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Wireless Sensor Networks (WSN) promise researchers a powerful instrument for observing sizable phenomena with fine

granularity over long periods. Since the accuracy of data is important to the whole system’s performance, detecting nodes

with faulty readings is an essential issue in network management. As a complementary solution to detecting nodes with

functionnal faults, this paper proposes FIND, a novel method to detect nodes with data faults that neither assumes a particular

sensing model nor requires costly event injections. After the nodes in a network detect a natural event, FIND ranks the nodes

based on their sensing readings as well as their physical distances from the event. FIND works for systems where the

measured signal attenuates with distance. A node is considered faulty if there is a significant mismatch between the sensor

data rank and the distance rank Theoretically, we show that average ranking difference is a provable indicator of possible data

faults. FIND is extensively evaluated in simulations and two test bed experiments with up to 25 MicaZ nodes. Evaluation

shows that FIND has a less than 5% miss detection rate and false alarm rate in most noisy environments.
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1. INTRODUCTION

1.1. Background

Wireless Sensor Networks (WSNs) have been widely used in many application fields such as habitat
monitoring [Szewczyk et al. 2004], infrastructure protection [Xu et al. 2004], and scientific explo-
ration [Tolle et al. 2005]. The accuracy of individual nodes’ readings is crucial in these applications,
e.g., in a surveillance network [He and et. al. 2006], the readings of sensor nodes must be accurate
to avoid false alarms and missed detections. Although some applications are designed to be fault
tolerant to some extent, removing nodes with faulty readings from a system with some redundancy
or replacing them with good ones can still significantly improve the whole system’s performance
and at the same time prolong the lifetime of the network [Banerjee et al. 2012; Teymoori et al.
2012]. To conduct such after-deployment maintenance (e.g., remove and replace), it is essential to
investigate methods for detecting faulty nodes.
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In general, wireless sensor nodes may experience two types of faults that would lead to the degra-
dation of performance. One type is function fault, which typically results in the crash of individual
nodes, packet loss, routing failure or network partition. This type of problem has been extensively
studied and addressed by either distributed approaches through neighbor coordination [Marti et al.
2000] or centralized approaches through status updates [Ramanathan et al. 2005; Staddon et al.
2002]. The other type of error is data fault, in which a node behaves normally in all aspects except
for its sensing results, leading to either significant biased or random errors [Elnahrawy and Nath
2003; Takruri and Challa 2007; Takruri et al. 2009]. These errors can result in data inaccuracy, and
may seriously impact system performance and lead to faulty decision for critical tasks. [Elnahrawy
and Nath 2003] illustrated the impact of these errors by bacteria growth monitoring experiment.
More examples can be found in [Elnahrawy and Nath 2003; Takruri and Challa 2007; Takruri et al.
2009]. Although constant biased errors can be compensated for by after-deployment calibration
methods, random and irregular biased errors can not be rectified by a simple calibration function.

One could argue that random and biased sensing errors can be addressed with outlier detection,
a conventional technique for identifying readings that are statistically distant from the rest of the
readings [Zhang et al. 2010]. However, the correctness of most outlier detection relies on the premise
that data follow the same distribution. This holds true for readings such as temperatures, which
are considered normally uniform over space. However, many other sensing readings (e.g., acoustic
volume and thermal radiation) in sensor networks attenuate over distance, a property that invalidates
the basis of existing outlier-based detection methods [Ding et al. 2005].

1.2. Related work

In general, faults in a sensor network can be classified into two types. One is function fault [Cao
et al. 2008a; Yang et al. 2007a; Khan et al. 2008a; 2010; Liu et al. 2010], in which abnormal behav-
iors lead to the breakdown of a node or even a network as a whole. To improve our ability to observe
abnormal behaviors at individual nodes, a rich set of tools have been proposed. Notable ones include
Clairvoyant [Yang et al. 2007b], Declarative Tracepoints [Cao et al. 2008b], NodeMD [Krunic et al.
2007], Safe TinyOS [Cooprider et al. 2007], and JTAG [Atmel Corporation ]. As a step further,
methods to observe network-wide function faults also have been proposed. Marti et al. [Marti et al.
2000] suggest the use of behavior watchdogs so that a node can change its route when its neigh-
bor fails. A similar distributive approach is proposed in [Hsin and Liu 2002], where malfunction
nodes are detected through neighbor coordination. Having realized the constraints of distributed
approaches with limited local information, researchers have recently begun to focus on centralized
approaches, taking advantage of the comprehensive view of a network. Sympathy [Ramanathan
et al. 2005] provides an effective sink-based method to localize node failures within a network
based on a root-cause-analysis decision tree. SNMS [Tolle and Culler 2005] provides network in-
frastructure for the logging and retrieval of runtime states, which can be used for later diagnosis.
Dustminer [Khan et al. 2008b] uses frequent discriminative pattern mining to reveal the causes
of failure based on the events collected from a network. Tanachaiwiwat et al. [Tanachaiwiwat et al.
2003] propose that base stations can launch marked packets to sensor nodes,identifying malfunction
nodes based on their response. Liu et al. [Liu et al. 2010] employ marking scheme for diagnosing
the fault of wireless sensor networks and introduce a probabilistic inference model that encodes in-
ternal dependencies among different network elements for online diagnosis of an operational sensor
network system. Miao et al. [Miao et al. 2011] study silent failures which are unknown before-
hand and account for a large fraction of network performance degradation, and propose Agnostic
Diagnosis(AD) approach to find silent failures in wireless sensor networks. In [Liu et al. 2011], a
self-diagnosis approach is proposed for large scale wireless sensor networks. Sakib [Sakib 2012]
proposes an asynchronous failed sensor node detection (AFSD) method which aims at minimising
energy and control overheads, while detecting all the failed nodes.

The other type of fault is data fault, in which a node behaves as a normal node in the network
but generates erroneous sensing readings. This kind of faulty node is difficult to identify by previ-
ous methods because all its behaviors are normal except the sensor readings it produces. This fault
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Faulty readings would degrade the performance of the network significantly [Elnahrawy and Nath
2003; Takruri and Challa 2007; Takruri et al. 2009], so it is important to correct or remove them
from the network. One way to solve this problem is after-deployment calibration such that a map-
ping function (mostly linear) [Feng et al. 2003; Balzano and Nowak 2007; Bychkovskiy et al. 2003;
Miluzzo et al. 2008; Ramanathan et al. 2006; Whitehouse and Culler 2002] is developed to map
faulty readings into correct ones. Although the parameters of the mapping function are obtained in
different ways, additional assumptions such as sensing model [Feng et al. 2003; Whitehouse and
Culler 2002], dense deployment [Bychkovskiy et al. 2003; Feng et al. 2003], similarity of readings
among neighbors [Bychkovskiy et al. 2003; Miluzzo et al. 2008], and availability of ground truth
result (highly accurate nodes) [Miluzzo et al. 2008; Ramanathan et al. 2006; Panda and Khilar 2011]
are much needed. Thus, the performance of existing calibration methods not only highly depends
on the correctness of the proposed model but also exhibits significant degradation in a real-world
system in which too-specific additional assumptions no long hold. Outlier detection is a conven-
tional method for identifying readings that depart from the norm. For example, Ding [Ding et al.
2005] proposes detecting faulty nodes by determining if the difference between a node’s reading
and its neighbors’ is above a threshold. However, its correctness is based on the assumption that
neighboring nodes have similar readings. For many phenomena of interest (e.g., thermal radiation
and acoustic signals) in sensor networks, such an assumption does not hold, because these signals
attenuate over space.

This paper proposes a faulty node detection method that can be generically and effectively applied
as long as the sensor readings roughly reflect the corresponding distance. By removing or correcting
faulty nodes detected by the proposed method, the performance of a networking system can be
significantly improved.

1.3. Contributions

This paper proposes FIND, a novel sequence-based detection approach for discovering data faults
in sensor networks, assuming no knowledge about the distribution of readings. In particular, we are
interested in Byzantine data faults with either biased or random errors, since simpler fail-stop data
faults have been addressed sufficiently by existing approaches, such as Sympathy [Ramanathan et al.
2005]. Without employing the assumptions of event or sensing models, detection is accomplished
by identifying ranking violations in node sequences, a sequence obtained by ordering IDs of nodes
according to their readings of a particular event.

