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Abstract Most United States Patent and Trademark Office

(USPTO) patent documents contain drawing pages which

describe inventions graphically. By convention and by rule,

these drawings contain figures and parts that are anno-

tated with numbered labels but not with text. As a result,

readers must scan the document to find the description

of a given part label. To make progress toward automatic

creation of ‘tool-tips’ and hyperlinks from part labels to

their associated descriptions, the USPTO hosted a month-

long online competition in which participants developed

algorithms to detect figures and diagram part labels. The
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challenge drew 232 teams of two, of which 70 teams (30 %)

submitted solutions. An unusual feature was that each patent

was represented by a 300-dpi page scan along with an

HTML file containing patent text, allowing integration of

text processing and graphics recognition in participant algo-

rithms. The design and performance of the top-5 systems

are presented along with a system developed after the com-

petition, illustrating that the winning teams produced near

state-of-the-art results under strict time and computation con-

straints. The first place system used the provided HTML

text, obtaining a harmonic mean of recall and precision (F-

measure) of 88.57 % for figure region detection, 78.81 %

for figure regions with correctly recognized figure titles,

and 70.98 % for part label detection and recognition. Data

and source code for the top-5 systems are available through

the online UCI Machine Learning Repository to support

follow-on work by others in the document recognition com-

munity.
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1 Introduction

The United States Patent and Trademark Office (USPTO)

is in the process of bringing an archive of eight million

patents into the digital age by modernizing the representation

of these documents in its information technology systems.

In their daily work, patent examiners at the USPTO, as

well as patent lawyers and inventors throughout the world,

rely on this patent archive. Locating existing patents related

to new patent application requires significant effort, which

has motivated research into automatic retrieval of patents

using both text [36] and images [3]. Most USPTO patent

documents contain drawing pages which describe the inven-

tion graphically. By convention and by rule, these drawings

contain figures and parts that are annotated with num-

bered labels but not with text, and so readers must scan

the entire document to find the meaning of a given part

label.

One would like to be able to automatically link part labels

with their definitions in digital patent documents to save read-

ers this effort. For example, one could create ‘tool-tips’ for

part labels and figures, where hovering the pointer over a

part label or figure brings up text describing the part or fig-

ure, reducing the need to switch back and forth between

diagram and text pages. Unfortunately, robust solutions to

this problem are currently unavailable. While document

image analysis [38] and optical character recognition [12]

have made significant advances, detecting figures and labels

scattered within drawings remains a hard problem. More

generally, text detection in documents and natural scenes

[27,29,50,66] remains a challenging image processing task.

Prize-based competitions have a long history of encour-

aging innovation and attracting unconventional individuals

who can overcome difficult challenges and successfully

bridge knowledge domains. This has lead to an emergence

of commercial platforms including TopCoder, InnoCentive,

and Kaggle that have specialized in executing large-scale

competitions around algorithm or software development.

In September 2009, President Obama called on all US

federal government agencies to increase their use of com-

petitions to address difficult challenges. Following this, the

US Congress granted all those agencies authority to con-

duct prize competitions to spur innovation in the America

COMPETES Reauthorization Act of 2010 [25]. These devel-

opments helped provide a legal path for government agencies

to conduct prize competitions. NASA, which already had

prize authority and experience working with the TopCoder

software competition community [1], opened a Center of

Excellence for Collaborative Innovation to help other US

federal agencies run challenges.

These developments together led to the USPTO launching

a software challenge to develop image processing algorithms

to recognize figure and part labels in patent documents on the

TopCoder platform in December 2011 [53]. The goal of the

competition was to detect figure locations and labels along

with part labels in patent drawings, to enable their use in

cross-referencing text and image data.

References to figures and part labels are common through-

out a patent’s text. Often, many specific references are

combined in a single sentence. For illustration, we repro-

duce a sample sentence from a patent on a sifter apparatus.

The quoted text appears on page ten while the referenced

figure appears on page two of patent US6431367 (emphasis

in bold is ours).

FIG. 1 shows an outside appearance of the prior art

sifter in which a plurality of sifter frames 101 is stacked

on a sifting machine frame 102, and is fixed unitarily

to the sifting machine frame 102 by bolts 103 and nuts

104.

Ideally, each of the part references highlighted in bold could

be turned into a tool-tip that overlays the text, showing spe-

cific parts from Fig. 1 on page two. Tool-tips showing the

description of parts from page ten when hovering over part

labels on page two would also be useful. Both would facili-

tate patent examination by avoiding the need to scroll within

patents.

The specific goal of the challenge was to extract the fol-

lowing from patent drawing pages: (1) figure locations and

titles, and (2) part label locations and text. Each region type

was represented by a rectangle (bounding box) with a text

label (e.g., as a triple ((20, 20), (100, 100), ‘9b’) represent-

ing part label ‘9b’ located in a rectangle with top-left corner

(20, 20) and bottom-right corner (100, 100)). Inputs and out-

puts for competition systems are provided in Table 1.

Participants were provided with images of patent drawing

pages, each of which contains one or more figures (see Fig. 1).

Each figure has a title and, in most cases, a large number

of part numbers affixed to their parts with curved lines and

arrows. Most part labels are numerical or alphanumerical.

Complicating matters and many drawing pages also include

additional numbers and text, such as page numbers, dates,

patent numbers, or inventor names.

Each drawing page image is accompanied by the text of the

associated patent in HTML format. These are useful because

figures are described explicitly in most recent patents, and

part labels must be referred to at least once in the text. Par-

ticipants could use the HTML text to validate and modify

character recognition output.

Figure 1 illustrates results from the first place system (left-

most two columns) and second place system (rightmost two

columns). Both target (‘ground truth’) regions and regions

detected by the algorithms are shown. The drawing page in

the leftmost column contains one figure titled ‘FIG. 3’ which

has 18 part labels. A number of challenges are illustrated in

Fig. 1 including differing page orientations (portrait vs. land-
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Figure Detection and Title Recognition

One figure (Fig. 3) Four figures (Figs. 5–8) Two figures (Figs. 2&6) One figure (Fig. 6)

Part Label Detection and Recognition

Typeset numbers Cursive numbers and letters Labels over cross-hatching Slanted hand written labels

Fig. 1 Sample results from the first place system (leftmost two

columns) and second place system (rightmost two columns) on the fig-
ure detection and title recognition task (top row) and the part label
detection and text recognition task (bottom row). Target regions are
shown in yellow (located, or true positive), blue (false positive), and red

(missed, or false negative). Figure titles are correctly recognized when
they are included in the figure region box, and the text label for the fig-
ure region box contains the correct title. On the top row, inner columns
show multi-target figures (red) which the algorithm mistakenly merges
into a single figure (outer blue rectangles). Figure regions and titles are
recognized correctly in the outer examples. The bottom row shows part
label detection and recognition results. In the leftmost figure, all but one

label is detected by the first place algorithm, but in the second column
from left, it misses several labels because of the font used. The example
in the third column has dense line art and hatching. The second place
algorithm’s character recognizer can better handle the cursive font used,
but a number of labels are missed (red) including labels touching or on
top of lines. In the rightmost example, the page is rotated (in landscape
orientation). Here, six labels are detected correctly by the second place
algorithm, but a number of false positives (blue) are caused by over-
segmenting part labels. Additional false positives (blue) are produced
for holes in the diagram (which have the same shape as 0/O) and the
figure title (at right)

scape), multiple figures on a page, text that does not belong

to figures or part labels, different fonts and font styles, hand-

written text, rotated text, drawing elements that look like

characters, and part labels that intersect lines in a drawing.

