DC state estimation. A set of
basic measurements is composed of the minimum number
of measurements needed to ensure observability of the power
network, i.e., to ensure that the state variables can be estimated
using the measurements. For DC state estimation, the size
of a set of basic measurements is equal to the number
of state variables, n, that need to be estimated, while the
number of measurements, m, is often larger than that, i.e.
m > n. For example, for the IEEE 300-bus test system, the
number of measurements is 1122 while the number of state
variables to be estimated is 2992. The additional measurements
provide redundancy and are useful for traditional bad sensor
measurement detection and identification methods mentioned
above.

The rest of this paper is organized as follows. In Section
II, we provide a brief background on state estimation and
associated bad data detection mechanisms and the false data

2Here we are excluding the slack bus angle

TABLE I: Notations
m The number of measurements
n The number of state variables
H m× n Jacobian matrix representing the topology
x n× 1 vector of state variables
z m× 1 vector of measurements
e m× 1 vector of measurement errors, s.t., z = Hx + e
x̂ n× 1 vector of estimated state variables
W m×m diagonal matrix, s.t., wi,i = σ−2

i ,
where σ2

i is the variance of the i-th measurement (1 ≤ i ≤ m)
τ Threshold for the L2-norm based detection of bad measurements
za m× 1 measurement vector with bad measurements
a m× 1 attack vector, s.t., za = z + a
c n× 1 vector of estimation errors introduced due to a
M The set of sensor or measurement indices
V The set of state variable indices
Im̄ The set of indices of protected sensor measurements
Iv̄ The set of indices of independently verified state variables
Im The set of indices of potentially manipulated measurements
Iv The set of indices of potentially manipulated state variables
p The number of protected measurements, i.e., |Im̄|
q The number of independently verified state variables, i.e., |Iv̄ |

injection attacks proposed in [1]. We motivate and present
our general approach in Section III. We discuss approaches to
identifying a set of sensors and state variables to protect and
then present our results in Section IV. We discuss practical
issues, limitations and future directions in V.

II. BACKGROUND

In this section, we briefly discuss DC state estimation
including bad data detection and the false data injection attacks
proposed in [1]. Table I shows the notation used.

A. DC State Estimation [17]

Here, we present a common formulation of the state esti-
mation problem when using a DC power flow model.

z = Hx + e (1)

In (1), x = (xi, x2, . . . , xn)T represents the true states of
the system that are to be estimated, z = (zi, z2, . . . , zm)T

represents the sensor measurements, H is an m× n Jacobian
matrix where Hx is a vector of m linear functions linking
measurement to states, and e = (ei, e2, . . . , em)T represents
random errors in measurement.

The power network is considered observable if there are
enough measurements to make state estimation possible. There
are many sensor placement algorithms that can identify the set
of sensor measurements that ensure observability of a power
network [17]. Typically, there are more sensors in the power
network than those needed for observability, i.e. m > n.
The minimum set of measurements needed to estimate the
n state variables is commonly referred to as a set of basic
measurements or essential measurements. The remaining set
of measurements are referred to as redundant measurements.
The redundant measurements are useful in identifying bad
sensor measurements [17]. Note that for DC state estimation,
any set of n measurements whose corresponding rows in H
are linearly independent are sufficient to solve for the n state



variables and hence constitute a set of basic measurements.
In other words, n independent linear equations are sufficient
to solve for n variables. When m is greater than n, as is
the typical case, state estimation involves solving an over-
determined system of linear equations. It can be solved as
a weighted least squares problem to arrive at the following
estimator:

x̂ = (HTWH)−1HTWz (2)

where W is a diagonal matrix whose elements are the mea-
surement weights. It is common to base W on the reciprocals
of the variance of measurement error. As pointed out in [1],
as long as the sensor measurement error is assumed to be
normally distributed with zero mean, other commonly used
estimation criteria, namely, maximum likelihood criterion and
minimum variance criterion also lead to the estimator in (2).

1) Bad Measurement Detection: Sensor measurements used
for state estimation might be inaccurate because of device
misconfiguration, device failures, malicious actions or other
errors and can adversely affect the estimate of state variables.
Thus, it is extremely valuable for power system operators to
detect the presence of bad measurements and identify them.
Many schemes for detecting, identifying and correcting bad
measurements have been proposed [18], [17].