The objective of FIND is to provide a blacklist containing all possible faulty nodes (with either
biased or random error), in order of likelihood. With such a list, further recovery processes become
possible, including (i) correcting faulty readings, (ii) replacing malfunctioning sensors with good
ones, or (iii) simply removing faulty nodes from a network that has sufficient redundancy. As a
result, the performance of the whole system is improved. Specifically, the main contribution of this
paper can be summarized as follows:

— This is the first faulty node detection method that assumes no a priori knowledge about the un-
derlying distribution of sensed events/phenomena. The faulty nodes are detected based on their
violation of the distance monotonicity property in sensing, which is quantified by the metric of
ranking differences.

— FIND imposes no extra cost in a network where readings are gathered as the output of the routine
tasks of a network. The design can be generically used in applications with any format of physical
sensing modality, such as heat/RF radiation and acoustic/sematic wave, as long as the magnitude
of their readings roughly monotonically changes over the distance a signal travels.

— We theoretically demonstrate that the ranking difference of a node is a provable indicator of data
faults and that if the ranking difference of a node exceeds a specified bound, it is a faulty node.

— We extend the basic design with three practical considerations. First, we propose a robust method
to accommodate noisy environments where distance monotonicity properties do not hold well;
second, we propose a data pre-processing technique to eliminate measurements from simultaneous
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multiple events; and third, we reduce the computation complexity of the main design using node
subsequence.

The rest of the paper is organized as follows. Section 2 introduces the model and assumptions of
this paper. Then the detailed main design is presented in Section 3, and the subsequence detection
is shown in Section 4. Section 5 provides additional techniques to deal with several practical issues.
Sections 6 and 7 present the performance evaluation results from both test bed implementation and
simulations. Section 8 concludes the paper.

2. MODEL AND ASSUMPTIONS

We consider a network model where N sensor nodes are deployed in an area of interest. Nodes are
localized [Zhong and He 2009; Chang et al. 2008; Yedavalli and Krishnamachari 2008; Liu et al.
2006; He et al. 2012]and their positions are available at a base station. In this paper, we consider
an event-driven model in which sensor nodes are roughly global synchronized to detect incoming
events nearby and obtain corresponding sensing readings. Similar to recent centralized approaches
for network fault detection [Ramanathan et al. 2005; Tolle and Culler 2005; Khan et al. 2008b;
Panda and Khilar 2011], we assume the sensing readings are collected to the base station. If too
many nodes in the network are faulty, the network will be paralysis and there is no need for ’fault
detection’. Thus we also assume that the faulty nodes are minority. To be generic, we also introduce
our design conceptually independent of the type of event used.

2.1. Assumption on Monotonicity

Many recent studies [Hwang et al. 2006; Zhou et al. 2004; Srinivasan et al. 2008; Liu et al. 2011]
indicate that the environment is a dominating factor that affects the sensing and communication
characteristics in sensor networks. It is therefore unrealistic to assume a particular mathematical
model that describes the relationship between the sensing reading attenuation and the distance a
signal travels. In this work, we take a much weaker assumption that the readings can generally reflect
the relative distance from the nodes to the event. In other words, normally the sensing readings
monotonically change as the distance becomes further. Although this assumption can be violated
locally with environment noise, the general trend holds.
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Fig. 1. RSS of Radio Signals

To check the validity of our assumption, we conducted two outdoor experiments: one on radio
signals and the other on acoustic signals. In the first experiment, 49 nodes are placed on a parking lot
as shown in Fig.1(a). Each node generates an event by broadcasting a packet 100 times with 0dBm
sending power, and all the other nodes recorded the received signal strength (RSS) for this event
upon receiving this packet. In Fig.1(b), which plots the relationship between RSS and distance,
the solid line shows the average RSS under different distances based on all event-node pairs. Each
dashed line is the RSS of a single event (depicted by the triangle and circle symbols in Fig.1(a))
measured by different nodes. It can be seen from the figure that for a fixed distance, the RSS of
different events have a large variance compared with the average RSS. For example, at distance 7m,
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the RSS difference of the two events is nearly 20dBm, which causes a more than 10m ranging error:
a big error given that the communication range is only 25m. As a result, even if a mathematical
model can be derived to closely match the solid curve of average RSS, the behavior of individual
events still has a large variance that makes this model ineffective. For each dashed line, on the other
hand, the RSS decreases as the distance increases except for only a few points, which means the
monotonicity of the RSS of a single event generally holds.
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Fig. 2. Propagation Time of Acoustic Signals

In the second experiment, 20 sensor nodes are placed in two lines and an acoustic signal is gen-
erated as shown in Fig.2(a). Fig.2(b) plots the delay of the nodes that receive the acoustic signal;
to simplify the comparison, the delay is normalized such that the first node receives the signal
with delay 0. Similar to experiment one, the delay of different lines for the same distance has a large
variance, especially when distance increases, but the monotonicity still holds for both lines: a longer
distance experiences a longer delay.

Based on the analysis above, we conclude that the monotonicity assumption is more accommo-
dating to real world environments than the assumption based on a more specific model.

3. MAIN DESIGN

The main idea of FIND is that it considers a node faulty if its readings violate the distance mono-
tonicity significantly. The significance of violation is quantified by the metric of ranking difference
between a detected sequence and a distance sequence, as will be defined later.

(1) The first stage is map division, in which the map is divided into a number of subareas named
faces based on the topology of the network as shown in Fig.3. Each face is uniquely identified
by a distance sequence, which is denoted as a sequence of sensor node IDs (e.g., 2-1-3-4-5
in Fig.3). Within a distance sequence, the IDs are sorted in order of nodes’ distances from an
arbitrary point within this face. Map division can be pre-computed before detecting faulty nodes
such that a number of distance sequences can be obtained and considered as the ground truth
for the events taken place in corresponding subareas.
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(2) The second stage is detection sequence mapping. As shown in Fig.4, a number of events ap-
pear in the monitored region and are detected by the sensor nodes. For a single event, the sens-
ing result of each node (e.g., the received signal strength or time-of-arrival) varies depending on
how far the node is away from the event. A detected sequence is then obtained by ordering the
sensing results of all the sensor nodes. Without knowing the location of the event, this detect-
ed sequence is mapped with one of the distance sequences corresponding to the face in which
the event most likely takes place, yielding an estimated sequence. As shown in Fig.4, the same
mapping process is repeated for all the events such that an estimated sequence is obtained for
every detected sequence after this stage.
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Fig. 4. Second Stage: Detection Sequence Mapping

(3) The third stage is fault detection. As shown in Fig.5., after a sufficient number of mappings
becomes available, a blacklist is then obtained by analyzing the inconsistencies between the
detected sequences and the estimated sequences.
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The detailed design of each stage is presented next.

3.1. Map Division

The goal of the first stage is to divide the map into a number of subareas, named faces, each of
which can be identified by a node sequence indicating the distance between this face and all sensor
nodes.
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As shown in Fig.6(a), for two sensor nodes 1 and 2, the perpendicular bisector Div(1, 2) divides
the area into two subareas. For any position point below Div(1, 2), node 1 is closer than node 2, so
the distance sequence is 1-2. For any position point above Div(1, 2), node 2 is closer than node 1,
so the distance sequence is 2-1. We call the subarea consisting of all position points with identical
distance sequences a face.

Since crossing a perpendicular bisector reverses the order of two node IDs, each face is identified
by the unique distance sequences. Also, according to the geometry study [de Bery et al. 2008], for a

network of N sensor nodes, there are C2
N = N(N−1)

2 perpendicular bisectors that divide the graph

into O(N4) faces. This is a much smaller number than the number of all possible node sequences
n!. Due to the effect of faulty nodes and environment noise, a detected sequence with faulty readings
would violate the physical geometry constraint that is imposed on distance sequences. As a result,
a detected sequence can be arbitrary sequenced among n! sequences. Thus it is essential to map the
detected sequence reliably with one of the distance sequences, which is shown next.