A sample of figure titles from the USPTO competition data

are shown in Fig. 2. There is a large variety of fonts, font styles

(bold, italic, underline), and formats (e.g., ‘Fig. 2,’ ‘Fig 2,’

‘FIG-2,’ ‘Figure 2’), in either portrait or landscape orienta-

tion. For the most part, part labels are typeset numeric (‘11’)

or alphanumeric (‘14b’) strings in either portrait or landscape

orientation. As illustrated in Fig. 1, there are also a number

of drawing pages for which part labels are handwritten at an

angle (i.e., slanted).

In this paper, we present the protocol and results of this

competition. Section 2 describes related work. Section 3

describes the challenge in detail. In Sect. 4, we describe
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Table 1 USPTO challenge overview

System input

1. 8-bit grayscale drawing page scan (300 dpi)

2. Associated HTML patent text

System output

1. Figure bounding boxes and title text

2. Part label bounding boxes and text

Fig. 2 Figure titles from the USPTO competition dataset

the approaches used in the top-5 algorithms submitted to

the competition and a benchmark system we developed

after the competition in Sect. 5. The top-5 ranked systems

adopted similar strategies, but differed in their approaches to

text/graphics separation, page orientation detection, region

segmentation, character recognition (OCR), validation, and

use of the provided HTML text. We analyze their perfor-

mance in Sect. 6. We then summarize lessons learned in

Sect. 7. In Sect. 8, we discuss the implications of this work

and describe our competition design which may provide a

template for other competitions aiming to solve document

analysis problems using a global talent pool [37].

To encourage others to develop this work further, source

code for the top-5 systems along with all labeled training and

test data has been published under Apache License 2.0 in the

UCI Machine Learning Repository.1

1 http://archive.ics.uci.edu/ml/datasets/USPTO+Algorithm+Challenge
\%2C+run+by+NASA-Harvard+Tournament+Lab+and+TopCoder++++
Problem\%3A+Pat.

2 Related work

In this section, we present background on competition-based

algorithm and software development in general, as well as

competitions in document image analysis and information

(patent) retrieval in particular. We then provide an overview

of graphics recognition and work in text and engineering

drawing dimension recognition. Recognizing engineering

and architectural drawings is closely related to the USPTO

challenge, in the sense that detecting objects in drawings is

similar to figure detection, and recognizing dimensions is

similar to recognizing part labels in patents.

Competition-based innovation Prize-based competitions

have driven innovation throughout history [55]. For example,

in the eighteenth century the British government announced

a prize of £20,000 for finding a method to determine the

longitude of a ship’s location. More recently, prize-based

competitions have been used to find solutions to hard algo-

rithmic problems in biotech and medical imaging [31,41].

These competitions provide an alternative to approaches

requiring an extensive search to identify and contract with

potential solvers.

In recent years, prize-based contests have emerged as part

of a major trend toward solving industrial R&D, engineer-

ing, software development, and scientific problems. In the

popular press, such competitions are often referred to as

‘crowdsourcing’ [23]. In general, crowdsourcing has come

to imply a strategy that relies on external, unaffiliated actors

to solve a defined problem [31]. Competitions provide an

opportunity to expose a problem to a diverse group of indi-

viduals with varied skills, experience, and perspectives [6].

Often, these individuals are intrinsically motivated, e.g., by

the desire to learn or gain reputation within a community of

peers. Competitions also allow rapid exploration of multiple

solutions in parallel as multiple competitors attempt to solve

a problem simultaneously [40,56].

Academic competitions Competitions at academic docu-

ment analysis conferences are common. For example, the

International Conference on Document Analysis and Recog-

nition (ICDAR), the International Association for Pattern

Recognition (IAPR) International Workshop on Graphics

Recognition (GREC), and the International Workshop on

Document Analysis Systems (DAS) have hosted numerous

competitions on a variety of different document image analy-

sis tasks over a period of decades.

More broadly, some of the best-known and most highly

regarded academic competitions held within Computer Sci-

ence are the Text REtrieval Conference (TREC) compe-

titions, held for over two decades to develop and refine

algorithms for text and multimedia search [54]. TREC com-

petitions are numerous and focus on a broad variety of

information retrieval tasks. In recent years, the TREC tasks

span several domains including web search, knowledge base
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curation, temporal summarization, and information retrieval

for medical and legal documents. Consequently, methods

submitted to these competition span a wide variety of

approaches used in information retrieval.

In the past, TREC has included a competition for text-

based chemical patent retrieval, in which participants were

given patent documents and asked to locate related patents in

the test collection [22], and a task in 2011 involving recog-

nition of chemical diagrams in images (the winning system

used a bottom-up, rule-based strategy [49]). Similar com-

petitions have also been held as part of the Cross-Language

Evaluation Forum (CLEF), including competitions on recog-

nition of chemical diagrams and flowcharts found in patent

images [36,47]. Image-based patent search presents an

opportunity for members of the document analysis commu-

nity, as work is currently in an early stage [3].

Competitions on graphics recognition problems are held

regularly, for both lower-level operations such as vector-

ization and text/graphics separation, recognition of text in

diagrams (including rotated and slanted text such as found

in the USPTO data; see Figs. 1, 2), and the interpreta-

tion of specific graphic types including technical drawings,

tables, flowcharts, chemical diagrams, and mathematical

notations [2,4,18,42]. These competitions normally consider

the recognition of isolated graphics, whereas in the USPTO

competition inputs are complete drawing pages, with asso-

ciated headers, annotations, and text.

While tremendously valuable for discerning and advanc-

ing the state of the art, participants in academic competitions

tend to belong to the community associated with a particu-

lar conference, prize amounts (if any) are small, and often

a conference participation fee is required. For the USPTO

competition described in this article, crowdsourcing with

significant cash prizes for top-placing systems was used to

solicit solutions from a global pool of talent reaching beyond

the academic image processing community.

