
Detecting flawed masking schemes
with leakage detection tests

Oscar Reparaz

KU Leuven Dept. Electrical Engineering-ESAT/COSIC and iMinds
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be

Abstract. Masking is a popular countermeasure to thwart side-channel
attacks on embedded systems. Many proposed masking schemes, even
carrying “security proofs”, are eventually broken because they are flawed
by design. The security validation process is nowadays a lengthy, tedious
and manual process. In this paper, we report on a method to verify the
soundness of a masking scheme before implementing it on a device. We
show that by instrumenting a high-level implementation of the masking
scheme and by applying leakage detection techniques, a system designer
can quickly assess at design time whether the masking scheme is flawed
or not, and to what extent. Our method requires not more than working
high-level source code and is based on simulation. Thus, our method
can be used already in the very early stages of design. We validate our
approach by spotting in an automated fashion first-, second- and third-
order flaws in recently published state-of-the-art schemes in a matter
of seconds with limited computational resources. We also present a new
second-order flaw on a table recomputation scheme, and show that the
approach is useful when designing a hardware masked implementation.

1 Introduction

Since Kocher published the seminal paper on side-channel attacks [Koc96], cryp-
tographic embedded systems have been broken using some auxiliary timing in-
formation [Koc96], the instantaneous power consumption of the device [KJJ99]
or the EM radiation [AARR02], among others. An attack technique of particu-
lar interest, due to its inherent simplicity, robustness and efficiency to recover
secrets (such as cryptographic keys or passwords) on embedded devices is Dif-
ferential Power Analysis (DPA), introduced in [KJJ99]. DPA relies on the fact
that the instantaneous power consumption of a device running a cryptographic
implementation is somehow dependent on the intermediate values occurring dur-
ing the execution of the implementation. An especially popular countermeasure
to thwart power analysis attacks, including DPA, is masking [CJRR99,GP99].
Masking works by splitting every sensitive variable appearing during the compu-
tation of a cryptographic primitive into several shares, so that any proper subset
of shares is independent of any sensitive variable. This, in turn, implies that the
instantaneous power consumption of the device is independent of any sensitive

variable, and thus vanilla DPA cannot be mounted. In theory, a (d + 1)-order
DPA attack can still be mounted against a d-th order masked implementation;
however, in practice higher order DPA attacks are exponentially more difficult
to carry out [CJRR99].

Crucially, in many cases the attacker is not required to perform a higher
order attack because the masking is imperfect and thus does not provide the
claimed security guarantees. The causes of the imperfections can be manifold:
from implementation mistakes to more fundamental flaws stemming from the
masking scheme itself. There are many examples in the literature of such flawed
schemes: a “provably secure” scheme published in 2006 [PGA06] based on FFT
and broken two years later [CGPR08], a scheme published in 2006 [SP06] and
broken one year later [CPR07], another “provably secure” scheme published in
2010 [RP10] and (academically) broken three years later [CPRR13]; a scheme
published in 2012 [BFGV12] and broken in 2014 [PRR14].

The verification process of a masking scheme is nowadays a very lengthy
manual task, and the findings are published in solid papers involving convoluted
probability arguments at leading venues, some years later after the scheme is
published. Some even won a best paper award as [CPR07]. From the stand point
of a system designer, it is often not acceptable to wait for a public scrutiny of
the scheme or invest resources in a lengthy, expensive, evaluation.

Our contribution. In this paper we provide an automated method to test whether
the masking scheme is sound or not, and to what extent. The method is conceptu-
ally very simple, yet powerful and practically relevant. We give experimental evi-
dence that the technique works by reproducing state-of-the-art first-, second- and
third-order flaws of masking schemes with very limited computational resources.
Our approach is fundamentally different from previously proposed methodologies
and is based on sampling and leakage detection techniques.

2 Leakage detection for masked schemes in simulation

Core idea. In a nutshell, our approach to detect flawed masking schemes is
to simulate power consumption traces from a high-level implementation of the
masking scheme and then perform leakage detection tests on the simulated traces
to verify the first- and higher-order security claims of the masking scheme.

Input and output of the tool. The practitioner only ought to provide working
source code of the masked implementation. The tool instruments the code, per-
forms leakage detection tests and outputs whether the scheme meets its security
goals or not. In addition, should a problem be detected, the tool pinpoints the
variables causing the flaw and quantifies the magnitude of the statistical bias.

Security claims of masking schemes. We use in this paper the conventional no-
tions for expressing the security claim of a masking scheme. Namely, a masking
scheme provides first-order security if the expected value of each single interme-
diate does not depend on the key. More generally, a masking scheme provides

k-order security if the k-th order statistical moment of any combination of k
intermediates does not depend on the key. This formulation is convenient since
leakage detection tests are designed specifically to test these claims.

Three steps. Our tool has three main ingredients: trace generation, trace pre-
processing and leakage detection. We describe each one in detail in the sequel.

2.1 Trace generation

The first step of our approach is to generate simulated power traces in a noise-free
environment.