3.2. Detection Sequence Mapping

To detect the violation of distance monotonicity, we need to first obtain the ground truth about
the distance relationship. If the location of an event is known, such a ground truth can be trivially
obtained by calculating the distances between the event and the nodes that detect it. Unfortunately,
the locations of natural events are normally unavailable and it is necessary to obtain the ground
truth using the sensing results. Formally, given the detected sequence of an event, the objective of
the second stage is to estimate the face where an event takes place. This is essentially a mapping
process between a detected sequence to the distance sequence that reflects the ground truth about the
distances’ relationship. With this ground truth, we can further quantify the severity of the violation
in Section 3.3.

Let the N sensor nodes divide the map into M faces, identified by a set of distance sequences
V = {s1, s2, · · · , sM}. Suppose s̄ is a detected sequence from a single event and s is the distance
sequence corresponding to the face where the event takes place. It is clear that without knowing
where the event is, s is a random variable whose sample space is V . If {A1, A2, · · · , AM} further
denotes the size of the M faces, the prior distribution of s (i.e., the probability that an event takes
places within the ith face) can be computed as the following:

Pr(s = si) = Pr(si) =
Ai∑M

j=1 Aj

, 1 ≤ i ≤ M (1)

Eq.1 can be interpreted as: without any further information, the probability that an event appears
within a face is in proportion to the size of that face. Then, s can be estimated by the method of
Maximum A Posteriori (MAP) estimation as

ŝMAP (s̄) = argmax
s

Pr(s|s̄)

= argmax
si∈V

Pr(s̄|si)Pr(si)
M∑
k=1

Pr(s̄|sk)Pr(sk)

= argmax
si∈V

Pr(s̄|si)Pr(si) (2)

where the second equality comes from Bayes’ Theorem and the third equality holds because the
denominator does not depend on s so that it plays no role in optimization.

Given V = {s1, s2, · · · , sM}, the new objective is to find a distance sequence si ∈ V that
maximizes Eq.2. For any si ∈ V , Pr(si) is already given in Eq.1. The only unsolved problem is
how to compute the conditional probability Pr(s̄|si), which is covered by the rest of this section.

3.2.1. Recursive Computation of Pr(s̄|si). Suppose α denotes the defective rate of the sensor
nodes. Given N -node sequences s̄ and si, we compare whether the nodes of the same ranking in s̄
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Fig. 7. The Conditional Probability Computation

and si are identical. Suppose s̄[k] and si[k] denote the kth node in s̄ and si respectively. Then, we
compare if s̄[k] = si[k] holds for any 1 ≤ k ≤ N .

When s̄[k] = si[k] holds for all 1 ≤ k ≤ N , s̄ and si are completely the same. In this case,
there are two possibilities: all the nodes are normal or w faulty nodes (1 ≤ w ≤ N ) still exist but
“luckily” did not change the sequence for this particular case. Then for the sake of simplicity the
conditional probability can be estimated as

Pr(s̄|si = s̄) ≈ (1− α)N +
N∑

w=1

Cw
N (

α

N
)w(1− α)(N−w)

= (1− α+
1

N
α)N (3)

where (1− α)N is the probability that all nodes are normal. Cw
N ( α

N
)w(1− α)(N−w) is the prob-

ability that w nodes are faulty nodes. It is worth noting that there is a coefficient 1
N

along with α.
This is because a faulty node may shift to anywhere with approximate N possible outcomes of equal
probability without additional information and the detected sequence s̄ is just one of the N possible
outcomes for any faulty node.1 For example, faulty node 3 may cause the distance sequence 1-2-3
to become the detected sequences 3-1-2,1-3-2 or 1-2-3. Then for each of them the probability is
1
3α(1− α)2, given that node 3 is faulty.

When s̄ and si are identical, the conditional probability Pr(s̄|si) can be computed by Eq.3. When
s̄ and si are not the same, a recursive method is used. The basic idea is to convert the two sequences
into identical sequences whose conditional probability can be computed by Eq.3 after removing
possible faulty nodes.

To illustrate this process, we use a running example shown in Fig.7 Suppose s̄[1..k − 1] =
si[1..k − 1] and s̄[k] ̸= si[k] are the first unmatched nodes. Also suppose the kth node in s̄ is
the lth node in si. As shown in Fig.7, k is 3 and l is 6. Then, there are two possibilities.

1Accurate probability is α
N

· α
N−1

· · · α
N−w+1

. Since we assume that the faulty nodes are minority, i.e., α is very small,

this accurate probability can be approximated by ( α
N
)w .
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(1) Case 1: The kth node in s̄ (which is also the lth node in si) is a faulty node, i.e., node 6 is a
faulty node in the example. A pair of new sequences can be obtained by removing the faulty
node (node 6) from the original sequences. In this example, s′i is 1-2-3-4-5-7-8-9 and s̄′ is 1-2-
3-5-4-7-8-9. Given that node 6 is faulty, the original conditional probability Pr(s̄|si) depends
on the new conditional probability Pr(s̄′|s′i).
Formally, define subsequence s′i as the original distance sequence without the lth node
(si[1..(l − 1)] + si[l + 1..N ]). Also, define subsequence s̄′ as the detected sequence with-
out the kth node (s̄[1..k − 1] + s̄[k + 1..N ]). Then, the conditional probability Pr(s̄|si) can be
computed by the following equation:

Pr(s̄|si, s̄[k]is faulty) =
1

N
Pr(s̄′|s′i) (4)

where, the coefficient 1
N

indicates that s̄ is one of the N possible outcomes that node s̄[k] is
faulty.

(2) Case 2: The kth node in s̄ is a normal node. In this case, the nodes in si from k to l− 1 must be
faulty nodes. In the example in Fig.7, if node 6 is normal, nodes 3, 4 and 5 must be faulty nodes.
Given s̄[k] is faulty, a new pair of sequences can be obtained by removing the nodes that are
determined to be either faulty or normal from the original sequences. In the example, nodes 3, 4,
5, and 6 are all removed and the new sequences s′′i and s̄′′ are both 1-2-7-8-9. Then, the original
conditional probability Pr(s̄|si) depends on the new conditional probability Pr(s̄′′|s′′i ) as well
as the probability that si[k..l − 1] are faulty nodes.
Define subsequence s′′i as the original distance sequence without the nodes from k to l, (si[1..k−
1] + si[l + 1..N ]). Also, define subsequence s̄′′ as the original detected sequences without the
corresponding l−k+1 nodes. Similarly, the conditional probability Pr(s̄|si) can be computed
by the following equation:

Pr(s̄|si, s̄[k]is normal) = (
1

N
α)l−kPr(s̄′′|s′′i ) (5)

Based on the law of total probability, the final conditional probability is computed by the following
equation:

Pr(s̄|si) = Pr(s̄|si, s̄[k]is normal)Pr(s̄[k]is normal)

+Pr(s̄|si, s̄[k]is faulty)Pr(s̄[k]is faulty)

= (4) · α+ (5) · (1− α) (6)

Eq.6 is recursive. The recursive process continues until the two sequences are identical. As shown
in the example in Fig.7, the original sequences first generate two pairs of subsequences. The second
pair has identical sequences s̄′′ and s′′i whose conditional probability can be computed by Eq.3 and
stops generating new subsequences. The first pair, however, does not have identical s̄′ and s′i so that
it generates two pairs of new sequences. The process stops because both of the two new pairs have
identical sequences and the conditional probability can be computed by Eq.3.

3.2.2. A Note on α Sensitivity. The MAP estimation uses the defective rate α as an input param-
eter. Although α can be estimated from the manufacturer’s product specification sheet (e.g., Mean
Time Between Failure (MTBF)) or the statistical testing result of samples, α would be affected by
the in-situ factors such as severe weather and physical damage. Therefore it is important to investi-
gate whether the correctness of MAP estimation is sensitive to the inaccuracy of the α value. When
s̄ and si are identical, from Eq.3 we can see the conditional probability Pr(s̄|si) is approximately
(1 − α)N which is close to 1 when α is small and N is large. For each pair of unmatched nodes,
there is at least one faulty node so that at least one (1 − α) is replaced by α

N
for both Case 1 and

Case 2 according to Eq.4, Eq.5 and Eq.6. Since α
N

<< (1 − α), the distance sequence that has
the least unmatched nodes with s̄ is most likely to maximize Pr(s̄|si) and becomes the estimated
sequence of the MAP estimation. In brief, an inaccurate α value does not affect the correctness of
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Fig. 8. A Simple Example of Ranking Difference

the mapping as long as α
N

<< (1 − α) holds. We note α is normally small (e.g., HMC1002 mag-
netic sensors used in the mica series have MTBF of 50000 hours [Honeywell 2007]), and thus the
inequality α

N
<< (1− α) actually holds very well in practice.