2.1 Graphics recognition

Graphics recognition concerns a family of structural pattern

recognition problems in which the appearance and content

of diagrams, notations (e.g., math, chemistry), plots, tables,

figures, and other non-text document regions are recognized

automatically. In the following, we summarize aspects of

graphics recognition that pertain to the USPTO competition.

Language models Concise, well-fit language models pro-

vide beneficial constraints for hypothesis generation, valida-

tion, and selection [38,62]. As a simple example, recognizing

arbitrary words is much more difficult then recognizing

US postal codes, which are five-digit tokens for which the

set of valid codes is known. Invalid postal codes created by

recognition errors can be easily detected and replaced with

similar valid codes. Similar word models are used by USPTO

competition systems to identify and correct invalid figure and

part labels, along with graphical/visual constraints such as

expected positions and sizes for figure and part label text.

Generally speaking, as language model complexity increa-

ses, so does the amount of information that may be auto-

matically inferred from similarity to legal hypotheses and/or

context. However, detailed models can be hard to define and

can also lead to fragility such as when a valid interpretation

cannot be found or when a few errors lead to many others

due to the propagation of constraints.

There is another, related trade-off in terms of hypothesis

generation: to obtain high recall for recognition targets in

the presence of noise, alternative interpretations (hypotheses)

must be generated. However, additional hypotheses increase

execution time and the likelihood of missing valid hypotheses

and accepting invalid hypotheses. In the USPTO competition,

examples of noise include touching characters in a figure title,

or part labels intersecting lines in a drawing.

Architectural and engineering drawings Lu et al. [34]

consulted an expert to design a sophisticated knowledge-

based system for architectural drawing recognition. They

observed that many implicit relationships need to be inter-

preted in architectural drawings, such as symmetry markings

indicating inherited properties of objects, and extensive use

of reference to indicate correspondences of objects within

and between diagrams. An attributed context-free grammar

language model is used to formalize the language of recog-

nizable drawings and to coordinate recognition during a

top-down parse of the input. The grammar is designed to

allow the parser to recognize objects in decreasing order

of reliability. As objects are recognized, context is utilized

through propagating constraints arising from implicit rela-

tionships between recognized objects.

Syntactic pattern recognition techniques such as used by

Lu et al. can be brittle, in the sense that inputs not resulting

in a valid interpretation produce empty input. Returning par-

tial parses and error-correcting parsing [9] can mitigate this

problem, but not entirely solve it. Grammar for syntax-based

methods is created by system designers presently, as gram-

matical inference remains a very difficult machine learning

problem [14,19,20].

Recognizing annotations in engineering and architectural

drawings, such as object dimensions [26], and identifying

part descriptions in diagram legends [58] are closely related

to finding part labels in the USPTO challenge. Part labels

in patent drawings commonly appear at the end of lines

pointing to the corresponding part (see Fig. 1), similar to the

appearance of dimensions between or at the end of arrows

in engineering drawings. For recognizing dimensions, lan-

guage constraints are critical; for example, detected arrows

are used to locate dimension text more reliably [13,30,60].

Table detection Patent documents often contain tables

which can be easily confused with patent diagrams or draw-
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ings due to the presence of lines and the two-dimensional

arrangement of content in cells. A variety of techniques have

been used to detect the location and underlying grid struc-

ture of tables in document images including projection profile

cutting, detection and analysis of lines (e.g., using the Hough

transform), and whitespace gap intersections, along with his-

togram smoothing and mathematical morphology operations

[63]. There is also ongoing work in table structure recogni-

tion and table content interpretation and compilation [15,39],

but these tasks are not considered in the USPTO competition.

2.2 Text/graphics separation and OCR

For the USPTO competition, participating systems needed to

separate graphics from text in page images, in order to locate

figure regions and recognize figure titles and part labels using

OCR. We summarize work related to these tasks below.

Text/graphics separation A common early processing task

is text/graphics separation, in which regions containing text

and other page contents are separated into two or more layers.

Most text/graphic separators filter large connected compo-

nents in the early stages, along with long/thin and very small

connected components. This tends to filter out characters that

are small (e.g., ‘.’, ’,’) or that touch characters or graphics;

attempts are made to recover these lost characters using con-

text during word and text line detection, as described below.

Image features for detecting text have included connected

component shape, aspect ratio, density, and spacing [35,65],

similar features for skeletonized connected components [13],

and textural features that exploit the relatively high visual

frequency of text in comparison to graphics (e.g., using Gabor

filters [65] or Gaussian second derivatives [61]).

A key issue for text/graphics separation is handling dif-

ferent font sizes. This is dealt with by measuring features

at different scales [11,61,67]. Recently, image patches have

been used instead of connected components, along with

feature learning methods such as k-SVD and sparse repre-

sentation [11] and convolutional k-means [67] to construct

discriminative image patch feature spaces.

Character segmentation Casey and Lecolinet [8] identify

three main aspects that character segmentation techniques

incorporate to different degrees: (1) dissection (cutting using

image features), (2) recognition-based methods (incorpo-

rating OCR output as features), and (3) holistic recog-

nition (classifying complete words rather than individual

characters). Many sophisticated segmentation methods are

recognition-based, with final segmentation maximizing a

criterion based on probabilities or costs associated with

recognized characters. A common example is using hidden

Markov models (HMM) to segment words and characters by

maximizing the joint probability of the inferred characters

and words.

Optical character recognition (OCR) A very wide array

of techniques have been used for OCR, and for space, we

provide only a (very) brief summary. An important OCR

benchmark was the University of Nevada at Las Vegas com-

petitions, held annually during the early 1990s [44,45]. Since

that time, text OCR has become a mature technology, and text

recognition research has shifted toward the harder problems

of recognizing text in natural scenes, videos, and documents

captured by camera [16,24,33,62]. Over the last decade,

there have been a number of robust reading competitions

on these topics, held as part of the International Conference

on Document Analysis and Recognition [27,28,50].

Word and text line segmentation Words and text lines

are commonly detected through clustering detected char-

acters [43]. Distances between characters, words or text

lines are estimated using the distance, relative orienta-

tion, and similarity of connected components. Morpho-

logical operations have been used to merge clusters and

shrink/tighten boundaries of connected components during

clustering [35].

To detect rotated text such as found in engineering draw-

ings and maps, Fletcher and Kasturi [17] make use of the

Hough transform to determine text line orientations from

connected components. Tombre et al. [57] extend their

approach using median and linear regression to produce

additional local text orientation estimates when clustering

detected characters into strings. To focus search, estimated

word or text line end points may be used as the initial clus-

ter centers [46,57]; Roy et al. [46] use the shape of spaces

between characters while expanding the ends of text lines,

and are able to extract curved text, such as found in document

seals.

Bukhari et al. [7] have provided a recent survey of cur-

rent methods for detecting curved and warped text lines. One

strong approach estimates baseline and x-line (the ‘middle’

line that sits on top of a lower case ‘x’) locations for individual

characters and then places active contours (snakes) at the top

and bottom of connected components which are deformed

based on an energy model, after which overlapping snakes

are combined.

