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Abstract

We present a new algorithm for detecting both combinationally and
sequentially false timing paths, one in which the constraints on a
timing path are captured by justifying symbolic functions across
latch boundaries.

We have implemented the algorithm and we present, here, the
results of using it to detect false timing paths on a recent PowerPC
microprocessor design. We believe these are the first published re-
sults showing the extent of the false path problem in industry. Our
results suggest that the reporting of false paths may be compromis-
ing the effectiveness of static timing analysis.

1 Introduction

Designers of high performance chips, such as microprocessors, rely
heavily onstatic timing analysis. The major flaw of static analyz-
ers, leaving aside the difficulty of modeling the physics of devices,
is the reporting of false paths, i.e., paths which cannot be sensitized.

The error of reporting a false path is a conservative error, in
that all real timing violations are considered by the analyzer. The
reporting of a large number of false paths, however, may divert a
design teams’ energies towards fixing non-existent problems. In
response, researchers have proposed a variety of path sensitization
methods [5], [6], [8], [10]. The exact extent of the problem in in-
dustry, however, has not been known. This makes our work of spe-
cial interest, since we performed our experiments on a state of the
art, PowerPC microprocessor being designed at Motorola’s Somer-
set PowerPC center, in Austin, Texas. We believe our results show
that the reporting of false paths is a significant problem.

In our work, we post-processed a timing analyzer’s output to
determine how many false paths it was reporting. We realize this
is a different problem than that of differentiating false from true
paths as timing analysis is performed; however, our methods could
be adapted to that purpose. We post-processed because our initial
goal was to find test patterns that exercised critical timing paths,
for use in hardware laboratory testing of finished chips. We wanted
to eliminate false paths, since no set of vectors could elicit the pur-
ported, critical delays for these paths. We considered a path to be

�PowerPC is a trademark of the International Business Machines Corporation, used
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false if the set of transitions designated by the timing analyzer as
causing the worst case delay could not be realized. We captured
the constraints imposed on a timing path by justifying functions
of symbolic variables across latch boundaries, in a manner remi-
niscent of sequential ATPG. In this way, we were able to detect
sequentially as well as combinationally false paths.

2 Background

We define atiming pathas

� a set of circuit nodes, connected through devices, and

� a designated clock event, upon which the nodes change value,
with some delay.

Most often, a path’s first node will be the output of a latch and its
last node the input to another latch. We define apath stemas a
contiguous subset of a path’s nodes beginning with the first node.

The firing of a path is related to transitions on its nodes. For
some path,P, with nodesn1; � � � ;nm, we defineBe f oreandA f ter
sets of binary values on these nodes such that the value of theith

node,ni , in theAfterset is the complement of its value in theBefore
set. PathP is firedwhen its nodes transition from theBe f oreto the
A f ter values on the designated clock event. We will assume, here,
that theBe f oreandA f ter values are those designated by a timing
analyzer as creating the worst case delay for the path in question.

A path, then, is atrue path if there is an input sequence to the
entire circuit in which it is embedded such that theBe f oreto A f ter
transition can occur, and it is afalse pathotherwise. We classify
false paths as eithercombinationallyor sequentiallyfalse. A path
is combinationally false if, for either theBe f oreor A f ter node
values, no assignment exists to circuit latches and primary inputs
such that those valuations can be realized. A path issequentially
falseif it is not combinationally false, and either

1. the Beforeor After node values are realizable only in un-
reachable states, or

2. there is no transition from a state realizing theBeforevalues
to a state realizing theAftervalues.

Here, astateis a valuation on circuit latches, and a state isreach-
able if there is some input sequence that drives the circuit to that
state from a valid, initial state. While there has been previous work
on sequential false paths [1] [6], most research has considered
only combinational falseness. We feel strongly that both need to be
considered.
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1 Compute functions of timing path nodes.
2 ComputeBe f ore0 andA f ter0 functions:

If Be f ore0 or A f ter0 not satisfiable, exit, path is combinationally false.
3 Seti = 1.
4 LetA f teri = A f teri�1 function justified.