3.3. Detection Using Ranking Differences

Given the detected sequences from the measurement of a number of events and their corresponding
estimated sequences, the objective of the third stage is to find a list of nodes in descending order
of likelihood of being faulty nodes. We define ranking difference as the difference a node ranks
in a detected sequence and its corresponding estimated sequence. In Section 3.3.1, we develop
two theorems to state why we can use the average ranking difference as a provable indicator of
possible data faults. In Section 3.3.2, we present how to develop a detection algorithm based on the
theoretical analysis in Section 3.3.1 to finally find the blacklist.

3.3.1. Average Ranking Difference. Here we show that by using the average ranking difference,
we can effectively identify faulty nodes. We mainly prove the following two statements:

(1) A node with a larger average ranking difference has a higher probability of being a faulty node.
(2) The majority of faulty nodes can be obtained by selecting nodes whose ranking differences are

above a lower bound.

Suppose n is the number of detected sequences available at the base station. In Section 3.2,
the MAP estimation method maps these detected sequences {s̄1, s̄2, · · · , s̄n} with the distance se-
quences in V as the estimations of where the events take place. Suppose the estimated sequences
are denoted as {ŝ1, ŝ2, · · · , ŝn} (ŝi is short for ŝiMAP ). We call each s̄i and the corresponding ŝi
a sample. n is also named the sample size. Again, without data faults, the detected sequence s̄i
and the corresponding estimated sequence ŝi are identical for any sample. In this case, there is no
ranking difference for any node since the rankings of any node in s̄i and corresponding ŝi are the
same. When faulty nodes are present, these two sequences are no longer identical and the rankings
of some nodes in the two sequences are no longer the same, leading to non-zero ranking differences.

We start with the simple example in Fig.8 to see how average ranking difference works, while
formal definitions and theoretical proof will be shown later. In Fig.8, four detected sequences are
mapped with their estimated sequences and the ranking differences can be computed by comparing
the rankings of each node in the two sequences. Let us take the square event as an example. For
the square event, the detected sequence is 3-4-5-1-2 and the estimated sequence is 5-3-4-1-2, where
nodes 1 and 2 have the same rankings such that their ranking differences are 0. Node 3 and 4 both
shift by one and their ranking differences are 1. Node 5 ranks the first in estimated sequence and the
third in detected sequence, and thus its ranking difference is 2. The ranking differences of all the
nodes in all events are shown in Fig.8. In this example, node 5 is a faulty node, with all its readings
lower than expected. The figure offers a couple of insights. First, as a faulty node, node 5 has a
non-zero ranking difference in most events due to its faulty reading. Second, node 5 also changes
some normal nodes’ rankings. However, a faulty node at most changes normal nodes’ rankings
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Fig. 9. Ranking Differences Affected By Faulty Nodes

by 1. Third, for different events, the sets of normal nodes whose rankings are changed by node 5
are different. From these insights, it is not difficult to explain that the total (or average) ranking
difference of node 5 is the largest, as shown in Fig.8.

Formally, we define the ranking difference and average ranking difference as follows:

Definition 3.1. The ranking difference di(k) for node k in sample i is given by the following
equation

di(k) = |R(ŝi, k)−R(s̄i, k)|, 1 ≤ k ≤ N, (7)

where R(∗, k) denotes the ranking of node k in sequence ∗. The average ranking difference of
node k in the n samples (denoted as D(k)) is computed by averaging di(k):

D(k) =
1

n

n∑

i=1

di(k). (8)

D(k) is also known as the sample mean of the ranking differences. Based on these definitions the
first theorem is developed as follows:

THEOREM 3.2. A node q is faulty if its average ranking difference D(q) is greater than a
bound B given by

B =
Ne

N − 1
(µe +Ne − 1) (9)

where Ne is the number of faulty nodes in an N -node network, µe is the arithmetic mean of the
average ranking difference of faulty nodes, and D(q) is calculated under a sufficient large sample
size.

The detailed proof of Theorem 3.2 can be found in appendix A.1.
Theorem 3.2 provides a sufficient condition for node q being a faulty node (i.e., D(q) ≥ B

implies q is a faulty node). At the same time, it also provides a necessary condition for node p being
a normal node (i.e., if p is normal, D(q) ≤ B holds). It is worth noting that none of these conditions
are both sufficient and necessary, which is a tricky part in the proof of the next theorem.

Based on Theorem 3.2, we develop Theorem 3.3 showing how the entries in D correlated with
the probability that the corresponding nodes are faulty.

THEOREM 3.3. Given the network in Theorem 3.2 and D as the ranking difference vector,
suppose Pr(k = “F”) denotes the probability that node k is a faulty node. Then, for any node p
and q satisfying D(p) < D(q):

Pr(p = “F”) ≤ Pr(q = “F”) (10)

The conclusion of this theorem is straightforward. We leave the detailed proof to appendix A.2.
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ALGORITHM 1: Detection Algorithm

Input: Sorted node sequence n1-· · · -nN , average ranking differences D
Output: The Blacklist {n1, · · · , nk}

1: Blacklist← ∅
2: µe ← 0,B ← 0,Ne ← 1
3: for j ← 1 to N do
4: if D(nj) ≤ B then
5: Break
6: else
7: µe ←

µeNe+D(nj)

Ne
,Ne ← Ne + 1

8: B ← Ne

N−1
(µe +Ne − 1)

9: Blacklist← Blacklist+ {nj}
10: end if
11: end for
12: Return Blacklist

From Theorem 3.2 and 3.3, it is clear that if we order all the nodes by their corresponding average
ranking differences in D, we obtain a list of nodes in descending order of their probability of being
faulty nodes.

3.3.2. Detection Algorithm. In the previous section we concluded that ordering the nodes by their
average ranking differences yields a node sequence in order of the likelihood of their being faulty
nodes. Then, if the number of faulty nodes Ne is known, the top Ne nodes on the list are the best
estimation of faulty nodes according to Theorem 3.3. If the node sequence is denoted as n1-n2-· · · -
nN , then {n1, n2, · · · , nNe

} are best estimations of faulty nodes.
However, Ne is normally unknown a priori. In other words, we do not know how many faulty

nodes there are in a network until we detect them. Therefore, we need to design a detection algorithm
in this section to estimate what Ne is; i.e., given n1-n2-· · · -nN which consists of all nodes, we want
to find a cutting point k such that {n1, n2, · · · , nk} are the estimation of faulty nodes. The detection
algorithm is designed based on Theorem 3.2 and 3.3.

The basic idea is to find all the nodes whose ranking differences are above B and consider them
faulty. Specifically, we want to find a node nk such that the ranking differences of all the nodes
from nk+1 to nN are no greater than B and all the nodes from n1 to nk are greater than B. Then,
{n1, n2, · · · , nk} forms the estimation of faulty nodes.

Formally, nk is a node that satisfies D(nk+1) ≤ B < D(nk) where B = Ne

N−1 (µe + Ne − 1),

Ne is estimated by k and µe is estimated by
∑k

i=1
D(ni)

k
.

The pseudo-code of the detection algorithm is shown in Algorithm 1. This is a greedy selection
algorithm. Initially the blacklist is empty (Line 1),µe and B are set to 0, and Ne is set to 1(Line
2). Starting from n1 (which is the node with the largest average ranking difference) and check the
nodes one by one (Line 3) until the ranking difference of a node is no greater than B (Line 4 and
5). Specifically, a node can be added into the blacklist if and only if its ranking difference is greater
than B. After adding a new node into the blacklist, Ne, µe and B are updated (Line 7 to 9). Then
an estimation of faulty nodes {n1, · · · , nk} can be obtained if this loop breaks at node nk+1.