A common approach [18], [17] for detecting the presence of
bad data is by looking at L2−norm of measurement residual
which is defined as follows:

||z−Hx̂|| (3)

In, equation (3), x̂ is the state estimate and z − Hx̂ is
the measurement residual, which is the difference between
the vector of observed measurements and estimated measure-
ments. Intuitively, when observed measurements, z, contain
bad data, the L2 − norm of the measurement residual will
be high. Thus if the value of expression in (3) is greater than
a certain threshold τ it is assumed that bad data is present.
Assuming that all state variables are mutually independent and
that the sensor errors follow a normal distribution, it can be
shown that (‖z − Hx̂‖)2 follows a chi-squared distribution
with ν = m − n degrees of freedom [18]. Threshold value
τ can then be determined through a hypothesis test with a
significance level α.

B. False Data Injection Attacks [1]

False data injection attacks on state estimation [1] are those
in which an attacker3 manipulates the sensor measurements
to induce an arbitrary change in the estimated value of state
variables without being detected by the bad measurement
detection algorithm of the state estimator. In [1], Liu et al.
present false data injection attacks that can bypass the bad
measurement detection algorithm described in Section II-A1.
Here, we summarize the basic attack principle, attack scenarios
and goals from [1].

3We use the terms attacker and adversary interchangeably throughout this
paper

1) Attack Principle: Let a = (a1, a2, . . . , am)T be an
attack vector representing the malicious data added to the
original measurement vector z = (z1, z2, . . . , zm)T . Let za =
z + a represent the resulting modified measurement vector.
Let x̂bad and x̂ represent the estimates of x when using the
manipulated measurements za and original measurements z
respectively. Then x̂bad can be represented as x̂+ c, where c
is the estimation error introduced by the attacker.

Theorem 1 in [1] shows that if the adversary chooses the
attack vector, a, to be equal to Hc, then resulting manipulated
measurement za = z + a can pass the bad measurement
detection algorithm described in Section II-A1 as long as the
original measurement z can pass it. To see this, consider the
L2−norm of the measurement residual with manipulated data

‖za −Hx̂bad‖ =‖z + a−H(x̂ + c)‖
=‖z−Hx̂ + (a−Hc)‖ (4)
=‖z−Hx̂‖ (5)

when a = Hc (6)

2) Attack Scenarios and Goals or Adversary Model: It is
assumed that the adversary has access to H which is deter-
mined by the power network topology and line impedances.
It is also assumed that the adversary has the capability to
manipulate sensors measurements, either by compromising
the sensor or the communication between the sensor and
the control center. However, this capability of the attacker is
constrained as follows:

• Scenario I: The attacker is restricted to accessing only
specific sensors. This takes into account the possibility
that some sensors may be protected or beyond the reach
of the attacker for other reasons.

• Scenario II: The attacker has limited resources to com-
promise sensors. That is, the attacker can compromise any
sensor but is restricted to compromising only a limited
number, say k, out of all sensors.

For both of the above scenarios, two attack goals are
considered, namely, random false data injection and targeted
false data injection. In random false data injection, the ad-
versary aims to find any attack vector that injects arbitrary
errors into the estimates of state variables. In targeted false
data injection, the adversary aims to find an attack vector
that injects specific errors into the estimates of specific state
variables chosen by him. For targeted false data injection,
two cases are considered: constrained and unconstrained. In
the constrained case, the adversary aims to find an attack
vector that injects specific errors into the estimates of specific
state variables but does not pollute the estimates of other state
variables. This case represents situations where the control
center may have independent ways to verify the estimates of
certain state variables, and to avoid detection, the adversary
does not want to pollute them. In the unconstrained case, the
adversary has no such concerns regarding polluting other state
variables.



Methods to identify attack vectors for both of the above
described attack goals and in each of the above described
attack scenarios, as well as the effectiveness of those methods
on the IEEE 9-bus, 14-bus, 30-bus, 118-bus and 300-bus test
systems, are presented in [1]. We refer the readers to [1] for
details.