3 The USPTO challenge

This section describes the design of the USPTO algorithm

competition, including the recognition tasks, reference image

data, ground truth data creation, evaluation and scoring meth-

ods, and the competition outcome.

Input and output Table 1 summarizes the inputs and out-

puts for the competition. For input, systems receive a 300-dpi

grayscale patent document image (patents are, by require-

ment, grayscale) and an HTML file containing the text of

the patent. The HTML file does not contain the patent’s title
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page, which has filing meta information such as patent num-

ber, filing dates, and a short abstract. Using combined visual

and textual information for graphics recognition is infrequent

in the literature and an unusual characteristic of the compe-

tition.

For output, systems need to identify figure locations and

titles, along with part label locations and part label text. Fig-

ure and part locations are represented by bounding boxes.

Participant systems needed to implement two separate func-

tions to produce these outputs: the first for figure data and

the second for part label data.

System constraints For system tests and final scoring, the

competition imposed a time limit of 1 min per test case and

a memory limit of 1024 MB. There was no explicit code

size limit, but a limit of around 1 MB was advised. Further-

more, the binary executable size was limited to 1 MB, and

the compilation time limit was 30 s. These are the standard

time limits used for competitions on TopCoder. These default

values seemed appropriate, so we decided to keep with Top-

Coder conventions and work within bounds that competitors

were familiar with. The programming languages supported

by TopCoder and allowable for the competition were Java,

C++, C#, or Visual Basic .Net.

Data and tools Three different datasets were created for

the competition (see Sect. 3.2 for details). A training dataset

was available for download to all participants, which they

could use to design and test code on their own machines.

During the contest, any system submission by a participant

to the contest site would generate a score visible only to the

team using a second private dataset (the system test set). To

prevent over-fitting of submissions to the training or system

test datasets, the last submission of each team was re-scored

using a third, private evaluation dataset at the end of the

contest.

We also provided an offline tester/visualizer, including

Java source code, which allowed participants to visualize

their results and check the precise implementation of the

scoring calculation. This tool was used to produce the images

shown in Fig. 1.

Team composition and ranking Consistent with usual prac-

tices in programming contests, participants were able to make

repeated code submissions to enable testing of solutions and

gather feedback about solution quality. Participants were

organized in teams of two, and both members of a team were

able to submit program solutions.2 Submissions were com-

2 Embedded within this competition was a social science experiment
to investigate different team formation mechanisms. Two treatments
were implemented. In treatment one, teams were formed through bilat-
eral agreement between participants after communicating through a
public forum or private direct messaging (this was termed the ‘free-
form’ treatment). In the second treatment, teams were formed based
on a stable-matching algorithm using participants’ stated preferences
(termed ‘algorithm’ treatment). We found no significant differences in

piled and executed on competition servers, where solutions

were tested against a private test case image set to allow

objective scoring. The overall team score was given as the

maximum score of both team members.

System scores on the final test set were used to rank

systems and award prizes. System scoring is described in

Sect. 3.3. The execution and prizes for the competition are

described next.

3.1 Running the competition

TopCoder The contest was run on the TopCoder.com online

programming competition Web site, a commercial platform

established in 2001 [1]. Working with TopCoder provides

convenient access to a standing community of over 800,000

software developers who regularly participate in crowdsourc-

ing competitions and provides infrastructure for online test

and scoring of solutions. (TopCoder also had a working rela-

tionship with NASA’s Center for Excellence as described

above, which allowed the USPTO to pay the cash prizes.)

Apart from developing conventional software solutions,

competitors on this crowdsourcing platform also regularly

compete in contests to solve abstract algorithmic problems

that require a mix of logic, mathematical, and programming

skills. Since its inception a decade ago, the platform has

awarded over $70 million in cash prizes.

Schedule and prizes Given the complexity of the task

to be solved, the competition ran for 4 weeks between the

end of 2011 and beginning of 2012 (many TopCoder com-

petitions run only for 10 days). To attract participants, we

offered a combined prize pool of $50,000 which was split

into two overall prizes and 22 smaller prizes for virtual

competition rooms. We offered two highly attractive overall

prizes of $10,000 and $5000 for the first- and second-placed

teams. However, offering large but few overall prizes may not

result in the best outcome due to an effort-reducing effect of

greater rivalry [5,21]: if everyone competes against everyone

else, an individual team’s likelihood of winning may be too

low to warrant the investment of substantial effort. There-

fore, we organized the competition into 22 virtual rooms,

each of which offered an additional $1000 and $250 ‘room

prize’ for the room winner and runner-up. Furthermore, all

active participants also received a limited edition T-shirt to

acknowledge their efforts in participation which was paid for

by the Harvard-NASA Tournament Lab.

Footnote 2 continued
algorithm performance between the two treatments. The exact details of
the social science experiment are beyond the scope of this paper. Some
preliminary results can be found in this working paper http://goo.gl/
NjoWce.
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3.2 Patent page image and text datasets

Data selection For the purposes of this online competition,

we prepared a representative corpus of 306 patent draw-

ing pages from various different patent classes. For some

patents we included one drawing page in the set, and for other

patents, we included multiple drawing pages. The whole cor-

pus was divided into three subsets A (train), B (system test),

and C (final test) containing 178, 35, and 93 drawing pages,

respectively. The division was made randomly but with one

restriction: all drawing pages belonging to the same patent

were always placed into the same subset. We chose this

approach to test generalization toward the full patent archive

which contains many patents with more than one drawing

page. In addition to image data, participants also had access

to the patent text in HTML format which was provided by

USPTO. As described earlier, title pages were omitted, which

do not contain the main content of the patent such as refer-

ences to figures and part descriptions.

Ground truth creation To create the ground truth refer-

ence standard, we used the image annotation tool LabelMe

[48].3 We used a private instance of LabelMe rather than the

open crowdsourcing platform, to prevent leakage of the final

scoring images. Two contractors were paid by the USPTO to

manually identify and label the ground truth figure and part

label regions. The organizers then visually inspected the two

contractors’ work and used the more accurate ground truth

for the competition.

File formats Page images were stored in JPEG format,

and patent texts in HTML format. Figure and part label

regions and text are represented separately using text files

called answer files. Answer files begin with the number of

detected regions (figures or part labels) on the first line of

the file. Each remaining line defines a region, by a polygon

represented using a list of vertex coordinates followed by the

associated text. Ground truth annotators used polygons with

various numbers of vertices, as supported by LabelMe. All

top-5 systems represented each region using the four points

of a bounding box, as bounding boxes were used to evaluate

region detection (see below).