Example: Retrospecting to the example which has shown in Fig.4 and Fig.5 at the beginning of
this section, we illustrate the running process of Algorithm 1. Initially, we sort the node sequence n1-
n2-n3-n4-n5 as 5-4-3-2-1 and compute the corresponding average difference D = ( 54 ,

1
2 ,

1
2 ,

1
4 , 0).

Then the blacklist is set to ∅, µe and B are set to 0 (Line 2), and Ne is set to 1. For j = 1, since
D(n1) =

5
4 > B = 0, we have µe = 5

4 , Ne = 2, B = 9
16 , and Blacklist = {n1}. For j = 2, we

have D(n2) =
1
2 < B = 9

16 . Then the ’for-end’ process breaks and the final Blacklist = {n1} is
obtained. Thus the fault node 5 has been detected.
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Uniqueness: An important feature of this detection algorithm is its uniqueness. Given a node
sequence and the corresponding average ranking differences, there is only one cutting point k. This
is proved in Appendix A.3. Then, by using Algorithm 1, a unique blacklist consisting of all the
nodes {n1, n2, · · · , nk} whose ranking difference is above B can be constructed.

4. SUBSEQUENCE DETECTION

By computing conditional probability for every possible si ∈ V using Eq.3, the MAP estimation
can be finally calculated by Eq.2. It is worth noting that the complexity of computing Pr(s̄|si)
is exponential (O(2N )) to the length of the sequence N . However, in reality an event can not be
detected by all sensor nodes in the network. The length of the detected sequence is no greater than
the number of sensor nodes within sensing range, which is much smaller than N . Also, the length of
detected sequence can be controlled below a certain bound L (e.g., 10) by selecting the top L nodes
in the detected sequence so that the complexity is upper bounded by 2L (1024 if L = 10). Therefore
we should pay more attention on the issue of subsequence estimation to reduce the complexity.

4.1. Truncated sequence

When the network size N is large, a single event can be detected only by the sensor nodes within
the sensing range. As a result, the length of the detected sequence s̄ is less than N most of the time.
On the other hand, even if a full detected sequence (of length N ) is available, a truncated s̄ is still
needed due to the exponential complexity of Eq.6.

Suppose L is set as the upper bound of the length of detected sequences. Then any detected
sequence s̄ is either of a length no greater than L or is truncated by selecting only the first L nodes
so that the complexity of computing the conditional probability is upper bounded by 2L.

Given s̄,the distance sequences si is also truncated accordingly. In our design, the distance se-
quences are truncated to length 2L (later we will see why 2L is a better choice than L).

(a) case 1 (b) case 2 (c) case 3

Fig. 10. Comparing subsequence s̄ with si

4.2. Modified recursive process

The estimation for subsequences is very similar to the estimation for full sequences as presented in
Section 3.2 where the objective is to find an si ∈ V that maximizes Eq.2. Again, the conditional
probability Pr(s̄|si) needs to be computed, the only difference being that s̄ and si are no longer of
the same length as they were in Section 3.2. Previously, the recursion in Eq.6 stops when current
s̄ and si are identical and their conditional probability can be computed by Eq.3. If they are not
identical, the first unmatched nodes s̄[k] ̸= si[k] are found and possible faulty nodes (either s̄[k] in
case 1 or si[k..l] in case 2) are removed from both sequences so that they are closer to identical.
For subsequences, however, there are two new problems. First, s̄ and si are not identical most of the
time since initially they are of different lengths. Second, given the first unmatched node s̄[k] ̸= si[k],
there is no guarantee that there exists an si[l] (as in full sequence case) such that s̄[k] = si[l] since
si is also truncated. Based on these observations, we make the following changes for the recursive
computation process for Pr(s̄|si):

(1) The condition for terminating the recursion has been relaxed to that si can be truncated to s̄
after removing a number of nodes from the back, in contrast to the previous requirement that si
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and s̄ are completely identical. Then the corresponding conditional probability is computed by
Eq.3 with N replaced by the length of s̄. Examples are shown in Fig. 10. If s̄ is 1-2-3-4-5 and
si is 1-2-3-4-5-6-7, the recursion stops since si can be further truncated to 1-2-3-4-5 and the
conditional probability can be computed by Eq.3, replacing N with 5. However, if s̄ remains
1-2-3-4-5 but si is 1-3-4-5-6-7 or 6-1-2-3-4-5, the recursion does not stop.

(2) For each pair of unmatched nodes s̄[k] ̸= si[k], if s̄[k] does not exist in si, it is considered faulty
directly as in case 1, in contrast to the previous method where both cases are considered.
Suppose s̄[k] ̸= si[k] are the first pair of unmatched nodes. k is no greater than L since the
length of s̄ is upper bounded by L. If the node s̄[k] exists in si as in the previous full sequence
case, the computation process remains the same. If it does not exist in si, its ranking in the si
before truncation (denoted as l) must be larger than the length of truncated si, which is 2L.
Then the ranking difference of this node is l − k which is greater than L. Again for node s̄[k],
there are two possibilities: faulty or normal. Consider the case when it is normal. Then, s̄[k] is
a normal node with ranking difference of l − k > L, which indicates that there are at least L
faulty nodes (since a faulty node can cause a normal node’s ranking change by at most 1). This
case can be ignored because the probability that there are more than L faulty nodes is small,
especially when α is small. As a result, truncating si to length of 2L allows us to only consider
the case s̄[k] is faulty when s̄[k] does not exist in si.

By making these two changes, the method presented in Section 3.2 can be easily applied to
subsequence estimation.

5. PRACTICAL ISSUES

In this section we discuss and address some practical issues that compensate to the basic design of
FIND. In Section 5.1 we develop a technique to reduce the effect of high level noise on detection al-
gorithm and Section 5.2 discusses how to eliminate data measured from multiple events to preserve
the good performance of FIND.

5.1. Detection in Noisy Environments

In Section 3.3.2, a detection algorithm is designed under the assumption of a low noise level: Given
a node sequence n1-n2-· · · -nN in descending order of their ranking differences in D, a cutting
point k is found so that D(nk+1) ≤ B < D(nk) and {n1-n2-· · · -nk} forms an estimation of faulty
nodes.

This algorithm works well when the environment has a low noise level, especially when the
defective rate α is small. As discussed before, the smaller α is, the further B is away from µe and
the less chance that a faulty node can be miss detected. However, one problem arises when applying
this algorithm in an environment with a high noise level. In such an environment, a normal node
may sometimes behave as a faulty node due to noise, resulting in a larger ranking difference than
previously. Especially when α is small, B is small such that the ranking differences of some normal
nodes may exceed B. To address this issue, we use a simple statistical method to filter out some
possible normal nodes in estimation {n1-n2-· · · -nk}.

Given the estimation {n1-n2-· · · -nk}, all the rest nodes {nk+1-· · · -nN} are considered normal
nodes. Then, the sample mean and the sample variance of the ranking difference of normal nodes
can be computed as

µ̂ =

∑N

i=k+1 D(ni)

N − k
, σ̂2 =

∑N

i=k+1(D(ni)− µ̂)2

N − k − 1
(11)

Then, the nodes whose ranking differences are not in the interval (µ̂ ± 3σ̂) are removed from the
blacklist.This statistical technology comes from 3σ principle.
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5.2. Simultaneous Events Elimination

We present the main design assuming that a node detects one event at a time. However, since we
cannot control natural events, it would be the case that multiple events are detected by sensor nodes
at the same time. In this case, the resulting node sequences are no longer correlated to any distance
sequence most of the time. For example, for radio signals, the RSS measured by a sensor node will
be equal to the sum of the RSS of two single events; for acoustic signals, the delay measured by
a sensor node will be equal to the delay of the event that arrives earlier. Including such sequences
into FIND will bring detection error since ranking difference is no longer a good metric to identify
faulty nodes. As a result, eliminating data from multiple events is very important to preserve high
confidence in detection.