III. MOTIVATION AND APPROACH

While the work of Liu et al. [1] presented the false data
injection attacks from an adversary’s point of view and showed
what it takes for an adversary to launch a successful attack,
we look at the problem from the power grid operator’s point
of view and ask what it takes to defend such attacks. An
obvious approach is to protect all sensor measurements from
being manipulated. However, this is not always feasible, and
in this work we explore the feasibility of detecting false data
injection attacks without having to protect measurements from
all sensors. Specifically, for a given H, we aim to identify a
set of sensors and a set of state variables such that, when the
measurements from the sensors in the chosen set are protected
and when the values of state variables from the chosen set
can be verified independently, then an adversary cannot find
attack vectors that can inject false data without being detected.
Furthermore, we would like to identify the smallest of such
sets.

The existence of a set of sensors such that, when the
measurements from those sensors are protected, an adversary
cannot inject false data without being detected is evident from
the results in [1]. For a given integer k, Figure 2 in [1] shows
the estimated success probability of an attacker in injecting
false data without being detected when he picks k measure-
ments at random to manipulate. This success probability was
estimated using multiple trials of picking k measurements at
random to manipulate. If the success probability of an attacker
is less than 1 for a given k, it implies that there exist sets of
m − k measurements such that when they are protected an
attacker cannot inject false data without being detected. For
example, an adversary has to compromise close to 80% and
50% of the total measurements, for the IEEE 9-bus and 300-
bus systems respectively, before his success probability ap-
proaches 1. That means there exist sets consisting of more than
20% and 50% of the sensors for the IEEE 9-bus and 300-bus
systems respectively, such that when the measurements from
those sensors are protected against compromise an adversary
cannot inject false data without being detected.

However, it is useful to identify the smallest set of sensors
that need to be protected for detecting false data injection
attacks. According to Theorem 2 in [1], if an attacker can
compromise k sensor measurements, where k ≥ m − n + 1,
there always exist attack vectors that can inject false data
without being detected even when the attacker has no control
over which k sensors he can compromise. This provides
a lower bound on the number of sensors that need to be
protected. That is, a necessary condition for detecting false
data injection is protecting at least n sensors. However, it
does not seem to be a sufficient condition. Results in [1]

show that protecting any n out of m sensors doesn’t guarantee
detection of false data injection, and that sometimes more
than n sensors need to be protected. For example, consider
the IEEE 300-bus test system where there are m = 1122
measurements and n = 299 state variables4. For this system,
according to Theorem 2 of [1], if the adversary compromises
any m − n + 1 = 824 measurements, then he can always
find an attack vector for random false data injection (without
being detected). But, as mentioned above, experimental results
presented in Figure 2 of [1] show that an attacker is able
to find an attack vector with probability 1, i.e., found an
attack vector in all the trials, when manipulating about 50%
of measurements, i.e. 561 measurements, picked at random.
Thus, it seems the grid operator is forced to protect more than
561 measurements to detect false data injection, and even then,
if the set of protected measurements is not carefully chosen,
the attacker may still succeed in injecting false data without
being detected.

While selectively protecting a little more than 50% of
the total measurements is more cost-effective than having to
protect all sensor measurements, we explore the possibility
of further reducing this burden by leveraging the operators
ability to independently verify the values of a few chosen state
variables. Intuitively, the ability to independently verify the
value of a state variable provides some measure of indirect
protection for the sensor measurements that most influence
the value of the state variable. One way to independently
verify the value of state variables is through the deployment
of Phasor Measurement Units (PMUs). PMUs can directly
measure both the magnitude and phase angles of currents and
voltage at a bus and the measurements are GPS timestamped.
There are already about 200 networked PMUs deployed in
North America and another 800+ are slated to be deployed
with support from Department of Energy (DOE) Smart Grid
Investment Grants. It might be better to use the measurements
from these PMU devices as an independent way to verify the
value of a state variable and potentially save on the cost of
protecting measurements from multiple legacy sensors.

A. Adversary Model

We assume that the adversary has access to the topology
matrix H which is determined by the power network topology
and line impedances. We also assume that the adversary
has the capability to manipulate sensors measurements, either
by compromising the sensors or the communication between
the sensors and the control center. However, the attacker
is restricted to compromising the measurements from only
specific sensors denoted by the set Im. This takes into account
the fact that the remaining measurements are protected by the
grid operator. Furthermore, as discussed above, we assume
that the grid operator can independently verify the values of
a few chosen state variables, denoted by the set Iv̄ , and that

4Based on the topology matrix H of the IEEE 300-bus test system
obtained from MATPOWER [19], a MATLAB package for solving power
flow equations. All the topology matrices used in this work are obtained from
MATPOWER package.



the adversary, in order to avoid detection, is constrained not
to inject false data into those variables.