Implementation. To accomplish this, the masking scheme is typically imple-
mented in a high-level software language. The implementation is meant to gener-
ically reproduce the intermediate values present in the masking scheme, and can
be typically written from the pseudo-code description of the masking scheme.
(Alternatively, the description of the masking scheme can be tailored to a specific
software or hardware implementation and incorporate details from those.)

Execution. This implementation is executed many times, and during each ex-
ecution, the instrumentation environment observes each variable V that the
implementation handles at time n. At the end of each execution, the environ-
ment emits a leakage trace c[n]. Each time sample n within this trace consists
of leakage L(V) of the variable V handled at time n. The leakage function L is
predefined; typical instantiations are the Hamming weight, the least significant
bit, the so-called zero-value model or the identity function.

Randomness. The high-level implementation may consume random numbers (for
example, for remasking.) This randomness is provided by a PRNG.

2.2 Trace pre-processing

This step is only executed if the masking scheme claims higher-order security.
The approach is similar to higher-order DPA attacks [CJRR99] and higher-order
leakage detection [SM15]. Suppose the scheme claims security at order k. We pre-
processes each simulated trace c[n] to yield c′[n1, . . . , nk] through a combination
function as

c′[n1, . . . , nk] =

i=k∏
i=1

(c[ni]− c̄[ni]). (1)

The result is a preprocessed trace c′. The length of the trace is expanded
from N to

(
N
k

)
unique time samples. (It is normally convenient to treat c′ as a

uni-dimensional trace.)

2.3 Leakage detection

The next step of our approach is to perform a leakage detection test on the
(potentially pre-processed) simulated traces. In its simplest form, a leakage de-
tection test [CKN00,CNK04,GJJR11,CDG+13,SM15] tries to locate and poten-
tially quantify information leakage within power traces, by detecting statistical
dependencies between sensitive data and power consumption. In our context, if
the test detects information leakage on the simulated traces, this means that the
masking scheme fails to provide the promised security guarantees.

Procedure. The instrumentation environment performs a fixed-vs-fixed leakage
detection test using the T-test distinguisher [CDG+13].

The process begins by simulating a set of power traces with fixed unmasked
intermediate z = z0 and another set of traces with different unmasked interme-
diate value z = z1. Typical choices for the intermediate z are the full unmasked
state or parts of it. Then, a statistical hypothesis test (in this case, T-test) is
performed per time sample for the equality of means. The T-test [Stu08,Wel47]
first computes the following statistic

t[n] =
m0[n]−m1[n]√

s20[n]
N0

+
s21[n]
N1

(2)

where mi[n], s2i [n], Ni are respectively the sample mean, variance and number
of traces of population i ∈ {0, 1} and n is the time index. This statistic t[n] is
compared against a predefined threshold C. A common choice is C = ±4.5, cor-
responding to a very high statistical significance level of α = 0.001. If the statistic
t[n] surpasses the threshold C, the test determines that the means of the two
distributions are significantly different, and thus the mean power consumption
of (potentially pre-processed) simulated power traces carry information on the
intermediate z. In this case, we say that the masking scheme exhibits leakage
at time sample n and flunks the test. Otherwise, if no leakage is detected, an-
other test run is executed with different specific values for z0 and z1. The test
is passed only if no leakage is detected for any value of z0 and z1. (Typically,
there are only a couple dozen of (z0, z1) pairs if the optimizations described in
the next section are applied.) Note that a time sample n may correspond to a
single variable (first-order leakage) or a combination of variables (higher-order
leakage), if a pre-processing step is executed.

On fixed-vs-fixed. Using fixed-vs-fixed instead of fixed-vs-random has the ad-
vantage of faster convergence of the statistic (at the expense of leakage behavior
assumptions that are benign in our context). (This has been previously observed
by Durvaux and Standaert [DS15] in a slightly different context.) One could also
use a fix-vs-random test. This usually results in a more generic evaluation.

2.4 Optimizations

We note that the following “engineering” optimizations allow to lower the com-
putational complexity so that it is becomes very fast to test relevant masking
schemes.

Online algorithms. There is certainly no need to keep in memory the complete
set of simulated power traces. For the computation of the T-test as Eq. 2, one
can use online formulas to compute means and variances present in the formula.
These algorithms traverse only once through each trace, so that a simulated
power consumption trace can be generated, processed and thrown away. This
makes the memory consumption of the approach independent of the number
of traces used. More number of traces would require just more computational
time, but not more memory. We note that the same is possible in higher-order
scenarios. Lengthy but straightforward calculations show that a T-test on pre-
processed traces can be computed online using well-known online formulae for
(mixed) higher-order moments [P0́8]. (This was previously reported by Schneider
and Moradi [SM15].)

Scale down the masking scheme. It is usually possible to extrapolate the mask-
ing scheme to analogous, trimmed down, cryptographic operations that work
with smaller bit-widths or smaller finite fields. For example, when masking the
AES sbox, many masking schemes [RP10,CPRR13] rely on masked arithmetic
(masked multiplication and addition blocks) in GF(28) to carry out the inver-
sion in GF(28). It is often convenient to scale down the circuit to work on, say,
GF(24) for testing purposes –since the masking approach normally does not rely
on the specific choice of field size, any flaw exhibited in the smaller GF(24) ver-
sion is likely to be exhibited in the GF(28) version of the algorithm (and vice
versa). By experience we have observed that statistical biases tend to be more
pronounced in smaller field sizes, and thus are more easily detectable. (See for
instance [PRR14].) We suggest the use of this heuristic whenever possible for an
early alert of potential problems.