3.3 Evaluation metrics and scoring

Region matching criteria The axis-aligned bounding box for

a candidate region BC matches the axis-aligned ground truth

bounding box for a region BG when the intersection of the

two boxes is as large as some percentage α of the larger of

the two boxes:

area(BC ∩ BG) ≥ α max(area(BC), area(BG)) (1)

3 http://labelme.csail.mit.edu/Release3.0/.

where αf = 0.8 for figures, and αp = 0.3 for part labels.

Different α values are used for figures and part labels because

of the much smaller size of the part labels.

Text matching criteria Figure titles and part labels are nor-

malized before comparison, as shown below.

– Figure titles Figure titles (identifiers) are provided with-

out the ‘Fig.’, ‘Figure’ etc. indication, e.g., ‘1a’ is the

correct title for ‘Figure 1a.’ All letters are converted to

lower case; characters other than a–z, 0–9, (, ), -, ’, <,>, .

(period), and / are removed. An output string must match

the normalized ground truth string for a figure title to be

considered correct.

– Part labels The same characters are preserved as for fig-

ure identifiers. However, there are some special cases,

for example where two part labels may be indicated

together, e.g., ‘102 (103)’ or ‘102, 103’ indicating parts

102 and 103. Periods/dots must be removed from the end

of part labels. Subscripts are indicated using<and> (e.g.,

A <7> for A7); superscripts are represented in-line (e.g.,

123b is represented by 123b).

Scoring test files Each input file receives two scores: one

for part labels, and one for figures. Files for which no output is

produced are scored 0 points, whether due to (1) exceeding

the 1-min time limit, (2) exceeding the 1024 MB memory

limit, (3) a system crash, or (4) improperly formatted output.

For a figure or part label to be correct, both the region

and label must match. Partial credit is given for matching a

region correctly but mislabeling it. The match score matchs

for partial matches was 0.25 and full matches was 1.0. To

compute the accuracy, matchs scores are added and used

in weighted recall for ground truth regions (R), precision

of output regions (P), and their harmonic mean (F , the F-

measure):

R =

∑
matchs

|Target regions|
P =

∑
matchs

|Output regions|
(2)

F =
2R P

R + P
(3)

For a test file, given system F-measure accuracy F and run-

time in seconds T ≤ 60 s, the figure or part label detection

score is given by:

score = F ×

(
0.9 + 0.1

(
1

max(T, 1)

0.75
))

× 106 (4)

Execution time determines 10 % of the final score: to give a

sense of the effect of speed on the score, at or under 1 s incurs

no penalty, at 2 s roughly a 4 % penalty, at 5 s 7 %, and at 25 s

9.9 %. This is noteworthy, because including execution time

directly in a scoring metric is uncommon in the document
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image analysis literature. We perform additional analyses

to determine the effect of the specific relative weighting on

determining contest winners in Sect. 6.

System scoring The final system score was defined by the

sum of all figure and part label test file scores. There are many

more part labels than figure regions, as most figures contain

multiple parts. Using the sum of figure and part label scores

insures that for each file the figure and part label results are

weighted equally in the final system score.

4 Participant solutions

In this section, we analyze the five systems with the strongest

results submitted for the USPTO competition (the ‘top-5’).

We provide a brief overview of each system, followed by

a discussion of their similarities, and then by a discussion

of their differences. To support our comparisons between

systems, we use Table 2 to summarize early processing and

character recognition, and Table 3 to summarize additional

steps for locating figure titles, figure regions (which include

the location of the figure title), and part labels. These tables

were created after carefully studying the source code and

system descriptions provided by each team.

4.1 Top-5 USPTO system summaries

Below, we briefly summarize the top-5 systems in the com-

petition. We also provide the programming languages used

to implement each system (from first to fifth place). Sample

results from the top-2 systems are shown in Fig. 1.

1. JacoCronje (JC, impl. C++). The winning system is the

only one to use the provided HTML text to validate

detected figure titles and part labels, and uses OCR results

for detected page numbers and headers on drawing pages

to help locate likely titles and labels in the HTML text.

2. Protocolon (PC, impl. C++/OpenCV). It uses an MLP

character classifier trained using synthetic as well as pro-

vided character images to handle the variety of fonts (see

Fig. 2). Classification is iterative, re-estimating font para-

meters while searching for figure titles and part labels,

and character candidates are fit into a box containing an

ascender and descender region above and below the writ-

ing line.

3. Wleite (WL, impl. Java). It uses varying-width templates

for character recognition, defined by the average training

sample width for each class. It initially locates figure titles

using the shape of ‘Fig’ and ‘Figure’ rather than character

strings, and segments figure regions using pixel projec-

tion profile cutting rather than agglomerative clustering.

4. GoldenSection (GS, impl. C#/R(MLP training)). It uses

two MLP classifiers for character recognition, one for

frequent characters, and the other for a larger vocabulary

(the maximum-confidence result is used). This system

employed the simplest strategy, using no validation of

detected figure titles or part labels, and instead applying

OCR in three different directions to try and capture por-

trait and left/right-rotated landscape page orientations.

5. tangzx (TZ, impl. C++). This system distinguishes con-

nected components for label text from figure text and

graphics, instead of just text and graphics. The simplest

character features are used in this system (15 × 15 binary

grids). Only this system tries to capture missing dots on

‘i’ characters prior to recognizing part labels.

4.2 System similarities

Generally speaking, systems are more similar in the early

stages of processing than character recognition (see Table 2)

or later processing when specific targets are sought after (see

Table 3). We summarize the main ways in which the top-5

systems are similar below.

Processing pipeline All top-5 systems use a data-driven,

bottom-up pipeline recognition architecture. Connected com-

ponents of a given minimum and maximum size are treated

as character candidates and then used to filter non-figure

text (page headers and tables), detect page orientation, and

produce word candidates through distance-based clustering,

with some maximum distance used to merge CCs into clus-

ters. After this, pattern matching is applied to OCR results

for words to locate figure titles and part labels, with most

systems employing some validation step that filters and/or

corrects detected titles or labels.

Figure regions are identified by clustering CCs with the

nearest detected title and then including the title in the final

region, with the exception of the third place system (WL; see

below), which uses projection profile cutting to locate regions

containing a single detected figure label. Other deviations and

difference for specific systems are provided in Tables 2 and

3.

Text/graphics separation (Table 2) As seen in Fig. 1, many

drawing elements will form connected components that are

large in comparison with characters. Very small connected

components are likely noise (e.g., specks of dirt on the patent

document), although small character components such as the

dot in an ‘i’ can also be small. Text/graphics separation is per-

formed using thresholds to define minimum and maximum

sizes for CC character candidates (see Table 2). System TZ

(fifth place) is unique in that it defines three rather than two

size ranges: regular characters, characters in figure titles, and

graphics. This is to take advantage of the fact that figure text is

normally larger than graphic CCs, but larger than part labels.