B. Detecting False Data Injection

Let M denote the set of measurement indices. Let Im̄ =
M \ Im denote the set of indices of measurements that are
protected by the grid operator. Let V denote the set of state
variables indices. Let Iv = V \Iv̄ denote the set of indices of
state variables that the attacker may inject false data into.

Since the measurements of sensors in Im̄ cannot be ma-
nipulated by the attacker, the corresponding elements ai for
i ∈ Im̄ in the attack vector a = (a1, a2, . . . , am)T are zero.
Similarly, if c = (c1, c2, . . . , an)T represents the estimation
error introduced by the attack vector a, then cj for j ∈ Iv̄ are
also zero. Thus, to launch a false data injection attack without
being detected, the attacker needs to find an attack vector
a = (a1, a2, . . . , am)T such that it satisfies the following three
conditions:

a = Hc (7)
ai = 0 for i ∈ Im̄ (8)
cj = 0 for j ∈ Iv̄ (9)

On the other hand, from the grid operator’s perspective, in
order to ensure that false data injection attacks are always
detected, the grid operator needs to identify a set of sensors,
Im̄, and a set of state variables, Iv̄ , such that an adversary
cannot find an attack vector that satisfies the above three
conditions. Ideally, the operator should find the smallest such
sets. How to select the set of sensors, Im̄, and the set of state
variables, Iv̄ , is described in the following section.

IV. IDENTIFYING OPTIMAL Im̄ AND Iv̄

A. Approach I: Brute-Force Search

In our first attempt at identifying optimal Im̄ and Iv̄ , we
tried a straight forward brute-force approach. Let p = |Im̄|
and q = |Iv̄|. The grid operator can pick at random a fixed
q out of n state variables to populate Iv̄ and a fixed p out
of m sensors to populate Im̄, and check if any attack vectors
that satisfy the above three conditions exist for this choice, as
follows.

Let H = (h1,h2, . . . ,hn), where hi denotes the ith
column vectors of H. Set Hs = (hj1 ,hj2 , . . . ,hjn−q ) and
cs = (cj1 , cj2 , . . . , cjn−q )

T where ji /∈ Iv̄ for 1 ≤ i ≤ n− q.
Let Ps = Hs(HT

s Hs)−1HT
s and Bs = Ps − I. Then,

a = Hc ⇔ a =
∑
i∈Iv

hici +
∑
j∈Iv̄

hjcj = Hscs

since cj = 0 for j ∈ Iv̄

⇔ Psa = PsHscs

⇔ Psa = Hscs = a

⇔ Psa− a = 0 ⇔ (Ps − I)a = 0
⇔ Bsa = 0 (10)

This means an attack vector a satisfies (10) if and only
if it satisfies conditions (7) and (9). Now to take into ac-
count condition (8), let Bs = (b1,b2, . . . ,bm), where bi

(1 ≤ i ≤ m) denote the column vectors of Bs. Set
B′

s = (bi1 ,bi2 , . . . ,bim−p
) and a′ = (ai1 , ai2 , . . . , aim−p

)T ,
where ir /∈ Iv̄ for 1 ≤ r ≤ m− p. Then,

Bsa = 0 ⇔
∑

i∈Im

biai +
∑

j∈Im̄

bjaj = 0

⇔ B′
sa′ = 0 (11)

since aj = 0 for j ∈ Im̄

Thus, for a given topology matrix H and sets
Im̄ and Iv̄ , to find an attack vector that can inject
false data without being detected, an attacker needs
to (1) compute a′ that satisfies (11), and (2) set
a = (0, . . . , 0, ai1 , 0, . . . , 0, ai2 , 0, . . . , 0, aim−p , 0, . . . , 0, )T ,
where air occupy the appropriate places denoted by ir for
1 ≤ r ≤ m − p. Note that B′

s is a m × (m − p) matrix.
If the rank of B′

s is m − p then equation (11) has no
non-zero solutions and thus no error can be injected into state
estimation without being detected, but if rank of B′

s is less
than m − p then an infinite number of solutions exist. The
operator thus needs to find the smallest possible sets of Im̄

and Iv̄ such that the rank of B′
s is m− p in order to be able

to detect false data injection attacks of [1].
Such a brute-force approach to identifying Im̄ and Iv̄ needs

to search through
(
m
p

)
∗

(
n
q

)
combinations for a given choice

of p and q, where 0 ≤ p ≤ m and 0 ≤ q ≤ n. Thus the
potential search space for finding the smallest possible sets is
quite large. However, in practice an operator may not have
an independent way to verify the estimated value of a state
variable for more than 10% of the total state variables, i.e.,
q ≤ n