If A f teri not satisfiable, exit, path is sequentially false.
5 If A f teri andBe f orei�1 support overlap,

computeA f teri = A f teri ^ Be f orei�1,
else, go to 7.

6 Check satisfiability of newA f teri :
If not satisfiable, exit, path is sequentially false.

7 LetBe f orei = Be f orei�1 function justified.
8 Check satisfiability ofBe f orei :

If not satisfiable, exit, path is sequentially false.
9 If i = n, exit, cannot determine falseness examiningn banks.

10 Incrementi, and go to 4.

Figure 1: False Path Detection Algorithm

3 False Path Detection Algorithm

TheBe f oreandA f ter node values for a timing path can be viewed
as Boolean functions. Let us consider theBe f ore function for
a path,P, havingm nodes,n1; � � � ;nm, these nodes implementing
Boolean functionsf1; � � � ; fm. Each fi is a function over variables
representing circuit latches and PIs (primary inputs). We form
the Be f orefunction by ANDing together true and complemented
forms of f1; � � � ; fm, using the true form,fi , if node ni is a 1 in
theBe f orenode value set, and the complemented form,: fi , oth-
erwise. TheA f ter function is formed similarly, in relation to the
A f ter node values. Recall that the value of any node,ni , in the
A f ter node value set, is the complement of its value in theBe f ore
node value set. This is because each node along a path must transi-
tion, for a signal to be transmitted.

For theBe f oreto A f ter transition to take place, theBe f oreand
A f ter functions must each, first of all, be combinationally satisfi-
able. If this is the case, then additionally, the latches on which the
timing path nodes immediately depend must be able to realize a se-
quence of two assignments such that theBe f oreand then theA f ter
function is realized. There may be feedback among these latches
and this can restrict the set of satisfying pairs, i.e., whenBe f ore
holds, it may be the case that feedback prevents some particular,
satisfying assignment toA f ter next clock cycle. The requirement
that at least one pair of satisfying assignments toBe f oreand then
A f ter be realizable can be transported from a requirement on latch
outputs to a requirement on latch inputs. The needed valuations
for this two clock sequence must appear on inputs to latches one
clock cycle before they appear on latch outputs. This requirement
on latch inputs can, in turn, be propagated back to a second bank
of latches and PIs. Each assignment in the sequence of two sat-
isfying assignments is, itself, a Boolean function. Propagating re-
quirements across a latch boundary, or what we call “justification”,
results, then, in the creation of new functions that must be satis-
fied with respect to a new bank of latches and PIs. This process of
justification may continue until

� one reaches functions over only PIs, and these are satisfiable,
or,

� a justified function is not satisfiable.

In the latter case, the path would be sequentially false. This is the
intuitive description of the false path detection algorithm given in
Figure 1.

In the algorithm in Figure 1, the number of banks of latches
to analyze,n, may be set arbitrarily. In large, industrial designs,
repeated justifications will likely result in functions that are diffi-
cult to manipulate. Thus, a reasonablen would be that found by
experience. In fact, the algorithm could be run interactively, until
the user sees fit to terminate. The hope is that a small number of
justifications would be sufficient to prove a path sequentially false
that is, indeed, that.

The algorithm in Figure 1 begins by forming theBe f oreand
A f ter functions as described above, and testing them for satisfia-
bility (lines 1 and 2). We implemented the algorithm using ROB-
DDs (reduced, ordered, binary decision diagrams) [3]. Satisfiabil-
ity testing is a constant time operation once a ROBDD has been
built, and the complexity is in building the ROBDDs. After test-
ing for combinational falseness, on line 2, the algorithm goes into
a loop, on lines 4 through 10, and tests for sequential falseness.

Testing for sequential falseness involves repeatedjustification
of functions (lines 4 and 7). Justification of a function means, in
our context,

� removing variables representing PIs, and

� substituting, for any variable representing the output of a
latch, the input function for that latch.