A pre-processing of data is designed where Longest Common Subsequences (LCS) is used to
identify multiple events. (If two sequences are 1-2-3-4-5 and 4-1-3-5-2, the LCS is 1-3-5.) When
noise is absent, the measured sequence s̄ is just one of the distance sequences with αN faulty nodes
shifts to left or right. No matter how they shift, the rest (1 − α)N normal nodes still keep their
original order thus the LCS between s̄ and its corresponding distance sequence is at least (1−α)N
long. By computing the LCS between s̄ and all distance sequences we get the longest LCS of s̄.
Then, the node sequences measured from multiple events can be filtered out if the length of their
longest LCS is shorter than (1 − α)N . In practice, this bound can be lower due to the presence of
noise. We evaluate the pre-processing design in Section 7.

6. SYSTEM EVALUATION

We evaluate FIND using data from real world experiments. In the first experiment, we detect data
faults for radio signal in RSS measurements while for the second experiment, we detect synchro-
nization errors that causes inaccurate delay measurements for acoustic signals.

6.1. Performance Evaluation

We evaluate the performance of FIND in two scenarios. In the first scenario, an accurate α is as-
sumed so that the first αN nodes with the largest ranking differences are selected as faulty nodes
without using the detection algorithm in Algorithm 1. This scenario is used as the performance upper
bound for testing the effectiveness of our ranking difference based design. In the second scenario,
accurate α is unavailable and Algorithm 1 is used for selecting faulty nodes whose ranking differ-
ences are greater than B (α is still used for computing Pr(s̄|s) but it can be less accurate). Also, the
statistical method presented in Section 5.1 is used for further refining the blacklist. To distinguish
between these two scenarios, we name the first ideal scenario α-based detection (or α-detection for
short), the second one B-based detection (or B-detection for short).

Two metrics are used for evaluating FIND: false negative rate and false positive rate. The former
is defined as the proportion of faulty nodes that are reported as normal, which is also known as miss
detection rate. The latter is defined as the proportion of normal nodes that are reported as faulty,
which is also known as the false alarm rate.

6.2. On Radio Signal

We deploy 25 MicaZ nodes in grids (5×5) on a parking lot, as shown in Fig.11(a). The distance
between each row and column is 5m. Broadcasting events, identified by their unique event ids, are
generated one by one. In the experiment, the sending power of each event is adjusted to 0dBm such
that the communication range is around 25m. Upon receiving a broadcasting packet, MicaZ nodes
measure the RSS and record it together with event id. The number of events generated varies from
19 to 49. After recording the RSS of all the events, we randomly select 1 to 5 nodes and inject
errors (either biased or random) into their readings, corresponding to a 4% to 20% defective rate.
According to Fig.1(b), where the RSS from the events of the same distance may have a difference
of as large as 20dBm, the injected errors are at least 20dBm above or below the normal readings.
Fig.12 and Fig.13 plot the false negative rate and false positive rate for α- and B-detection given
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(a) On Radio Signals (b) On Acoustic Signals

Fig. 11. Outdoor Experiments Using Two Types of Events: Radio and Acoustic Signals

different number of events. It can be seen from the figure that except for 19 events, the false negative
rate of both α- and B-detection are below 6%. For false positive rate, B-detection is below 5% for
most cases, a little higher than that of α-detection, which is below 3%. Noting that α-detection
always selects αN nodes into the blacklist, its false positive rate is closely correlated to its false
negative rate. B-detection, however, selects nodes based solely on the detection algorithm. Its false
positive rate curves are more irregular than those of α-detection. Since the network size is only
25, a 5% false positive rate means fewer than 1.3 normal nodes are inaccurately reported faulty on
average, which is still a good performance. We also observe that the performance of 19 events has
a significant degradation compared with the other three scenarios, especially for the false negative
rate. This is because with 19 events, only 19 truncated detected sequences are available so that a
faulty node may appear in only a small portion of them, leading to a low ranking difference. With
the effect of noise, such a faulty node is difficult to be detected since it does not have a high enough
ranking difference due to limited number of events. When the number of events becomes 29 or
higher, the false negative rate decreases since the faulty nodes appear enough of times in detected
sequences.

Fig.14(a) and (b) plot the examples of average ranking differences of all the 25 nodes with an 8%
defective rate when 19 events and 49 events are given. In (a), the faulty nodes are nodes 12 and 23,
while in (b), the faulty nodes are 12 and 24. It can be seen from the figures that these faulty nodes
can be easily identified by their average ranking differences since in these two examples, the two
faulty nodes have the highest ranking difference. Also, with more events, the detection becomes
easier. The horizontal line in both figures show the average ranking difference of normal nodes.
Comparing (a) and (b), we observe that when there are 19 events, the normal nodes have an average
ranking difference of about 2.2, which is larger than that when there are 49 events, which is 1.8.
This is because with more events, more detected sequences become available and more faulty nodes
appear in these truncated sequences. Thus, it is easier for the detection algorithm to avoid the effect
of noise.

6.3. On Acoustic Signal

We deploy 20 MicaZ nodes in grids (4× 5) as shown in Fig.11(b). The distance between each row
and column are set to 1.5m. All nodes are equipped with microphones to receive 4KHz acoustic
signals generated by a speaker and record corresponding timestamps. Before generating the acoustic
signal, all the nodes are synchronized.

After recording the timestamps for 18 events, we inject errors into 1 to 4 nodes, corresponding
to a 5% to 20% defective rate. The errors are at least 10ms, which correspond to a distance of
about 3.5 meters. Fig.15(a) plots the false negative rate of α- and B-detection, and for α below
0.1, the false negative rate is less than 5%. For α greater than 0.1, the false negative rate is about
10% higher than that of the first experiment using 29 or more events, but is close to that using 19
events. In Fig.15(b), B-detection has a false positive rate of around 8%. Again, for this small-scale
network with 20 nodes, this indicates that about 1.6 normal nodes are inaccurately considered faulty
on average, which is tolerable. α-detection still has a low false positive rate as expected.
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Fig. 12. α-Detection
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Fig. 13. B-Detection
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(b) 49 Events

Fig. 14. Ranking Difference
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(c) Ranking Differences

Fig. 15. Experiment Results on Acoustic Events

Fig.15(c) shows the average ranking differences of the 20 nodes where node 11 and 15 are faulty
nodes. From this figure we can see the average ranking differences of normal nodes is nearly 5,
which is much larger than that in the first experiment, indicating a higher noise level. The noise
in this experiment is higher due to the limited quality of microphones equipped on MicaZ nodes.
Also, the limited power of the speaker causes many nodes to miss the signal even if they are nearby.
However, even with severe noise, FIND performs well especially when α is below 0.1.

7. LARGE SCALE SIMULATION STUDY

The results of the system evaluation indicate that FIND can be efficiently and effectively applied to
real-world systems with very good performance. Two implementations on radio and acoustic events
indicate FIND is generic and compatible with different event modalities. However, physical test beds
can only investigate a limited design space. In order to understand the performance of FIND under
diversified settings, in this section, we provide extensive simulation results as a complementary
study.
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Fig. 16. α- vs. B-Detection
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Fig. 17. α-Detection vs. Noise
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Fig. 18. B-Detection vs. Noise

7.1. Simulation Setup

In the simulation, both the sensor nodes and events are randomly generated on the map. If not
specified, 100 nodes are randomly deployed on a 250m × 250m map. The sensing range is 25m and
the sample size (the number of generated events) is 50. L is set to 10, and thus the complexity of
computing Pr(s̄|si) is bounded by 103. All the data are based on 100 runs.

We use the logarithmic distance path loss model [Lord et al. 1980; Rappaport 1996] to simulate
received signal strength, and the received signal strength of the ith node Si can be formulated as

Si ∝ −10βlog(
di

d0
) +Xi (12)

where di is the distance between node i and event. d0 is the reference distance and is set to 1m. β
is the signal fading factor and is set to 4 as in [Zhong et al. 2009]. Xi is a random noise whose unit
is dB and follows a 0-mean normal distribution with variance σ2

X . In the simulation, σX is changed
from 0 to 8 to evaluate FIND in different environments, and the default value is 4. For faulty nodes,
faulty readings are at least 3σX away from their normal readings.