10 . Similarly, with a way to verify the estimated value
of some state variables, it is most likely that one could detect
false data injection attacks by protecting less than half the
sensors, i.e., p ≤ n

2 . Furthermore, the lower bound of n on
the number of sensor measurements that need to be protected
(when there are no verifiable state variables), as indicated by
Theorem 2 of [1], provides a good starting point around which
to search for a solution.

We implemented this approach using Matlab and analyzed
the IEEE 9-bus system. The results are summarized in Table
II. For the IEEE 9-bus system, there are 8 state variables and
27 measurements, i.e. m = 27 and n = 8. Thus, according
to the Theorem 2 of [1], when an adversary is allowed to
compromise more than or equal to m − n + 1 = 20 sensors
he can always find successful attack vectors that inject false
data without being detected. As seen in Table II, when only
7 sensors are protected, i.e. 20 sensors are allowed to be
compromised, and no state variables are verifiable, there are
no defensible configurations. That is, when Iv̄ is null, there
exists no set, Im̄, of size 7 that can prevent an adversary
from finding a successful undetectable attack vector. However,
when 8 sensors are protected, there are 329245 or 14% of



TABLE II: Number of protected sensors and verifiable state variables needed to detect false data injection attacks for IEEE
9-bus system

Number of
Protected Sensors

Number of Verifiable
State Variables

Number of Defensi-
ble Configurations i.e.
those that can detect
attacks

Percentage of Defen-
sible Configurations

7 0 0 0
8 0 329245 14%
9 0 1991771 35%
6 1 0 0
7 1 18954135 75%
6 2 12288444 62%

the total combinations of 8 sensors, that provide defensible
configurations. That is, an adversary cannot inject false data
without being detected when one of the 329245 possible sets
of 8 sensors is selected as Im̄ even when Iv̄ is null.

When one state variable is verifiable, then defensible config-
urations can be found even when only 7 sensors are protected,
and it turns out that 75% of all the possible combinations (i.e.(
27
7

)
∗

(
8
1

)
) are defensible configurations. However, protecting

any less than 7 sensors when there is only one verifiable
state variable yields no defensible configurations. Thus, for
the IEEE 9-bus system we do not seem to be gaining much in
terms of reduction in the number of sensors to be protected by
having a way to verify state variables. However, the number
of defensible configurations increases considerably compared
with the case where there are no verifiable state variables. This
provides a lot of flexibility to the operator in terms of the set
of sensors he can choose to protect.

While this approach was tractable for IEEE 9-bus system,
the search space got very large for the IEEE 14-bus system
even with small p and q. When we ran a parallelized version,
using Matlab Parallel Computing Toolbox, of our algorithm
with p = 12 and q = 1 on an Intel Xeon dual processor quad-
core 64-bit machine, the analysis did not complete even after
two days. It is worth noting that, given a m×m matrix Bs as
in equation (10), and p, the number of sensors to be protected,
the problem of identifying the set of protected sensors of size
less than or equal to p such that an adversary cannot inject
false data without being detected is NP-hard. To see this, let
U = {ui} denote the set of matrices such that (1) each ui is a
sub-matrix of Bs and contains no more than m− p columns
of Bs, and (2) if ui contains x columns, then rank(ui) ≤
x − 1. To find the set of measurements to be protected, we
need to find a sub-matrix h of Bs such that, (1) it has no
more than p columns, and (2) for each ui ∈ U , h ∩ ui 6=
∅, where ∩ between two sub-matrices returns the common
columns in them. Clearly, this problem is reducible to the
hitting set problem which is NP-complete.