Filtering non-figure contents (Table 2) Figure headers are

located near the top of the page in either landscape or portrait

orientation and are not considered part of the figure itself.
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Hence, they need to be removed. They are removed using

one—or a combination—of the following simple methods:

(a) considering a margin around the entire page image (JC);

(b) removing detected text located near the top (WL) and/or

left edge of the page (PC); and (c) taking the length of the

detected text lines as a cue regarding the presence of a header

(TZ).

All systems but GS use simple table detection and filtering,

in order to remove words belonging to table regions (which

are not considered drawings in USPTO patent documents

and would hence not contain part labels). Line detection is

done using simple connected component analysis (looking

for long/narrow CCs). Only PC (second place) makes use of

line projections to try and detect the presence of at least two

or more columns and rows to identify a table location. The

remaining methods consider whether ruling lines surround

a word. The WL system (third place) considers whether the

end of a line appears near the word, in which case the word

is assumed to be a candidate part label.

Training Aside from the character recognizers, many para-

meters in these systems are set based on assumptions, or

‘empirically’ by trying different parameter values and select-

ing those that perform best. While potentially sub-optimal,

this is necessary due to the short duration of the competition.

4.3 System differences

Tables 2 and 3 show a number of differences between the

systems, and include deviations from the strategy above. Here

we will discuss the most significant differences.

Word detection and page orientation (Table 2) In the

USPTO systems, word orientations are often used to detect

whether patent drawing pages are vertical or horizontal. Word

detection and page orientation are performed in different

orders by the top-5 systems. As seen in Table 2, PC and GS

(the second and fourth place systems) perform OCR before

clustering connected components (CCs) into ‘words’ and

estimating the page orientation, while the remaining systems

estimate orientation and word locations before OCR. GS con-

siders three rather than two page orientations; portrait, along

with landscape rotated left, and landscape rotated right.

Character recognition (Table 2) While all systems employ

binary images for connected component analysis, two of the

systems (PC and WL) make use of grayscale values during

classification. All systems make some use of a template grid

feature, dividing a connected component image into a fixed

number of rows and columns (see Table 2).

Template classifiers or neural networks are used for

character classification. These are logical given the time con-

straints of the competition, as both are fast to execute. All

neural networks are multi-layer perceptrons with a single

hidden layer (although with differing numbers of nodes in

each layer).

For the template character classifiers (first and third place,

JC and WL), templates are defined using training images: JC

uses a small set of characters directly taken from training

images for just the characters 0–9, f, g, a and c, while WL

uses approximately 5000 images, which are then averaged to

produce a template for a much larger character set.

For the multi-layer perceptron (MLP) classifiers, the

fourth and fifth place systems (GS and TZ) use characters

located in the provided training images, while the second

place system (PC) uses training image characters along with

synthetic characters generated using fonts with different

parameters. This produces a total of 145,000 training sam-

ples (95 % of which are used to train the final classifier).

Characters from training images are transformed to eight

different slant angles, and 89,000 synthetic characters are

created using different variations of the ‘Hershey’ font, along

with variations in thickness and slant.

The PC (second place) system is unique in that font met-

rics used for classification are iteratively re-estimated at

run-time. PC performs OCR in stages, adapting font para-

meters to revise character classification and segmentation

results (e.g., when character spacing is re-estimated for fig-

ure titles). Some other systems adapt parameters at run-time,

but to a lesser degree. A number of the systems discard

‘words’ whose size differs significantly from the mean size

of detected words, for example.

A number of the systems use thresholds on character

recognition confidence in ranking and selecting figure title

and part label hypotheses (e.g., in JC, to control correction

of part labels—see Table 3).

Figure detection & title recognition (Table 3) The most

distinctive figure title detection and recognition strategy is

that of WL (third place system). Rather than matching pat-

terns in recognized character strings, a word shape model

based on the geometry of ‘Fig’, ‘Figure’ etc. is used to locate

possible titles before applying OCR, after which this word

shape model is updated to match the best candidate (deter-

mined by location of the title and character confidence).

Further, figure regions are obtained using a top-down X–Y

cutting approach [38], rather than bottom-up agglomerative

clustering of words or CCs.

Characters (Table 2) & title/label syntax (Table 3). A key

difference between the top-5 systems are the language mod-

els used for character classes and titles/label syntax, as seen in

Tables 2 and 3. The JC (first place) system makes use of only

14 character classes, with no class for ‘i’ or ‘I’, which class

‘1’ is expected to catch. The reason that this does not lead

to terrible performance is the correction mechanism used.

For both figure titles and part labels, words extracted from

the patent HTML text using pattern matching define a set

of possible output strings, and hypothesized figure titles are

matched to their most similar sequence in the patent text,

and low-confidence part labels are corrected using the most
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similar part label detected in the HTML text (see Table 3).

JC was the only system to use the HTML text to validate and

constrain titles and part labels.

Figure title syntax is similar across systems, with some

variations of ‘fig’ assumed to be at the beginning of a figure

title. Most systems assumed that part labels are four char-

acters long except for the second place system, where up

to nine characters are permitted. All systems reject labels

inconsistent with their language model in order to avoid false

positives, and some also reject titles or labels containing low-

confidence characters (see Table 3 for details).

5 Benchmark: part label recognition system

After the competition, we created a system for part label

detection, to use as a benchmark for evaluating and con-

textualizing USPTO participant solutions. The comparison

system was developed using state-of-the-art techniques.

System description Like the USPTO solutions, our com-

parison system uses a data-driven, bottom-up recognition

pipeline. Feature learning and sliding windows are used for

text detection, along with Tesseract [52] for OCR. Part label

text is detected using a boosted ensemble of three binary

AdaBoost base classifiers. Image patches at different reso-

lutions are used to accommodate different character sizes.

Three template dictionaries are learned using convolutional

k-means [10] for (1) text patches, (2) background patches,

and (3) combined foreground and background patches.

Nearby pixels detected as text within are clustered into can-

didate words, recognized by Tesseract and then corrected if

necessary.

This system improves upon an earlier system [67].

Improvements included: (1) modifying training label regions

to more tightly crop around figure and part label text, (2) CC

size filters and page header removal, (3) using projection

profile cutting (using gaps in pixels projected on the x or

y-axis) to detect and separate multiple text lines in detected

word regions, and (4) refined part label language model, and

improved validation and correction of OCR results.

Language model and validation Character classes were

0-9a-zA-Z. Labels must contain at least one digit and be at

most four characters long. At most two characters may be

alphabetic. Isolated ‘i’ ‘I’ and ‘0’ characters are rejected,

along with words containing ‘Figure,’ ‘Fig,’ etc. Letters ‘O’

and ‘o’ are replaced by ‘0.’