7.2. Comparison of α- and B-detection

The false negative rate and false positive rate of α- and B-Detection, with or without noise, are
shown in Fig.16. In Fig.16(a), the false negative rate (miss detection rate) of all curves are below
10%. When the defective rate is below 10% (which is always the case in a well-maintained system),
the miss detection rate of all curves are below 4%. Thus, both α- and B-detection can effectively
detect faulty nodes. Comparing the two solid curves (or the two dashed curves) we can see α-
detection always has a lower false negative rate (thus a higher detection ratio) than B-detection.
This is not difficult to explain: the only difference between the two detections is that α-detection
utilizes a known α and selects the top αN nodes directly based on average ranking differences,
while B-detection uses Algorithm 1 to figure out this number. As a result, α-detection has a better
performance since it has more information. Also, comparing the two curves with squares (or the two
curves with circles), we can see that with the presence of noise, the performance slightly degrades.

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



Detecting Faulty Nodes with Data Errors for Wireless Sensor Networks A:19

0 0.05 0.1 0.15 0.2
0

5%

10%

15%

20%

Defective Rate (α)

F
al

se
 N

eg
at

iv
e 

R
at

e

 

 

B−Detection,0.25α
B−Detection,0.5α
B−Detection,α
B−Detection,2α
B−Detection,4α

(a) False Negative Rate

0 0.05 0.1 0.15 0.2
0

2%

4%

6%

8%

10%

Defective Rate (α)

F
al

se
 P

os
iti

ve
 R

at
e

 

 

B−Detection,0.25α
B−Detection,0.5α
B−Detection,α
B−Detection,2α
B−Detection,4α

(b) False Positive Rate

Fig. 19. Impact of Inaccurate α
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Fig. 20. B-Detection vs. Density
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Fig. 21. Impact of Multiple Events

However, both α- and B-detection can still detect more than 90% of the faulty nodes in a noisy
environment. We will study the impact of noise in the next subsection.

Fig.16(b) shows the false positive rate (false alarm rate) corresponding to previous 4 scenarios.
From this figure we can see most of the false positive rates are around 1%, meaning that only a
small portion of normal nodes are inaccurately determined faulty, which is a good performance.

7.3. Impact of Noise

We study how noise affects α- and B-detection. In simulation, the standard deviation of noise σX is
changed from 2 to 8. It is worth noting that the unit of σX is dB. As a result, a small increase in σX

is a significant increase in noise. For example, σX = 4 indicates that more than 30% normal nodes’
readings are either greater than 2.5 times or less than 40% of the original readings, which is already
a high noise level in sensor networks in which the transmission power is low. σX = 8 indicates
that more than 30% of normal nodes’ readings are either greater than 6.3 times or less than 15% of
original readings, which is an extremely high noise level.

Fig.17 and Fig.18 are the simulation results of α-detection and B-detection with different noise
levels. It can be seen from Fig.17(a) and Fig.18(a) that the false negative rate (miss detection rate)
increases as noise level increases, as expected. When the defective rate α is below 10% (which is
always the case in a well-maintained system), the false negative rate for σX = 2 and σX = 4 are
both below 5%. As the noise level increases, the false negative rate is still less than 20% even in
extremely noisy environments (σX = 8).

The corresponding false positive rate (false alarm rate) are plotted in Fig.17(b) and Fig.18(b).
It can be seen from the figures that the false positive rate of α-detection increases as α increases
and the false negative rate increases. This is because in α-detection, the αN nodes with the largest
average ranking differences are determined to be faulty nodes so that the number of false alarmed
nodes is correlated with the number of miss detected nodes. On the other hand, the false positive
rate of B-detection is always below 1%. This is because B-detection detects faulty nodes by the
detection algorithm, and thus the number of miss detected nodes does not correlate with the false
positive rate.

In summary, both α- and B- detection have low false negative rate and low false positive rate
(less than 5% for α ≤ 0.1) in environments with moderate noise. When the network experiences
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extremely high noise, B-detection based on detection algorithm is a better method even when α is
accurately given. This is because B-detection has a less than 1% false positive rate, which means
that almost all the nodes that are detected as faulty are actually faulty. The miss detected nodes may
also be detected after correcting or removing the already detected faulty nodes and applying the
whole detection method again. We leave this topic as future work.

7.4. Impact of Inaccurate α

In a system in the real world, it is always impossible to get the true defective rate (i.e., accurate
α) of the system. In this subsection we evaluate the performance of FIND with an estimated and
inaccurate α. Since the α-detection method simply considers the αN nodes with the largest average
ranking differences as faulty nodes, it no longer provides good performance when α is inaccurate:
with a halved α, the false negative rate is at least halved; with a doubled α, the false positive rate is
at least doubled. As a result, we evaluate only how inaccurate α affects B-detection.

Fig.19(a) and (b) plot the false negative rate and false positive rate for using different estimated α
values from 25% to 4 times of the true α in B-detection. It can be seen from Fig.19(a) that except for
the curve of using 4α as an estimated defective rate, all the other curves show similar performance.
Also, the 4α curve has a higher false negative rate (miss detection rate) than all the other curves,
especially when α > 0.1. This is because when the estimated α is four times of that of true α,
a node may become more likely to be faulty instead of normal. For example, if α = 0.2, a node
has a probability of 0.2 to be faulty. But if 0.8 is used, a node has a probability of 0.8 to be faulty.
(In reality, no one will estimate α = 0.8, but from this simulation we can get the performance of
FIND in very extreme cases.) From this figure we conclude that a reasonable estimated α does not
degrade the performance of FIND. Fig.19(b) shows the false positive rate from which we can see
the false positive rate of all curves are all around 1%. Based on this simulation we conclude that the
performance of B-detection is insensitive to the inaccurate estimation of α. When no information
of α in a networking system is available, choosing α ranging from 2% to 5% will not affect the
performance.

7.5. Impact of Network Density

The performance of B-detection in networks with different densities are shown in Fig.20. The map
size is changed from 150m× 150m to 350m× 350m while the network size remains 100. It can be
seen from Fig.20(a) that when the density is reduced from 300m×300m to 350m×350m, the false
negative rate increases by around 5%. When the density is reduced from 250m× 250m to 300m×
300m, the false positive rate also increases by around 2%. This is because with lower density, the
number of nodes within the sensing range of the event becomes smaller and the node sequences are
shorter. As a result, sequence estimation becomes less accurate because less information (shorter
sequences) is available. Also, when the density increases from 200m × 200m to 150m × 150m,
the false negative rate does not increase. This is because when the density is higher, more nodes are
within sensing range and more nodes have similar distances from the events. Due to the presence of
noise, the probability that a normal node’s ranking is changed by noise also becomes higher because
there are more nodes nearby with similar readings. As a result, the false negative rate is lowest in a
network with moderate density, as in 200m× 200m and 250m× 250m. The false positive rate, as
shown in Fig.20(b) is for most cases around 2%.

7.6. Impact of Simultaneous Events

We study how simultaneous events affect the performance of FIND. The total number of events is
100 and the percentage of simultaneous events (for which the sensing results are the sum of several
individual events) are changed from 10% to 50%. For each sample, if the length of the longest
LCS is less than 75% of its original length, it is discarded. Fig.21(a) shows the false negative rate
of our design with or without data pre-processing. It can be seen that without pre-processing, the
performance degrades significantly, with a more than 80% false negative rate. After pre-processing,
the false negative rate reduces to less than 20%. The fewer the simultaneous events, the better the
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performance because more valid samples can be used without being discarded. Fig.21(b) shows the
longest LCS (normalized by original length) of the 100 samples where the first 50 samples are from
a single event and the last 50 samples are from simultaneous multiple events. It is clear that the
length of LCS of the first 50 events is nearly twice that of the last 50, showing the effectiveness of
LCS-based data pre-processing.