B. Approach II: Protecting Basic Measurements

While existing approximate algorithms for the hitting set
problem could have been leveraged to analyze larger IEEE
test systems using the approach in the preceding section, we
wanted to find a more intuitive solution. The alternate ap-

proach described below provides such a solution and leverages
the concept of basic measurements.

For a given Im̄ set of protected sensors, let H′ =
(r1, r2, . . . , rn)T , where ri (1 ≤ i ≤ m) are the row vectors
of H′, denote a Jacobian matrix obtained by re-arranging the
rows of H such that the rows corresponding to the sensors in
Im̄ appear as the first p rows of H′. Thus, I ′m̄ corresponding
to H′ is simply {1, 2, . . . , p}. Then, equation (7) can be written
as [

a′p
a′k

]
=

[
H′

pn

H′
kn

] [
c′

]
(12)

In equation (12), a′ and c′ are appropriately re-arranged
versions of a and c with a′p, and a′p being column vectors of
length p and k = m− p respectively; H′

pn is a p×n matrix,
and H′

kn is a k× n matrix. Taking equation (8) into account
(a′p becomes a zero vector) and splitting equation (12) into
two matrix equations we arrive at the following:

0 = H′
pnc′ (13)

a′k = H′
knc′ (14)

Let us for now assume that there are no verifiable state
variables, i.e. Iv̄ = ∅. Then, for an undetected false data
injection attack to be possible, there must be a c′ in the null
space of H′

pn such that a′k = H′
knc

′ is satisfied. Conversely,
no attacks are possible if H′

pn has full column rank, i.e.,
rank(H′

pn) = n. Since the rank of a m×n matrix is always
less than or equal to min(m,n), rank(H′

pn) can be equal
to n only if p ≥ n. However, p ≥ n does not guarantee the
detection of attacks since the rank(H′

pn) may still be less
than n. This result is captured in the following corollary.

Corollary 4.1: It is necessary but not sufficient to protect
at least n measurements in order to be able to detect false
data injection attacks.

The above result is in line with Theorem 2 and experimental
observations of [1]. In order for the rank of H′

pn to be equal
to n, at least n rows of H′

pn should be linearly independent
vectors. That is, H′

pn, should contain rows corresponding to
at least one set of what are referred to as basic measurements
(refer to Section II-A). A set of basic measurements in
state estimation is a minimum set of measurements which is



sufficient to ensure observability (refer to Section II-A). The
following theorem states this result.

Theorem 4.1: When there are no verifiable state variables,
it is necessary and sufficient to protect a set of basic mea-
surements in order to be able to detect false data injection
attacks.

For DC state estimation, the size of the set of basic
measurements is equal to the number of state variables which
is n. The remaining m−n measurements provide redundancy
and help with bad measurement identification. Note that the
choice of a set of basic measurements is not unique. The
existence of multiple sets of basic measurements is obvious
since if there are two independent measurements of a state
variable, it does not matter which is taken to be the basic
measurement and which is taken to be redundant. Thus, the
optimal number of sensor measurements to protect in order to
detect false data injection attacks is n.

Theorem 4.1 seems to contradict the findings in Figure 2
of [1] and as such needs some clarification. As discussed
in Section III, Figure 2 in [1] shows the estimated success
probability of an attacker in injecting false data without being
detected when he picks k measurements to manipulate at
random. Figure 2 of [1] shows that, the probability of success
of an adversary is 1, i.e., always able to find an attack vector,
even when about 561 (> 299) and 171 (> 117) measurements
are protected in IEEE 300-bus and 118-bus test systems
respectively. This apparent contradiction is due to the fact
that the success probability shown was an estimated value,
estimated using multiple trials of picking k measurements at
random to manipulate. We observe that the discrepancy is very
stark only for IEEE 300-bus and 118-bus systems and not for
the other systems, namely IEEE 9-bus, 14-bus and 30-bus, that
were also analyzed in [1]. We also note that only 100 trials
were used in estimating success probabilities for the IEEE
300-bus and 118-bus systems, in order to reduce simulation
time, as opposed to using 1000 trials as was done for the other
smaller bus systems. Given the large search space for the IEEE
300-bus and 118-bus systems and the small number of trials
used, it is very likely that the set of protected measurements
picked by the simulations in the small number of trials did not
contain a set of basic measurements. In fact, for IEEE 9-bus,
14-bus, 30-bus, 118-bus and 300-bus test systems, we picked
a set of basic measurements (using the method outlined in
Section IV-B1) and verified that there are no attack vectors,
i.e., the rank of B′

s in equation (11) is 0. Thus, the probability
of success of an attacker cannot be 1 when the number of
protected measurements is greater than n.