We can state this more formally, using theBe f orefunction as an ex-
ample. LetBe f orebe a function over two vectors ofn andm vari-
ables,l̄ = (l1; � � � ; ln), and ī = (i1; � � � ; im), representing latches and
PIs, respectively. The Boolean operation for justifyingBe f ore(l̄ ; ī)
is:

9 l̄ ; ī
�
(l1 $ t1^�� � li $ ti � � �^ ln $ tn^Be f ore(l̄ ; ī)

�

where$ has the meaning ofXNOR, and where existential quan-
tification of variablexi from any function,f , i.e.,

9xi [ f (x0; � � � ;xi ; � � � ;xn)]

has the meaning
f jxi=0 _ f jxi=1

On line 4 of the algorithm, the currentA f teri function is justi-
fied. Let us consider wheni =1. TheA f ter0 andBe f ore0 functions
formed on line 2 depend on variables representing latches and PIs
upon which the timing nodes immediately depend. Justification of
A f ter0 producesA f ter1, a function over asecondbank of latches
and PIs.A f ter1, intuitively, denotes assignments to these latches



and PIs which, if realized at, say, timet, the inputs to the latches
that drive the timing nodes will be such that one time step later,
at timet +1, A f ter0 will be satisfied. Now, if feedback is present
in the circuit, some latches upon whichA f ter1 depends may be
among those upon whichBe f ore0 depends. It may also be the case
thatBe f ore0 andA f ter1 depend upon some subset of common PIs.
These overlapping dependencies must not conflict, since when the
first bank of latches and PIs is producing a satisfying assignment
to Be f ore0, the second bank of latches and PIs must be producing
values satisfyingA f ter1. This argument can be made for any iter-
ation, i, of the algorithm, i.e., there must be a transition driven by
inputs to latch banki, such thatBe f orei�1 is succeeded byA f teri .
If the function produced on line 5 is satisfiable this is the case, and
latch banki can sustain the needed transitionif more distant latch
banks can supply the needed valuations. In preparation for the next
iteration of the algorithm, the currentBe f orei function is justified,
on line 7. This must, in turn, produce a satisfiable function, or the
path is sequentially false.

For brevity, we did not insert a check on initial states into the
algorithm; but, such a check could be carried out in practice. A
path can be deemed a true path if one is representing all latches in
each bank, and, when these are set to values consistent with initial
circuit states, it is found the needed transition can take place. It is
expected, however, that for industrial designs the algorithm will be
run on sub-circuits cut from a large design, and in this case some
latch outputs may be modeled as PIs. The algorithm will still give
a sound result with respect to proving a path false in this case, but
cannot be relied upon to prove it a true path. In addition, a check
on arriving at functions of all PIs was omitted from the algorithm,
because, due to feedback among latches, this is unlikely to be en-
countered on industrial designs.

We implemented the algorithm using theVersysverification
system at Motorola’s PowerPC design center, Somerset.Versys
is based on theVoss[9] system, primarily developed by Carl Seger.
Vosshas an entry language calledFL, a functional programming
language in which Boolean data types are implemented as ROB-
DDs. Due to the excellent list-handling abilities ofFL, the algo-
rithm of Figure 1 was implemented in less than 100 lines of code.
A separate C++ program parsed circuit descriptions and provided
the FL program its input, these being the lists of Boolean variables
and Boolean formulae. The latter were given as strings and the FL
interpreter implemented them as ROBDDs. The FL language has
a number of built in functions that manipulate ROBDDs, similar
to what one normally finds in separate ROBDD packages. This
combination of a functional programming language and ROBDD
manipulation abilities made it an excellent vehicle for implement-
ing this algorithm.

4 Experimental Results

At Motorola’s Somerset PowerPC design center, an internally de-
veloped static timing analyzer, STEP, is used. Circuit devices are
characterized by timing rules and information on wire delays is
added, when available. Designers may package up any sort of cir-
cuitry to be treated as single components, and thus the “classical”
timing path, consisting of combinational devices between latch out-
put and latch input, is not the only type of path encountered. The
legal input/output combinations of path components are described
in timing rules, but the analyzer does not know the internal makeup
of the components, nor does it understand their logic functionality.
Entire on-board RAM arrays, such as caches and register files can
be, and are, handled as single components.