Reduce the number of rounds. There is little sense to check for a first-order leak
in more than a single round of an iterative cryptographic primitive, such as AES.
If the implementation is iterative, any first-order flaw is likely to show up in all
rounds. When testing for higher order security, however, one should take into
account that the flaw may appear from the combination of variables belonging
to different rounds.

Judiciously select the components to check. For first-order security it is suffi-
cient to check each component of the masking scheme one by one in isolation.
The situation is slightly different in the multivariate scenario, where multiple
components can interfere in a way that degrades security. Still, the practitioner
can apply some heuristics to accelerate the search, such as testing for second-
order leakage first only in contiguous components. For example, second-order

leakage is likely to appear earlier between two variables within the same round
or belonging to two consecutive rounds.

Deactivate portions of the plaintext. To accelerate the leakage search, a sub-
stantial portion of the plaintext can be deactivated, that is, fixed to a constant
value or even directly taken out from the algorithm. For example, in the case of
AES-128 one could deactivate 3 columns of the state, test only 4 active plaintext
bytes and still test for the security of all the components within one round.

Carefully fix the secret intermediate values. As we described, the framework fixes
two values z0, z1 for the unmasked sensitive intermediate, and then compares
the simulated traces distributions conditioned on z0 and z1. Depending on the
algorithm, concrete choices for zi (such as fixed points of the function being
masked) can produce “special” leakage. For example, in AES if we choose z1
such that the input to the inversion is 0x00, we can hit faster zero-value type
flaws.

3 Results

In this section we provide experimental results. We first begin by testing the first-
order security claim of two schemes, one that fails the claim (Section 3.1) and
another that fulfills it (Section 3.2). Then we will focus on second- and third-
order claims (Section 3.3 and 3.4 respectively). We point out a new second-
order flaw in Section 3.5, we elaborate on how previously published flaws were
discovered in Section 3.6. Finally in Section 3.7 we report on the use of the tool
when designing masked circuits.

3.1 Smoke test: reproducing a first-order flaw

As a first test, we test the first-order security of the scheme published in [BFGV12].
We will refer to this scheme as IP in the sequel. We focus on reproducing the
results from [PRR14],

Test fixture. We study first the IPRefresh procedure. This procedure performs
a refreshing operation on the input IP shares. We scale down the scheme to work
in GF(22) following Section 2.4. The instrumentation framework finds 141 inter-
mediate variables within a single execution of IPRefresh. The chosen leakage
function is Hamming weight, and there is no pre-processing involved.

Leakage detection. We ran the
(
4
2

)
= 6 possible fixed-vs-fixed tests covering all

possible combinations of pairs of different unshared input values (z1, z0). (Here
zi is the input to IPRefresh.) For each test, the maximum absolute t-value,
across all time samples, is plotted in the y-axis of Fig. 1 as a function of the
number of simulated traces (x-axis). A threshold for the T-test at 4.5 is also
plotted as a dotted line. This threshold divides the graph into two regions: a

104 105 106
100

101

102

t v
al

ue

number of traces

Fig. 1: T-statistic (absolute values)
of the IP masking scheme, under a
HW leakage model. Deemed inse-
cure (clearly exceeds the threshold
at t = 4.5.)

104 105 106
100

101

102

t v
al

ue

number of traces

Fig. 2: T-statistic (absolute values)
applied to the Coron table recom-
putation masking scheme, under an
Identity leakage model. First order
test. Deemed secure (no value be-
yond the threshold at t = 4.5.)

t-statistic greater than |C| = 4.5 (in red) means that the implementation fails
the test, while a t-statistic below 4.5 (area in green) does not provide enough
evidence to reject the hypothesis that the scheme is secure. We can see that 5
out of 6 tests clearly fail in Fig. 1, since they attain t-values around 100 greater
than C. Thus, the IPRefresh block is deemed insecure. (Similar observations
apply to the IPAdd procedure.)

It is also possible to appreciate the nature of the T-test statistic: the t-
statistic grows with the number of traces N as of

√
N in the cases that the

implementation fails the test (note that the y-axis is in logarithmic scale.) This
can be interpreted as follows: as we have more measurements, we build more
confidence to reject the null hypothesis (in our context being that the masking
is effective.) If the number of simulated traces is large enough and no significant
t-value has been observed, the practitioner can gain confidence on the scheme
not being flawed. We will find this situation in the next subsection and elaborate
on this point.