8. CONCLUSIONS

In this paper we proposed FIND, a faulty node detection method for wireless sensor networks. With-
out assuming any communication model, FIND detects nodes with faulty readings based only on
their relative sensing results, i.e., node sequences. Given detected node sequences, we first proposed
an approach to estimate where the events take place and what the original sequences are. Then we
theoretically proved that the average ranking differences of nodes in detected sequences and origi-
nal sequences can be used as an effective indicator for faulty nodes. Based on the theoretical study,
a detection algorithm is developed for finally obtaining a blacklist when an accurate defective rate
is unavailable. Based on extensive simulations and test bed experiment results, FIND is shown to
achieve both a low false negative rate and a low false positive rate in various network settings. In
the future, we will extend our FIND method to the distributed wireless sensor networks.
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A. APPENDIX:

A.1. The proof for Theorem 3.2

PROOF. For simplicity, suppose the nodes labeled from 1 to Ne are faulty nodes and all the rest
of the nodes are normal nodes. The ranking difference of the kth node in any sample is a random
variable and can be denoted as d(k).

First, consider the case when there is only one faulty node. We observe that a single faulty node
k, with ranking difference d(k), may make at most d(k) nodes’ ranking change by one. As the
example shown in Fig.9(a), faulty node 4 originally shifts to its left by 2 and changes two nodes’
rankings (node 2 and 3) by 1. Since node 4 is the only faulty node, its final ranking difference d(4)
is 2, which is equal to its original shift in this case.

When there are another Ne − 1 faulty nodes present, a faulty node’s final ranking difference can
be further changed by other faulty nodes, while the number of nodes it affected is still equal to its
original shift. Fig.9(b) shows an example to illustrate the maximum possible number of nodes whose
ranking differences are affected by a faulty node with ranking difference d(k). In this example,
faulty node 4 originally shifts to its left and makes itself a ranking difference of 2 (this is its original
shift d′(4) = 2). The number of nodes it affected is two (node 2 and 3), which is equal to d′(4). Then
nodes 5 and 6, both of which are also faulty nodes, shift to the very left of the sequence and reduce
node 4’s ranking difference to 0 (this is node 4’s final ranking difference d(4) = 0). However, it can
be seen from the figure that node 2 and 3’s ranking differences are 3, which are the results caused by
all the three faulty nodes. This indicates that node 4’s effect on node 2 and 3’s ranking differences
still remains. Thus, the number of nodes affected by node 4 is still equal to its original shift d′(4)
instead of its final ranking difference d(4). Given the final ranking difference d(k) of any node k, its
maximum possible original shift d′(k) is d(k)+Ne− 1, which happens when all other faulty nodes
affect k’s ranking in the same direction that is opposite to k’s original shift direction just as shown
in this example. As a result, the maximum number of nodes affected by node k is d(k) +Ne − 1.

Based on this analysis, the probability that a node’s ranking is changed by node k is upper bound-

ed by
d(k)+Ne−1

N−1 . Also, a normal node never changes its ranking itself. Then, given d(k), the ex-

pected ranking difference of a normal node p caused by node k, denoted as dk(p), can be computed
as

E(dk(p)|d(k)) ≤ 0 · (1−
d(k) +Ne − 1

N − 1
) + 1 ·

d(k) +Ne − 1

N − 1

=
d(k) +Ne − 1

N − 1
, ∀(Ne + 1) ≤ p ≤ N (13)

Taking expectations on both sides yields

E(dk(p)) ≤
E(d(k)) +Ne − 1

N − 1
, ∀(Ne + 1) ≤ p ≤ N (14)

ACM Transactions on Sensor Networks, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 S. Guo et al.

Then, the expected ranking difference of any normal node p caused by all the Ne faulty nodes is
upper bounded by

E(d(p)) ≤
Ne∑

k=1

E(dk(p)) =

∑Ne

k=1(E(d(k)) +Ne − 1)

N − 1

=
Ne(µe +Ne − 1)

N − 1
, ∀(Ne + 1) ≤ p ≤ N (15)

where µe is the mean of average ranking difference of all faulty nodes and is given by

µe = E(

∑Ne

k=1 d(k)

Ne

) =

∑Ne

k=1 E(d(k))

Ne

(16)

The first inequality in Eq.15 holds since the maximum total ranking change caused by Ne faulty
nodes happens when all the faulty nodes make node p move to the same direction.

When the sample size is sufficiently large, sample mean becomes a good estimator for the expec-
tations in Eq.15. By replacing the expectations with sample mean we get

D(p) ≤
Ne

N − 1
(µe +Ne − 1), ∀(Ne + 1) ≤ p ≤ N (17)

Let B denote the upper bound Ne

N−1 (µe + Ne − 1) on the right hand side of Eq.17. Then, the

average ranking difference of any normal node p is upper bounded by B. Also, if a node q has an
average ranking difference D(q) > B, it must be a faulty node.

A.2. The proof for Theorem 3.3

PROOF. For any node p and node q satisfying D(p) < D(q), they must belong to one of the
following cases:

(1) B < D(p) < D(q): According to Theorem 3.2, for any node k, the probability that k is a faulty
node when D(k) > B is 1, regardless of what D(k) is (as long as it is greater than B). Then,
both p and q are faulty nodes for sure in this case. Pr(p = “F”) = Pr(q = “F”) = 1.

(2) D(p) ≤ B < D(q): According to Theorem 3.2, q is a faulty node for sure since D(q) > B.
The probability that p is a faulty node is no greater than 1. Thus, Pr(p = “F”) ≤ Pr(q =
“F”) = 1.

(3) D(p) < D(q) ≤ B: Without additional information, for any node k satisfying D(k) ≤ B,
the probability that k is a faulty node (denoted by β) is equal to the percentage of faulty nodes
among all the nodes whose ranking differences are upper bounded by B, regardless of the value
of D(k). Thus, Pr(p = “F”) = Pr(q = “F”) = β in this case.

Summarizing all the three cases, it is not difficult to get Pr(p = “F”) ≤ Pr(q = “F”) when
D(p) < D(q).

A.3. The Uniqueness of Detection Algorithm

The uniqueness of detection algorithm is given by Theorem A.1:

THEOREM A.1. Given node sequence n1-n2-· · · -nN which is in descending order of their
ranking differences, if {n1, n2, · · · , nk} is the estimation of the blacklist such that nk satisfies
D(nk+1) ≤ B < D(nk), then this estimation is unique. In other words, there does not exist another
estimation {n1, n2, · · · , nk′} where k′ ̸= k but satisfies D(nk′+1) ≤ B′ < D(nk′).

PROOF. The proof is based on contradiction. Suppose {n1, n2, · · · , nk′} exists. Without loss
of generality, assume k > k′. Based on definition, µeNe is the sum of the ranking differences
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of n1, · · · , nk and µ′

eN
′

e is the sum of the ranking differences of n1, · · · , nk′ . According to B’s
definition:

B =
Ne

N − 1
(µe +Ne − 1) =

Neµe +N2
e −Ne

N − 1

=
D(n1) +D(n2) + · · ·+D(nk′) + · · ·+D(nk) +N2

e −Ne

N − 1

>
D(n1) +D(n2) + · · ·+D(nk′) +N ′2

e −N ′

e

N − 1
= B′ (18)

where the inequality is based on Ne > N ′

e and D(nk′+1),· · · ,D(nk) are all non-negative.
Eq.18 shows that B can be considered as a strictly increasing function of k. On the other hand,

D(nk) is decreasing as k increases (n1-n2-· · · -nN are already sorted in descending order of their
average ranking differences). Both functions are discrete, but they can be treated as samples of
continuous functions. As D(nk+1) ≤ B < D(nk), k is essentially the nearest integer to the left of
the point at which the two functions intersects. Such intersection is unique given that B is an strictly
increasing function of k and D(nk) is decreasing.

Mathematically, D(nk) ≤ D(nk′+1) (since k > k′ implies k ≥ k′ + 1). Also, based on the
estimation method, nk and nk′ satisfy D(nk+1) ≤ B < D(nk) and D(nk′+1) ≤ B′ < D(nk′).
As a result, B < D(nk) ≤ D(nk′+1) ≤ B′, which contradicts to Eq.18 that B > B′. Thus, nk is
unique and the estimation based on the method of finding all the nodes whose ranking differences
are no less than B is unique.
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