4.1 Results of Simulation Monitoring

We have implemented a program calledSiMonat Somerset to en-
able monitoring, during functional simulation, for the firing of criti-
cal timing paths. SiMon enables this by a gate to RTL level transla-
tion, since timing analysis is done at the gate level, after logic syn-
thesis is performed. Logic synthesis will, in general, reconstruct
Boolean networks between latches, adding new circuit nodes and
removing existing nodes, with respect to circuit nodes visible at the
RTL level. SiMon creates a mapping from the gate back to the RTL
level, enabling the tracking of timing paths during simulation.

We used SiMon, at the Somerset PowerPC design center, to
monitor 40 timing paths on a recent PowerPC microprocessor de-
sign, over some 680 million simulation cycles. The original pur-
pose was to find patterns that fired these paths for later use in hard-
ware laboratory testing. We found, however, that the false path
problem greatly interfered with this goal. The first 20 paths among
the 40 chosen were those the design team would consider their most
critical paths. These might, however, share large path stems. The
other 20 were chosen to reduce path stem overlap. They differ from
the first 20 and from each other by at least 5 nodes.

The results of the monitoring are given in Figure 2. Paths with
RG prefixes are the top 20 paths, those withUN prefixes, the re-
mainder. EachRGpath is more critical (longer delay) than anyUN
path, and the lower the numerical suffix of any path, the higher its
criticality within its group.

The propagation column marks the longest chain of transitions
that occurred along a path stem, where the transition polarities were
those specified by the timing analyzer. We also monitored transi-
tions with arbitrary polarities, though we do not list those here.
Propagation is given as a ratio: longest propagation vs. total num-
ber of path nodes. Most paths exhibited propagation over less than
half their length.

A Y in either theBe f oreor A f ter column denotes that those
node values appeared at least once in simulation. For only four
paths did theBe f oreandA f tervalues appear in succession, mean-
ing, the path fired. These four were relatively short paths with
RAM array components, as indicated by theY in the Array col-
umn. Since designers know that the delay through an array can
be very large, signals are latched very close to array boundaries.
These short paths are more likely to be true paths, and there is a
high probability of exercising them with a randomly chosen set of
vectors. Most of the critical timing paths went through synthesized
control logic and were fairly long paths. Not a single “classical”
path of this type fired in simulation, and, none exhibited arbitrary
transitions down its entire length, either.

4.2 False Path Analysis Results

We ran the false path detection algorithm of Figure 1 on path stems
within circuit partitions made for logic synthesis. We treated inputs
to a partition as primary inputs. In all but two cases, we were able
either to prove a path false by looking at the path stem within a
single partition, or we ran out of memory trying to do so.

The results of running the false path detection algorithm are
shown in Figure 3. The “Nodes Tested” column gives the number
of nodes which were tested that were outputs of combinational de-
vices. The first node in a path comes directly out of a latch and
was not counted. We used data fromSiMonto estimate the length
of path stem needed for false path detection, examining to just be-
yond where the longest propagation had occurred in simulation. If,
in the “Nodes Tested” column, another path is listed, this means the
two paths share the same, tested stem. Paths were sometimes not
tested because of parser limitations. We used a parser for gate level
netlists built from standard cell components. Most path involving
arrays do not involve such circuitry. When the algorithm was quit



Path Prop Before After Fire Array Path Prop Before After Fire Array
RG 1 21/30 Y Y N N UN 1 7/21 Y N N N
RG 2 21/30 Y Y N N UN 2 7/21 Y N N N
RG 3 21/30 Y Y N N UN 3 7/21 Y N N N
RG 4 21/30 Y Y N N UN 4 0/33 N N N N
RG 5 7/21 Y N N N UN 5 21/30 Y Y N N
RG 6 2/18 Y Y N N UN 6 7/21 Y N N N
RG 7 0/33 N N N N UN 7 1/5 Y Y N Y
RG 8 7/21 Y N N N UN 8 7/21 Y N N N
RG 9 2/26 N N N N UN 9 7/21 Y N N N
RG 10 21/30 Y Y N N UN 10 4/4 Y Y Y Y
RG 11 7/21 Y N N N UN 11 6/6 Y Y Y Y
RG 12 21/30 Y Y N N UN 12 4/4 Y Y Y Y
RG 13 21/30 Y Y N N UN 13 2/24 N Y N N
RG 14 7/21 Y N N N UN 14 1/8 N Y N Y
RG 15 21/30 Y Y N N UN 15 20/31 Y N N N
RG 16 0/33 N N N N UN 16 15/15 Y Y Y Y
RG 17 1/5 Y N N Y UN 17 13/23 N Y N N
RG 18 7/21 Y N N N UN 18 7/21 Y N N N
RG 19 7/21 Y N N N UN 19 1/8 N Y N Y
RG 20 21/30 Y Y N N UN 20 2/28 N Y N N