3.2 A first-order secure implementation

We tested the table recomputation scheme of Coron [Cor14]. This scheme passes
all fixed-vs-fixed tests with the identity leakage model. The results are plotted in
Figure 2. We can observe that the t-statistic never crosses the threshold of 4.5 for
any test, and thus we cannot reject the null hypothesis that the implementation
is secure (i.e., the implementation is deemed secure, “on the strength of the
evidence presented” [CKN00].) Although it is theoretically possible that the
masking scheme exhibits a small bias that would only be detectable when using
more than 106 traces, that flaw would be negligible from a practical point of
view when using ≤ 106 traces, and definitely impossible to exploit in a noisy
environment if it is not even detectable at a given trace count, in a noiseless
scenario.

70 void MaskRefresh(u8 *s) {

71 u8 r;

72 for (int i = 1; i < number_shares; i++) {

73 r = rnd ();

74 s[0] ^= r;

75 s[i] ^= r;

76 }

77 }

...

110 void SecMult (u8 *out, u8 *a, u8 *b) {

111 u8 aibj,ajbi;

...

114 for (int i = 0; i < number_shares; i++) {

115 for (int j = i + 1; j < number_shares; j++) {

...

119 aibj = mult(a[i], b[j]);

120 ajbi = mult(a[j], b[i]);

$./run

entering fixed_vs_fixed(00,01)

> leakage detected with 1.20k traces

higher order leakage between

line 74 and

line 120

with tvalue of -7.03

Fig. 3: Excerpts of the code and output of the leakage detection for the RP
scheme.

3.3 Reproducing a second-order flaw

To show that our proposed tool can also detect higher-order flaws, we imple-
mented the scheme of Rivain and Prouff (RP) from [RP10]. For the allegedly
second-order secure version of this scheme, there is a second-order flaw as spotted
by Coron et. al. in [CPRR13] between two building blocks: MaskRefresh and
SecMult. We will see that we can easily spot this flaw with the methodology
proposed in this paper.

Text fixture. We implemented the second-order masked inversion x 7→ x−1 in
GF(2n) as per [RP10] with n = 3. This inversion uses the MaskRefresh and
SecMult procedures. In this case, we enable second-order pre-processing (on the
fly), expanding 135 time samples to

(
135
2

)
= 9045 time samples. Some excerpts

of the implementation are shown in Fig. 3, top.

Results. The instrumentation frameworks takes less than 5 seconds to determine
that there is a second order leakage between the variable handled at line 74

(inside MaskRefresh) and 120 (inside SecMult), as Fig. 3, bottom, shows. Note
that it is trivial to backtrack to which variables corresponds a leaking time
sample, and thus determine the exact lines that leak jointly.

r

r

r

r

Fig. 4: Two MaskRefresh concatenated. As explained in the text, the second re-
fresh can be optimized to reduce the randomness requirements yet still achieving
second order security.

Fixing the second-order flaw. The folklore solution to fix the previous second-
order flaw is to substitute each MaskRefresh module by two consecutive MaskRefresh
invocations, as shown in Fig. 4. Applying the leakage detection tests to this new
construction shows that the leak is effectively gone. However, it is quite rea-
sonable to suspect that this solution is not optimal in terms of randomness
requirements. We can progressively strip down this design by eliminating some
of the randomness of the second refreshing and check if the design is still secure.
We verified in this very simple test fixture that if we omit the last randomness

call (that is, we only keep the dotted red box instead of the second dashed box
in Fig. 4), the higher-order leaks are no longer present.

3.4 Reproducing a third order flaw

Schramm and Paar published at CT-RSA 2006 [SP06] a masked table lookup
method for Boolean masking claiming higher-order security. This countermea-
sure was found to be flawed by Coron et al. at CHES 2007. Coron et al. found
a third-order flaw irrespective of the security parameter of the original scheme.
We reproduced their results by setting k = 3 when preprocessing the traces
as in Eq. 1. The flaw of [CPR07] was detected in less than one second, which
demonstrates that the tool is also useful to test the higher-order security claims
of masking schemes.

3.5 Schramm–Paar second-order leak

Here we report on a new second-order flaw that we found with the presented
tool in the masked table recomputation method of Schramm and Paar when
used with unbalanced sboxes.

Schramm–Paar method. The goal of the masked table recomputation is to
determine the sbox output shares N0, N1, . . . , Nd from the sbox input shares
M0,M1, . . . ,Md. Schramm–Paar proceed as follows (we borrow the notation
from [CPR07]):

1. Draw d output shares N1, . . . , Nd at random.
2. Compute from N1, . . . , Nd a table S∗ such that

S∗(x) = S

(
x⊕

d⊕
i=1

Mi

)
⊕

d⊕
i=1

Ni (3)

3. Set N0 := S∗(M0)

We set here d = 2, and aim at second-order security. An important part of
the procedure is to build the table S∗ in a way that the higher-order security
claims are fulfilled. [SP06] proposes several methods. However, for the purposes
of this paper the details of the recomputation method are not important.

Test fixture. Following the guidelines of Section 2.4, we implement a very stripped
down version of the table recomputation method. We fix the simplest unbalanced
sbox S = (0, 0, 0, 1) (an AND gate), and work with 2-bit inputs and outputs
leaking Hamming weights. In a couple of seconds the tool outputs 4 different
bivariate second-order leakages, corresponding to the pairs (S∗(i), N0) for each
i in the domain of S∗. Here S∗(i) is the i-th entry on the S∗ table, and N0 is
one output mask.