Now suppose we also have verifiable state variables. With-
out loss of generality, let us say we have only one verifiable
state variable and it is the jth state variable. Taking equation
(9) into account, equations (13) and (14) can be written as

0 = H′′
pn′c′′ (15)

a′k = H′′
kn′c′′ (16)

where H′′
pn′ and H′′

kn′ are derived from H′
pn and H′

kn

respectively by removing the jth column, n′ = n− 1 and c′′

is a column vector of length n′ derived from c′ by removing
the jth element. If H′

pn was a full column rank matrix, i.e.,
rank n matrix, then H′′

pn′ will also be a full column rank
matrix, i.e., rank n− 1 matrix, and thus no undetectable false
data injection attacks are possible. Since p ≥ n, it is possible to
remove a few measurements from the protected measurements
without compromising attack detectability as long as (1) p′, the
size of the resulting set of protected measurements, is equal to
n−1 and (2) the resulting set of measurements are sufficient to
ensure observability of the n−1 state variables (i.e., excluding
the jth state variable).

Corollary 4.2: If there are q verifiable state variables it is
necessary and sufficient to protect a set of basic measurements
corresponding to the remaining n− q state variables in order
to be able to detect false data injection attacks.

Thus, while a protected basic measurement may be replaced
by a verifiable state variable, it is clear that the minimum
required number of protected or verifiable quantities is equal
to n, i.e., the number of state variables.

1) Determining the Protected Set: The importance of pro-
tecting a set of basic measurements has been made clear. We
now discuss how a defender of the system can identify such a
set of measurements. Much work has been done to determine
sensor placement for observability of a power network, i.e., to
determine a set of basic measurements, including [20], [21],
[22], [23], [17], [24]. Another straight forward but brute-force
approach is to pick a set of n measurements out of m at
random and see if the rows corresponding to them in H are
linearly independent. In this work however, we leverage a more
computationally efficient approach described and justified in
[16] and [25] respectively. In this approach, the measurements
in the system are mapped to a new equivalent state space where
identification of basic and redundant measurements is easily
accomplished. This approach is briefly described below.

To obtain the equivalent states, an LU decomposition is
performed on H,

H̃ = P ·H = LAA ·Ub (17)

where P is a row permutation matrix which maps the original
rows of H to the new rows of H̃. The new basis is given by

L′
AA =

[
In
R

]
(18)

where In is the n×n identity matrix. Rows of In correspond
to the n basic measurements, and rows of R correspond to
redundant measurements. Columns correspond to equivalent
states. We compute the LU decomposition of H and use P
to map the first n measurements in the new basis back to
the original measurements. This gives us one set of basic
measurements.

Other basic measurement sets may be derived after the first
one is found. Furthermore, the matrix L′

AA can tell us which
measurements we may switch out. As an example, consider
this L′

AA from [16]:



L′
AA =


p2 1 0 0 0
p3 0 1 0 0
p24 0 0 1 0
p12 0 0 0 1
p34 0 0.5 0.5 0
p23 0 −0.5 0.5 0


The basic measurements are (p2, p3, p24, p12), but p3 and p24

could be replaced by either p34 or p23. Thus, another basic
measurement set is (p2, p34, p23, p12). The key is that the
rows switched out of the redundant measurement set must be
linearly independent, otherwise they could not both be made
into basic measurements. Following this line of reasoning, in
an incremental manner, we can switch a basic measurement
with one of its redundant measurements in H and recompute
L′

AA to obtain a new set of basic measurements. Note that
the LU decomposition can be computed quickly, even for
large systems. This is beneficial, especially when compared
to a brute-force search of the entire space for meters and
state variables to protect. We implemented this approach of
identifying a basic set of measurements using Matlab, and
identified multiple sets of basic measurements for the the
IEEE 9-bus, 14-bus, 30-bus, 118-bus and 300-bus test systems.
We verified that no attack vectors exist when these sets of
measurements are protected using the approach described in
Section IV-A.