Figure 2: Simulation Monitor Results

due to memory overflow, the iteration on which this occurred is
noted.

In summary, of the 40 timing paths considered,

� 15 proved to be false, 14 of these combinationally, 1 sequen-
tially.

� 16 caused ROBDD blowup with inconclusive results,

� 5 could not be analyzed because of temporary parser limita-
tions,

� 4 had already fired in simulation, and so were known to be
true paths.

For the path found to be sequentially false, the algorithm exited
on the second iteration on line 6. Thus, when theBe f orefunction
held, feedback prevented theA f ter function from holding one time
step later.

Of the 14 paths found to be combinationally false, 12 shared the
same stem, and theA f tervalues for this stem were combinationally
unrealizable. Likewise, 10 of 16 paths for which ROBDD memory
blowup occurred shared a common stem, theRG 1 stem. We knew
these paths were not combinationally false, since theBe f oreand
A f ter node values had appeared in simulation. However, none of
these 10 paths had ever fired in over 680 million simulation cy-
cles. Unfortunately, the logic functions of the shared stem caused
ROBDD blowup.

The case of pathsRG 9, UN 13 andUN 20, is of interest.
SiMonreported that these paths had never transitioned beyond the
2nd of their nodes, strongly suggesting sequential falseness. How-
ever, the latches driving these nodes were driven by some 89 latches
and 116 primary circuit inputs, and ROBDD blowup was experi-
enced on the second iteration of the algorithm. More will be said
about these paths in the next section.

These experiments were run on an IBM RS6000 workstation
equipped with 256 Megabytes of local memory. We did not keep
track of memory usage because it was slight for the paths which
were proven false, and out of range for the others. All paths proven
false were proven so in less than 3 minutes of (wall clock) run time.

5 Future Work

In our future work, we intend to explore non-ROBDD techniques
and to make better use of abstraction when applying ROBDDs. We
have already started using satisfiability solvers [4] in place of ROB-
DDs, and have achieved some promising first results. We have used
the bounded model checker, BMC, from Carnegie-Mellon Univer-
sity. BMC implements a technique of state space exploration com-
bined with satisfiability solving on propositional formulae. We
were able to prove, using it, that the three paths,RG 9, UN 13
andUN 20, discussed above, were sequentially false. We desig-
nated theBe f orepredicate forRG 9, UN 13 andUN 20 as the
initial state predicate of the circuit, and proved that a transition to
a state satisfying theA f ter predicate was impossible. However,
we believe such proofs could be carried out better by adapting our
false path detection algorithm to using satisfiability solvers. Our
algorithm goes backwards in time as opposed to going forwards in
time, as bounded model checkers do. For instance, the technique
we used with BMC only checked the first two banks of latches. We
feel going backwards in time facilitates analysis of multiple latch
banks. We have begun work on a prototype of our algorithm using
satisfiability solvers, and hope to publish new results, shortly.

Our other direction would be to find abstractions that make
ROBDD building easier. We wish to utilize the new ABDD data
structure outlined in [7]. These result in reduced ROBDD graphs
according to an abstraction function the user defines. Our hope is
that by using smaller ABDDs we will be able to justify across more
latch banks. Our use of ABDDs would be a conservative abstrac-
tion, i.e., any determination that a path was false would be sound.
In addition, we plan to try very straightforward techniques of exis-
tentially quantifying away variables representing latches or PIs, or
arbitrarily cutting circuits at certain points.
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