Once these leaks are located, proving them becomes an easy task. And also
it becomes easy to generalize and see that the flaw appears whenever S is un-
balanced. (We verified that second-order attacks using the leakage of S∗(0) and
N work as expected.)

3.6 Higher-order threshold implementations

Here we report on how the observations from [RBN+15] regarding the security
of higher-order threshold implementations [BGN+14] were found. The results of
this section are obviously not new; the focus here is on the methodology carried
out to find those.

Intuition. The first suspicion stems from the fact that higher-order threshold
implementations originally claimed that the composition of sharings provides
higher-order security, if the sharings satisfy some property, namely uniformity.
This is a very surprising result, since it would imply that there is no need to
inject fresh randomness during the computation, minimizing overheads. In con-
trast, all other previously published higher-order masking schemes need to inject
randomness from time to time as the computation progresses. For example, the
security proof of private circuits (one of the earliest masking schemes) [ISW03]
critically relies on the fresh randomness to provide security.

Test fixture. The hypothesis is that the previous security claim does not hold,
that is, the concatenation of uniform sharings do not provide higher-order secu-
rity. To test this, we design a minimal working test fixture consisting of a 32-
round Feistel cipher with a blocksize of 4 bits. For more details see [RBN+15].
The shared version aims at providing second-order security, and shares each
native bit into 5 shares. The traces consist of 225 “timesamples” (each one com-
prising one leaked bit, including initialization.) This spans to 25650 timesamples
after second-order pre-processing.

Fig. 5: Pairs of rounds with |t| > 80 Fig. 6: Pairs of rounds with |t| > 5

Cranking it up. We run the simulation for a night (about 8 hours), having simu-
lated 200 million traces. We performed a fixed-vs-fixed test with unshared initial
state 0000 and 1111. (There is no key in this cipher, the initial state is considered
to be the secret.) (This is grossly unoptimized code.) The results of the leakage
detection test is drawn in Figure 5. We plot on the x- and y-axes the round
index, and each pixel in red if the t statistic surpasses the value 80, green oth-
erwise. We can see that many pairs of rounds leak jointly, in contradiction with
the security claims of the scheme. In Figure 6 the same information is plotted
but changing the threshold to |t| > 5. We can see, surprisingly, that almost all
pairs of rounds lead to second-order leakage. A bit of manual mechanical effort
is required to prove this, but not more than taking a covariance.

3.7 Refreshing in higher-order threshold AES sbox

The designers from [CBR+15] had access to the tool presented in this paper.
They performed several design iterations, and verified the design on each itera-
tion. The final evaluation was performed on an FPGA.

Text fixture. We implemented the whole sbox, with no downscaling of the com-
ponents to work in smaller fields. We leak register bits and the input value
(identity leakage function) to combinatorial logic blocks. (This is to account for
glitches as will be explained below.)

First-order leaks. Within one day, a first-order leak was identified due to a
design mistake. This design error considered the concatenation of two values
a||b as input to the next stage; each value a and b considered independently is
a uniform sharing but its concatenation a||b is not, and hence the first order
leak. This first-order leak disappears if a refresh is applied to the inputs of one
GF(22) multiplier using 4 units of randomness (here 1 unit = 1 random field
element = 2 bits). This refresh block is similar to the 2010 Rivain–Prouff refresh
block [RP10], we remind it uses n−1 units of randomness to refresh n shares (in
our particular case here n = 5). We will see later that this refresh is problematic
in the higher-order setting.

Second-order leaks. Subsequently, two second-order bivariate leaks were identi-
fied between register values. This was solved by placing a refresh block between
stage 2 and 3 from Figure 7 (taken from [CBR+15]).

In addition, many second-order bivariate leaks were identified between input
values to combinatorial logic blocks. In theory, hardware glitches could express
these leakages. Those disappear if one uses a “full refresh” using 5 units of
randomness. This effect was previously observed [BBD+15,RBN+15] and is a
reminiscent of [CPRR13].

Other uses. We also used a preliminary version of this tool in [RRVV15].

LM

GF(24) inv.

ILM

8-bit
4-bit
1-bit

GF(24)
mult.

l1

l3

GF(24)
mult.

GF(24)
sq.sc.

l1

l2

l2

l2

l2

l2

GF(24)
mult.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Fig. 7: Higher-order masked AES sbox from de Cnudde et al.

4 Discussion

4.1 Implementing the framework

We implemented the instrumentation framework on top of clang-LLVM. The
whole implementation (including leakage detection code) takes around 700 lines
of C++ code, which shows the inherent simplicity of our approach. It is easy to
audit and maintain.

4.2 Time to discover flaw, computational complexity and scaling.

The computational requirements of the proposed approach are very low. In Fig. 8
we write the elapsed execution times required to spot the flaws from Sections 3.1,
3.3 and 3.4. We can see that the flaws were identified in a matter of seconds on
a standard computer. All the experiments on this paper were carried out on a
modest 1.6 GHz laptop with 2 GB of RAM.