OCR is performed twice for each candidate label, using

progressively larger paddings around a detected label. If the

results differ, the result producing the minimum Levenshtein

(i.e., string edit) distance [59] with a word in the set of words

extracted from the HTML patent text is selected for output

(similar to the first place USPTO system).

6 Results

6.1 Participants

The challenge drew 232 teams (463 participants), of which

70 teams (30 %) submitted code. The remaining teams were

lurkers and did not actively participate in the competition.

Twenty-nine countries were represented among the partic-

ipants who submitted solutions. The group of submitters

included 49 % professionals, 39 % students, and the remain-

der reporting not working or working part-time. The majority

of participants were between 18 and 44 years. Seven of the

participants were academics (PhD students, professors, or

other research positions). Most (80 %) non-student partic-

ipants were self-described software developers of various

kinds.

Collectively, teams submitted 1797 solutions that com-

piled on the competition servers, averaging to 25.7 submis-

sions per team. The submitted solutions used four program-

ming languages (C#, C++, Java, VB). Participants reported

spending an average of 63 h each developing solutions, for a

total of 5591 h of development time.

6.2 Overall ranking

All submissions were scored and ranked using the method

described in Sect. 3.3.4 A test set of 93 drawing pages and

HTML texts was used for evaluation (see Sect. 3.2). The win-

ning solution (JC) was created by a team of two participants

from the USA and South Africa. Figure 3 provides boxplots

illustrating variance in performance of the top-5 systems on

the test data. All algorithms fail on at least some test cases

in both tasks achieving a score of zero. Conversely, all algo-

rithms also achieve a perfect score for at least some test cases.

The figure detection task was significantly easier, with most

algorithms receiving a perfect score on many test cases.

We find a high correspondence in ranks between the two

tasks (Kendall’s tau rank correlation of 0.511; p < .05 for the

first ten ranks) indicating that teams that did well in one task

also did well on the other. No system outside the top-5 scored

higher on any individual task (figure or part label detection).

Consequently, the discussion of the top-5 solutions covers

the best submitted approaches.

We performed additional analyses changing the relative

weighting between accuracy and execution time. We find that

the relative ranking of the top-5 algorithms is relatively stable

to different weights. Decreasing the weight of execution time

would not affect the ranking at all: all top-5 systems would

be ranked in exactly the same order and the top-ranked algo-

4 The final ranking of all submissions is publicly available on the Top-
Coder Web site at https://community.topcoder.com/longcontest/stats/?
\&sr=1\&nr=50\&module=ViewOverview\&rd=15027.
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rithm would remain the overall winner, even if execution time

was not considered in system scoring. Increasing the relative

importance of execution time to 50 % would result in only one

change: The systems ranked fourth and fifth would switch

rank. In summary, while the relative weighting of accuracy

and execution time may have guided developers in their algo-

rithm design during the competition, the chosen weighting

mattered little in determining contest winners.

6.3 Speed

Average execution speed per test case is shown in Fig. 4. Run-

times are in milliseconds as measured on a quad-core Intel

Xeon 3.60 GHz with 4 GB of RAM. In all cases, part label

detection is slower than figure detection and labeling. This is

because there are many more part labels than figure titles in

patent diagrams. All character recognizers used in the top-5

systems have fast execution, as a penalty is incurred when

execution take more than 1 s per page (see Sect. 3.3).

The PC and TZ systems (second and fifth place) are much

faster than the other systems. They are faster by more than a

full second per page, on average. This is despite PC using an

iterated font adaptation for its classifier, which is constrained

based on character confidences (i.e., if confidences are high,

adaptation is not performed). TZ has the simplest design,

using simple geometric and visual features and running OCR

just once with simple correction (see Table 3).

The slower execution of the remaining systems can be

explained as in the following. GS (fourth) runs full OCR

and page analysis in three different page orientations, using

two different classifiers for every character, making this the

slowest system. WL resizes each character image to fit a

different template width for every character class, while JC

uses an iterated random walk to locate figure regions, and its

validation using HTML text performs a linear search over all

candidate words.

Benchmark Average execution time of the benchmark part

label recognizer was 7.52 s, using a single process on a 24-

core Intel Xeon 2.93 GHz with 96 GB of RAM. Executing

Tesseract takes roughly 1–2 s. This slow execution is due to

using Python for programming, and the cost of pixel-level

convolutions for the three visual word dictionaries (which

could be accelerated significantly using a GPU).

Clearly, the top-5 USPTO competition systems have much

faster average execution times, even taking into account the

slightly slower processor on which the benchmark was run.

The substantially slower execution of the benchmark system

emphasizes the high run-time performance for competition

systems, particularly when their detection accuracies are

taken in account, which we discuss next.

6.4 Recognition accuracy

Figures 1 and 2 illustrate some of the challenges for recogni-

tion of USPTO figures titles, figure locations, and part labels.

These include the presence of multiple figures on a single

page and multiple page orientation, the intersection of part

labels with drawing elements, drawing elements similar in

appearance to characters, the variety of font faces, the use of

handwriting, and slanted text (see Fig. 2).

Table 4 shows the average metrics for figure location and

title detection (top panel), and part label locations and text

(bottom panel). Part label detection results are also shown

for the benchmark algorithm (Bmk.). The best result in each

panel is that with the highest F-measure (2R P/(R + P),

where R is weighed recall and P is weighted precision (see

Sect. 3.3). The F-measure penalizes both low recall (i.e.,

many false negatives) and low precision (i.e., many false pos-

itives).
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Table 4 Accuracy: average recall, precision and F-measures for local-
ization (BB detection) and localization with correct labels

Rank Location (BB) Location + label

Precision Recall F-measure Precision Recall F-measure

Figures

1 0.89 0.89 0.89 0.79 0.79 0.79

2 0.92 0.91 0.92 0.79 0.79 0.79

3 0.89 0.89 0.89 0.78 0.78 0.78

4 0.86 0.88 0.87 0.80 0.82 0.81

5 0.87 0.88 0.87 0.76 0.77 0.77

Parts

1 0.83 0.78 0.81 0.72 0.70 0.71

2 0.69 0.89 0.78 0.60 0.79 0.69

3 0.83 0.73 0.77 0.74 0.69 0.71

4 0.65 0.85 0.74 0.54 0.76 0.63

5 0.84 0.65 0.73 0.78 0.62 0.69

Bmk. 0.80 0.84 0.82 0.72 0.74 0.73

Top figure results, bottom part results
Highest score highlighted in bold

Summary Overall, the difference in average figure detec-

tion accuracy for the top-5 systems is small. They are within

4–6 % for all recall, precision and F-measures for figure local-

ization, and when also matching title text (labels). For part

labels, the difference in F-measures increases to 8 % and

the variance in precision and recall measures across top-

5 systems increasing substantially. The highest part label

F-measures are also 10–11 % lower than the highest fig-

ure F-measures, reflecting the greater difficulty of correctly

locating part labels.