In summary, there are many choices of sets of minimal
size n which may be protected. Ultimately, the choice comes
down to the interests of the defenders or owners of the
system. The owners may have particular measurements that
they would like to include in a basic measurement set if
possible, or they may already know which particular state
variables will be made verifiable. Their selection process may
proceed as follows: (1) Determine a satisfactory set of basic
measurements for the system using the approach described
above. This is the candidate set of protected items. (2) Decide
which state variables will be made verifiable. Add these state
variables to the candidate set, and optionally remove an equal
number of protected measurements.

V. DISCUSSION AND FUTURE DIRECTIONS

Protecting Sensor Measurements: So far, we have fo-
cused on identifying a set of sensors whose measurements
need to be protected in order to detect the false data injection
attacks of [1]. Here, we discuss what it means to protect
sensor measurements in this context. Clearly, we want the
measurements from the sensors be authentic. That means
manipulation of the sensor measurements either by 1) physi-
cally tampering with the device or 2) by tampering with the
communication between the sensor and control center needs
to be prevented. That is, sensors should be protected from
unauthorized access (both physical and remote access), and
measurements from the sensor should be authenticated and
integrity protected. However, this may not be sufficient if
one would like to only protect measurements in the smallest

required set. This is because the operator may not be able to
detect false data injection attacks when a measurement from
one of the protected sensors is unavailable. Thus, it is also
essential that the measurements from the protected sensors be
available at all times. This latter requirement may be relaxed
a bit by protecting a few more strategically selected sensors
than the smallest set necessary. Identification of this larger set
of sensors and studying the associated trade-offs are left to be
addressed in a future work.

Considering Topology Changes: In this work, we focus
on identifying measurements and state variables to protect, for
a given H, but do not consider how topology changes such
as line outages would affect these decisions. In reality, the
defender of the system needs to deploy a protected set so
that in the event of any expected topology change, false data
injection attacks are still detectable.

If any line l is opened, and that line has a protected
measurement, the measurement is no longer valid. Thus, the
corresponding protected measurement row in H′

pn needs to
be replaced. Otherwise, the resulting H′

pn is not full rank,
and attacks are possible. The measurement m that replaces
the lost measurement must have a row in H which is linearly
independent with the remaining protected measurement rows
in H′

pn, so that when it is added, the resulting H′
pn is again

full rank. In this case, the set of measurements required for
the system to be protected before and after a line outage of l is
of size (n+1). Each considered line outage will thus increase
the size of the required protected set by at least one. Suppose
that there is a basic measurement set {1, 2, 3, 4, 5} and another
basic measurement set which is {2, 3, 4, 5, 6}. If measurement
1 is lost, it can be replaced by measurement 6, and the
system will be protected. For the system to be protected both
with and without line 1, measurements {1, 2, 3, 4, 5, 6} must
all be protected. As before, one basic measurement may be
substituted for one verifiable state variable. There are different
ways [24], [26] to identify a set of measurements such that
full observability is maintained with most common/frequent
topology changes.

Generic False Data Injection Attacks: So far in this
work, we have focused on strategies to detect false data
injection attacks proposed in [1]. The basic principle behind
such attacks, as discussed in Section II-B1, is that when the
adversary sets his attack vector a to be equal to Hc, then
the bad measurement detection algorithm described in Section
II-A1 fails to detect attacks. However, this is not the only
way to inject false data without being detected. To see this,
consider the equation (4). It is clear from equation (4) that,
even if a 6= Hc, as long as the adversary chooses his attack
vector, a, such that the following equation (19) is true then the
attacker could still inject false data without being detected.

‖z−Hx̂ + (a−Hc)‖ ≤ τ (19)

However, in this case, apart from knowing H, the adversary
has to know z, i.e. values of all sensor measurements, and
x̂. The adversary can compute x̂ using equation (2) but then



needs to know W. Thus, this form of false data injection
attack imposes higher burden on the adversary than the one
described in [1]. Furthermore, it may be possible to protect
against these attacks by protecting the confidentiality of sensor
measurements, i.e. preventing the adversary from knowing z.
Thus, by incorporating the requirement of confidentiality into
our definition of “sensor measurement protection” discussed
above, we might be able to detect generic false data injection
attacks. A detailed analysis of such attacks and defense
strategies will be the subject of future work.
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