Bottlenecks. The main bottleneck on the running time of the methodology is the
first step: trace generation. The RP scheme is the one that took longer to detect
the flaw (5 seconds), presumably because of two reasons: a) the scheme is more
inherently complex and thus it takes more time to simulate each trace and b) the
bias exhibited in the scheme is smaller than the bias of other schemes, and thus
more traces are required to detect such a bias. We note that no special effort
on optimizing the implementations was made, yet, an average throughput of
5k trace per second (including instrumentation) was achieved. The overhead of
instrumentation in the running time was estimated to make the implementation
on average ≈ ×1.6 slower.

Time to pass. The time it takes to discover a flaw is normally less than the time
it takes to deem a masking scheme secure. For example, to assess that the patch
of Section 3.3 is indeed correct, it took about 6 minutes to perform a fix-vs-fix
test with up to 1 million traces (no leakage was detected). All possible 6 tests

take around 37 minutes. (The threshold of 1 million traces was chosen arbitrarily
in this example.)

Parallelization. We remark that this methodology is embarrassing parallel. Thus,
it is much easier to parallelize to several cores or machines than other approaches
based on SAT.

Memory. The memory requirements for this method are also negligible, taking
less than 4.5 MB of RAM on average. More interestingly, memory requirements
are constant and do not increase with the number of simulated traces, thanks
to online algorithms.

Scaling. The execution time of our approach scales linearly with the number of
intermediates when testing for first-order leakage, quadratically when testing for
second-order leakage and so on. This scaling property is exactly the same as for
DPA attacks. We could benefit from performance improvements that are typi-
cally used to mitigate scaling issues in DPA attacks such as trace compression,
but did not implemented those yet.

Scheme Flaw order Field size Time Traces needed

IP 1 4 0.04s 1k
RP 2 4 5s 14k
SP 3 4 0.2s 2k

Fig. 8: Running time to discover flaw in the studied schemes, and number of
traces needed to detect the bias.

4.3 Limitations

Risk of false negatives. Our tool should not be taken as the only test when
assessing a masked implementation, and is not meant to substitute practical
evaluation with actual measurements. Our tool provides an early warning that
the masking scheme may be structurally flawed, “by design”. However, even
when the masking scheme is theoretically secure, it is still possible to implement
it in an insecure way. This will not be detected with the proposed tool. For exam-
ple, in the case of a first-order masked software implementation, an unfortunate
choice of register allocation may cause distance leakage between shares, leading
to first-order leakage. Without register allocation information, our tool will not
detect this issue. One could provide this kind of extra information to our tool.
We left this as future work.

4.4 Related works

There are already some publications that address the problem of automatic
verification of power analysis countermeasure.

SAT-based. Sleuth [BRNI13] is a SAT-based methodology that outputs a hard
yes/no answer to the question of whether the countermeasures are effective or
not. A limitation of [BRNI13] is that it does not attempt to quantify the degree of
(in)security. A first approximation to the problem was tackled in [EWTS14,ABMP13].

MiniCrypt-based. Barthe et al. [BBD+15] use program verification techniques
to build a method prints a proof of security for a given masking scheme. Their
approach is completely different than ours. Barthe et al. base their approach on
EasyCrypt, a sophisticated “toolset for reasoning about relational properties of
probabilistic computations with adversarial code.”

Comparative considerations with other approaches. While our approach does
certainly not carry the beauty of proofs and formal methods, it offers a very
practice-oriented methodology to test the soundness of masking schemes. Our
approach is in nature statistical, and is a necessary condition for a masked scheme
to be sound. It can be thought of a worst-case scenario, where the adversary has
access to noiseless and sychronized traces. A more formal study can then be
performed with the methods of Barthe et al. to gain higher confidence.

4.5 Which leakage function to select?

In previous Section 2 we mentioned that the practitioner has to choose a leakage
function to generate the simulated traces. It turns out that the specific choice
of leakage function seems not to be crucial —any reasonable choice will work.
Figure 9 compares different leakage functions: Hamming weight, identity, least-
significant bit and zero-value. The test fixture is the same one as in Section 3.1.
For each leakage function, we performed all possible fixed-vs-fixed tests. Figure 9
is composed of 4 plots, one per leakage function. We can see that for any leakage
function, there is at least one fixed-vs-fixed test that fails. For the identity leakage
function, all tests fail. Thus, it is often convenient to use it to detect flaws faster
(more fixed-vs-fixed tests fail.) We speculate that this behavior may depend on
the concrete masking method used, and leave a detailed study as future work.

Glitches and identity leakage. We note that we can include the effect of hardware
glitches in our tool. Note that the information leaked by a combinatorial logic
block F on input x due to glitches is contained already in the input x. Thus, we
can simulate the information leaked by hardware glitches, even if we do not have
a precise timing model of the logic function, by leaking the whole input value x
(that is, using the identity leakage model.)