Figures GS (fourth place) has the strongest average figure

localization and title results, with better than 80 % recall and

precision. Interestingly, this was not the best system for local-

izing figures—in fact, GS has a 5 % lower F-measure than

PC (second place), but then recognizes a number of titles

incorrectly. The GS system employs two different MLPs

for character recognition and detects figure titles simply by

matching ‘fig’ at the beginning of a segmented word (see

Tables 2, 3).

Part labels JC and WL (first and third place) have the

best average part label location and text (label) results. WL

has slightly higher precision, and JC slightly higher recall.

PC and GS (second and fourth) find more part labels, with

roughly 5–10 % higher recall than JC and WL, but also

produce more false positives with 10–15 % lower precision

reflecting limited or absent validation for part label text (see

Table 3).

The increased part label recall for PC and GS may be

explained by two things. First, they apply OCR in multi-

ple directions (two and three, respectively), while the other

systems first estimate the page orientation and then apply

OCR in one direction. Second, they use the most sophisti-

cated character recognizers (see Table 2). GS has the lowest

precision, perhaps in part because it does not remove words

located in tables. The high precision but low recall of TZ

(fifth place) may be explained by a well-trained MLP classi-

fier paired with strict validation rules (see Table 3), leading

to low recall for part label detection.

Benchmark The results for the benchmark part label detec-

tor are shown in the bottom panel of Table 4. It obtains

slightly higher part label localization and localization with

text results, by 1–2 %. The final precision and recall measures

for part label localization with text are 71.91 and 73.55 %

(F: 72.72 %), compared with 72.14 % precision and 69.87 %

recall (F: 70.99 %) by JC (first place).

This shows that part label detection accuracy in JC (first

place) is very close in performance to a system using convolu-

tional feature learning and a sophisticated OCR engine. Our

benchmark benefits from being designed after the competi-

tion results had been published, which were used to inform

the system design. Given that participant systems needed to

operate under strict time and space constraints and had no

benefit of hindsight, we argue that our results confirm that

the top-performing USPTO systems are of high quality.

7 Lessons learned

We learned several valuable lessons about how to best orga-

nize challenges. A first observation is that participants in

online competitions will use all available information. While

only few competitors leveraged the HTML text we provided,

some solutions use it to obtain relevant performance improve-

ments, and this is a technique that may be beneficial in other

document recognition applications.

Second, to draw a broad audience, it is important to make

start-up costs to participate as low as possible. In our case, we

provided clear instructions and a stub implementation of the

two functions that needed to be implemented, specification of

what the expected input and output is, and training data. We

also provided an offline tester/visualizer (including source

code), and an online system with a separate, small dataset

for participants to automatically test their results during the

competition.

Third, for engineering efforts, it is important that the

evaluation of systems reflect real-world solution require-

ments, particularly when a winner is to be selected and

given a reward. If a scoring function fails to discriminate

among top solutions, e.g., because it reaches a maximum

and assigns the same scores to different solutions, this can

be catastrophic. Furthermore, the scoring function can be

used to place emphasis on aspects of solutions that are par-

ticularly relevant. In our case, making execution time part

of the scoring function meant that participants had to opti-
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mize their solutions for speed at least to some degree to avoid

being penalized. This illustrates the use of scoring functions

as a general approach to support system engineering to build

practical systems. Furthermore, a simple weighting mecha-

nism can be used to adjust the relative importance of different

solution aspects. Depending on the application, competition

organizers (i.e., firms or other solution seekers) can steer the

trade-off between accuracy dimensions (e.g., precision and

recall), execution time and space, or other aspects as needed.

Fundamental to innovation is the ability to successfully

solve scientific, technical, and design problems. However,

often it is not apparent ex ante which approaches are most

promising and the R&D process is fraught with uncertainty

[40]. One leading view casts innovation and problem solv-

ing as a process of ‘search’ over some poorly understood

knowledge landscape [51].

A ‘parallel search’ approach whereby multiple indepen-

dent solvers (or teams of solvers) compete to solve the same

innovation problem in parallel is a widely used approach

to address this challenge. Following a parallel-path strategy

allows the seeker of a solution to expose a problem to a set

of solvers with varying skills and who might employ vary-

ing approaches when it is ex ante unknown which approach

might be successful [40,56]. Our competition shows how this

parallel search process was not just successful in exploring

multiple solutions, but also how it can be leveraged to explore

clever solutions to parts of the problem that can even be com-

bined (e.g., the use of validation using HTML text). In this

parallel search, even weaker systems can surprise with inter-

esting solutions to subproblems. It is then possible to break

up solutions of interconnected modules based on a decom-

position in subprocesses.

An important challenge for researchers in document

analysis and pattern recognition more broadly is the construc-

tion of frameworks that help identify and formalize modules

created for competitions under time constraints, so that they

can be later pulled apart and recombined in a repository of

modules and then used or refined in future work (e.g., follow-

on competitions). There has been some early work along

these directions [32,64], but more might be done.

8 Conclusion

In this paper, we present the results of a monthlong algo-

rithm competition to solve a difficult text processing and

graphics recognition task for the USPTO. In summary, we

show in detail the results of using a prize-based contest to

recruit skilled software developers to productively apply their

knowledge to a relevant graphics recognition task in a practi-

cal setting. The resulting diversity in the submitted solutions

has the potential to further improve the solution, for example,

by combining the most promising solutions to sub-problems.

In the simplest case, performance could be improved by com-

bining the best solution for the figure detection task (fourth

place system) with the best solution for the label detection

task (first place system). The comparison against the perfor-

mance of a leading alternative implementation confirms the

quality of the top-performing systems.

The emergence of commercial online contest platforms

such as TopCoder, InnoCentive, and Kaggle, which offer

access to large pools of skilled software developers, has the

potential to enable organizations to crowdsource solutions

to difficult software and algorithm development tasks which

could not have been developed in-house. This approach could

be especially useful to address the demand for the many dif-

ferent and highly specialized graphics recognition algorithms

which are required as a result of an explosion available imag-

ing data.

The top algorithms presented in this paper used a variety

of approaches, were fast, and also accurate. Although the sys-

tems perform well, they are not yet accurate enough to be put

into every day use. However, the scoring mechanisms that

reflect real-world performance considerations, the training

data, including ground truth, and the top-performing solu-

tions are openly available. We hope that this will stimulate

additional research in patent document analysis. Releasing

the source code of the five winning solutions makes a breadth

of alternative approaches available and offers the opportunity

to study the specific causes of differences in performance.

The analyses we presented in this work are a first step in

that direction. The results of the winning teams provide a

great starting point for future developments, and the imple-

mentation of a repository of modules leveraging the diversity

of submitted solutions will hopefully lead to more accurate

solutions in the future.
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