This would correspond to an extremely glitchy implementation of F where
glitches would allow to observe the complete input. This is certainly a worst-case

103 104 105 106

101

102

number of traces

t v
al

ue

HW

103 104 105 106

101

102

number of traces

t v
al

ue

ID

103 104 105 106

101

102

number of traces

t v
al

ue

LSB

103 104 105 106
100

102

number of traces

t v
al

ue

ZV

Fig. 9: Influence of leakage function.

scenario. Crucially, glitches would not reveal more information than x. This trick
of using the identity leakage model on inputs of combinatorial blocks is helpful
when evaluating, for example, masked threshold implementations.

Another alternate approach is to add a detailed gate-level timing model to
simulate glitches. If such timing model is available, the detection quality can be
substantially enhanced.

5 Conclusion

We described a methodology to test in an automated way the soundness of a
masking scheme. Our methodology enjoys several attractive properties: simplic-
ity, speed and scalability. Our methodology is based on established and well-
understood tools (leakage detection). We demonstrated the usefulness of the
tool by detecting state-of-the-art flaws of modern masking designs in a matter
of seconds with modest computational resources. In addition, we showed how
the tool can assist the design process of masked implementations.

Acknowledgements. We thank an anonymous reviewer that found a mistake in
Section 3.5, François-Xavier Standaert for extensive comments and Ingrid Ver-
bauwhede. The author is funded by a PhD fellowship of the Fund for Scientific
Research - Flanders (FWO). This work was funded also by Flemish Govern-
ment, FWO G.0550.12N, G.00130.13N, Hercules Foundation AKUL/11/19, and
through the Horizon 2020 research and innovation programme under grant agree-
ment 644052 HECTOR.

References

AARR02. Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.
The EM side-channel(s). In Burton S. Kaliski Jr., Ç. K. Koç, and Christof
Paar, editors, CHES 2002, volume 2523 of LNCS, pages 29–45. Springer,
2002. (Cited on Section 1).

ABMP13. G. Agosta, A. Barenghi, M. Maggi, and G. Pelosi. Compiler-based side chan-
nel vulnerability analysis and optimized countermeasures application. In
Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE,
pages 1–6, May 2013. (Cited on Section 4.4).

BBD+15. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order
masking. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bul-
garia, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes
in Computer Science, pages 457–485. Springer, 2015. (Cited on Sections 3.7
and 4.4).

BFGV12. Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Theory and practice of a leakage resilient masking scheme. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 758–775. Springer, 2012. (Cited on Sections 1 and 3.1).

BGN+14. Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vin-
cent Rijmen. Higher-order threshold implementations. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014,
Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science,
pages 326–343. Springer, 2014. (Cited on Section 3.6).

BRNI13. AliGalip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne.
Sleuth: Automated verification of software power analysis countermeasures.
In Guido Bertoni and Jean-Sbastien Coron, editors, CHES 2013, volume
8086 of LNCS, pages 293–310. Springer, 2013. (Cited on Section 4.4).

CBR+15. Thomas De Cnudde, Begul Bilgin, Oscar Reparaz, Ventzislav Nikov, and
Svetla Nikova. Higher-Order Threshold Implementation of the AES S-box.
In Naofumi Homma and Marcel Medwed, editors, Smart Card Research and
Advanced Applications - CARDIS 2015, volume LNCS of Lecture Notes in
Computer Science, page 16, Bochum,DE, 2015. Springer-Verlag. (Cited on
Sections 3.7 and 3.7).

CDG+13. Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary Ken-
worthy, and Pankaj Rohatgi. Test Vector Leakage Assessment (TVLA)
methodology in practice. International Cryptographic Module Conference,
2013. (Cited on Sections 2.3 and 2.3).

CGPR08. Jean-Sbastien Coron, Christophe Giraud, Emmanuel Prouff, and Matthieu
Rivain. Attack and improvement of a secure s-box calculation based on the
fourier transform. In CHES 2008, Washington, D.C., USA, volume 5154 of
LNCS, pages 1–14. Springer, 2008. (Cited on Section 1).

CJRR99. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, CRYPTO, volume 1666 of LNCS, pages 398–412. Springer,
1999. (Cited on Sections 1 and 2.2).

CKN00. Jean-Sébastien Coron, Paul C. Kocher, and David Naccache. Statistics and
secret leakage. In Yair Frankel, editor, Financial Cryptography, 4th Interna-
tional Conference, FC 2000 Anguilla, British West Indies, February 20-24,
2000, Proceedings, volume 1962 of Lecture Notes in Computer Science, pages
157–173. Springer, 2000. (Cited on Sections 2.3 and 3.2).

CNK04. Jean-Sébastien Coron, David Naccache, and Paul C. Kocher. Statistics and
secret leakage. ACM Trans. Embedded Comput. Syst., 3(3):492–508, 2004.
(Cited on Section 2.3).

Cor14. Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-
15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science,
pages 441–458. Springer, 2014. (Cited on Section 3.2).

CPR07. Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side chan-
nel cryptanalysis of a higher order masking scheme. In Pascal Paillier and
Ingrid Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 28–
44. Springer Berlin Heidelberg, 2007. (Cited on Sections 1, 3.4, and 3.5).

CPRR13. Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In Shiho
Moriai, editor, FSE 2013, Singapore, volume 8424 of LNCS, pages 410–424.
Springer, 2013. (Cited on Sections 1, 2.4, 3.3, and 3.7).

DS15. François Durvaux and François-Xavier Standaert. From improved leakage
detection to the detection of points of interests in leakage traces. IACR
Cryptology ePrint Archive, 2015:536, 2015. (Cited on Section 2.3).

EWTS14. Hassan Eldib, Chao Wang, Mostafa M. I. Taha, and Patrick Schaumont.
QMS: evaluating the side-channel resistance of masked software from source
code. In The 51st Annual Design Automation Conference 2014, DAC ’14,
San Francisco, CA, USA, June 1-5, 2014, pages 1–6. ACM, 2014. (Cited
on Section 4.4).

GH15. Tim Güneysu and Helena Handschuh, editors. Cryptographic Hardware
and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-
Malo, France, September 13-16, 2015, Proceedings, volume 9293 of Lecture
Notes in Computer Science. Springer, 2015. (Cited on Section 5).

GJJR11. Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A test-
ing methodology for side channel resistance validation. NIST non-invasive
attack testing workshop, 2011. (Cited on Section 2.3).

GP99. Louis Goubin and Jacques Patarin. DES and differential power analysis (the
“duplication” method). In Ç. K. Koç and Christof Paar, editors, CHES’99,
volume 1717 of LNCS, pages 158–172. Springer, 1999. (Cited on Section 1).

ISW03. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, Advances in Cryptology
- CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of
Lecture Notes in Computer Science, pages 463–481. Springer, 2003. (Cited
on Section 3.6).

KJJ99. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS,
pages 388–397. Springer, 1999. (Cited on Section 1).

Koc96. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 104–113. Springer, 1996. (Cited on Section 1).

P0́8. Philippe Pébay. Formulas for robust, one-pass parallel computation of
co- variances and arbitrary-order statistical moments. Technical Report
SAND2008-6212, Sandia National Laboratory, 2008. (Cited on Section 2.4).

PGA06. Emmanuel Prouff, Christophe Giraud, and Sébastien Aumônier. Provably
secure s-box implementation based on fourier transform. In Louis Goubin
and Mitsuru Matsui, editors, CHES 2006, Yokohama, JP, volume 4249 of
LNCS, pages 216–230. Springer, 2006. (Cited on Section 1).

PRR14. Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. On the practical
security of a leakage resilient masking scheme. In Josh Benaloh, editor,
Topics in Cryptology CT-RSA 2014, volume 8366 of LNCS, pages 169–182.
Springer International Publishing, 2014. (Cited on Sections 1, 2.4, and 3.1).

RBN+15. Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and In-
grid Verbauwhede. Consolidating masking schemes. In Rosario Gennaro
and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August
16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in Com-
puter Science, pages 764–783. Springer, 2015. (Cited on Sections 3.6, 3.6,
and 3.7).

RP10. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order mask-
ing of AES. In Stefan Mangard and François-Xavier Standaert, editors,
CHES 2010, Santa Barbara, CA, USA, volume 6225 of LNCS, pages 413–
427. Springer, 2010. (Cited on Sections 1, 2.4, 3.3, 3.3, and 3.7).

RRVV15. Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A masked ring-lwe implementation. In Güneysu and Handschuh
[GH15], pages 683–702. (Cited on Section 3.7).

SM15. Tobias Schneider and Amir Moradi. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In Güneysu and Handschuh
[GH15], pages 495–513. (Cited on Sections 2.2, 2.3, and 2.4).

SP06. Kai Schramm and Christof Paar. Higher order masking of the AES. In
David Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, volume
3860 of LNCS, pages 208–225. Springer, 2006. (Cited on Sections 1, 3.4,
and 3.5).

Stu08. Student. The probable error of a mean. Biometrika, pages 1–25, 1908.
(Cited on Section 2.3).

Wel47. Bernard L Welch. The generalization ofstudent’s’ problem when several
different population variances are involved. Biometrika, pages 28–35, 1947.
(Cited on Section 2.3).

Auxiliary supporting material

A MATLAB code

This code prints the distribution of Z = S(M ⊕M0)⊕ S(M) for a fixed M and
varying M0.

% the sbox

S=[0 0 0 1];

% number of samples

N=10000;

% the sbox input

for M=0:3

M0=floor(4.*rand(1,N));

Z =bitxor(S(bitxor(M,M0)+1),S(M+1));

for i=0:1

fprintf(’ p(Z=%d|M=%d) = %1.2f\n’, i, M, sum(Z==i)./length(Z))

end

fprintf(’\n’)

end

B Examplary output

This is the distribution of Z when the secret M takes different values. We can
see that the expected value of Z is different when conditioned on M = 0 than
when M = 3. This means that there is a second-order information leak between
(S∗(0), N0) and the secret M .

p(Z=0|M=0) = 0.75

p(Z=1|M=0) = 0.25

p(Z=0|M=1) = 0.75

p(Z=1|M=1) = 0.25

p(Z=0|M=2) = 0.75

p(Z=1|M=2) = 0.25

p(Z=0|M=3) = 0.25

p(Z=1|M=3) = 0.75

	Detecting flawed masking schemes with leakage detection tests

