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Abstract

When a robot moves about a 2D world such as a planar surface,
it is important that obstacles to the robot's motions be detected.
This classical problem of "obstacle detection" has proven to
be difficult. Many researchers have formulated this problem as
being the process of determining where a robot cannot move due
to the presence of obstacles. An alternative approach presented
here is to determine where an robot can go by identifying floor
regions for which the planar floor assumption can be verified. A
stereo vision system is developed for Floor Anomaly Detection
(FAD), and its relationship to existing stereo obstacle detection
algorithms is described.

1 Introduction

When an agent moves about its environment it is important that the agent
is sure that the surface over which it is to move is safe. Previous work
has formulated this task as the goal of detecting obstacles to the robots
motion[3,l,12,15], while assuming that the floor itself is safe and can be
traversed (for an exception, see [2]). Consider the operational environment
of the ARK (Autonomous Robot for a Known Environment) Project. The
ARK Project involves the development of a sensor-based mobile robot that
can autonomously navigate in a known, previously-mapped industrial en-
vironment. The environment presents many difficulties for safe navigation,
including people and forklifts moving about; oil and water spills on the
floor; floor drains (which can be uncovered); hoses, tools, and piping on
the floor [7]. Thus although the floor of the ARK environment can be ex-
pected to be planar, local regions of the floor can be expected to contain
structure which violates the planarity assumption. In addition, regions that
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violate the planarity assumption are not easily mapped and they cannot be
completely avoided.

One approach to identifying safe floor regions would be to use stereo
information to accurately locate both the floor and any anomalies in 3D.
Instead, we consider using stereo imagery to locate image regions which
provide evidence for being on the floor plane[14]. To do this we use a
novel method for fitting an exact model of stereo disparities arising from
a 3D plane to the provided image data. This fitting method allows us to
deal with deviations from a particular floor model, which often arise due
to the robot tilting, but can also arise from structure in the floor, such
as ramps, or from changes in the stereo system's configuration over time.
Once the image correspondences for the floor have been determined, and
the anomalies marked, we can then map the extracted information onto a
robot-centered representation so that the robot can plan a safe motion.

2 Image Warping for a Plane

Following Horn's camera model[6] define X = (X\, X2, X^)T to be a
point in a 3-dimensional global coordinate system, and let x = (x\,X2)T

be its image. It is most convenient to write both X and x in terms of
homogeneous coordinates. That is, a given four-vector W represents X if
Xi = Wi/W^ for i = 1,2, 3. Similarly, a three vector w represents the image
point x whenever Xi = Wi/w^ for i = 1,2. Now, following [6], we define the
transformation from an arbitrary point W in a global coordinate system
to an image point i J a s t 5 = TW, where T is a 3x4 matrix of coefficients
which specify the transformation.

It is straightforward to calibrate a camera using this model along with a
known 3D calibration object. Linear least squares is then used to compute
the transformation matrix, T, separately for each camera. We denote the
resulting matrices for the left and right cameras simply as L and R. These
matrices cleanly capture all the required information about the fixed stereo
system.

We are interested in the exact form of image warp which can be used
to map the images of points on the ground plane in one stereo image to the
corresponding image points in the second view. Generalizing the result of
Faugeras[3] for the pinhole camera model to Horn's more general camera
model, the mapping from a point (x[,x2), in the right image, to the corre-
sponding point (x[,xl

2) in the left image for points which lie on a specific
plane (such as the ground plane) is given by

x[ = m1(x
r,k) = (kxx\ + k2x

T
2 + k^)l(k7x\ + k$xr

2 + £?9),
xl

2 = m2(x
r,k) = (k4x{ + k5x2 + ko)l(k7x\ + k8x2 + k9),
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where the fc;'s are linear functions of L, R, and the floor parameters (n, d).

3 Disparity Measurement

Once the left and right views have been brought into a rough alignment,
perhaps by using the warp specified by (1) along with a rough guess for
the floor parameters (n,d), we need to be able to do two things. First, we
must refine the coefficients k of the mapping to accommodate imperfections
in the slope of the floor and/or small tilts of the robot. Secondly, once an
accurate estimate of the image warp has been obtained, we need to estimate
the probability that various image points correspond to the floor, rather
than floor anomalies. Both of these steps require the measurement of the
local relative shifts, that is, the disparity between the two images.

Many different disparity measurement techniques can be used (see [8] for
a survey). Here we consider so called gradient-based methods which rely on
a constancy assumption of the form Bi(x + d(x); k) = Br(x), where Bi and
Br are filtered and possibly warped versions of the original left and right
images, respectively. The constancy assumption provides a constraint on
the disparity d(x) which, in gradient-based approaches, is approximated by
linearizing about some initial guess do(x). This leads to the linear disparity
constraint equation

(ci(f), c2(5)) • {d{x) - do(x)) + c3(x) = 0, (2)

where (ci,C2) involve the gradient of B\ at x + d0, and c3 involves the
difference between B\ and BT.

For our test cases reported below we have chosen a phase-based dis-
parity scheme [4]. In particular, given a stereo pair we have the option
of prewarping these images according to an initial guess, &o, for k. This
prewarping is done using bilinear interpolation on the grey levels. The re-
sulting images are then bandpass filtered using complex 15 X 15 kernels
based on the steerable quadrature pair G2 and if2 developed in [5]. Each
pair is scaled so that the peak frequency occurs at wavelength A = 8 pix-
els, and four spatial orientations separated by 45 degrees are used. The
convolution responses are subsampled every second pixel both horizontally
and vertically, and then quantized to 8 bits. Phase gradients are computed
using the technique described in [4]. To reduce the number of noisy dis-
parity constraints we discarded filter responses with too low an amplitude
(i.e. below the response obtained from a grating having a half-amplitude
of 3 grey levels), or too close to a phase singularity* (i.e. we used r = 1.5
for the singularity neighbourhood detection in [4]). The phase constancy
assumption between the left and right images then provided disparity con-
straints of the form (2), for each of the four filter orientations. The error
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in the linearization used in the derivation of this constraint equation was
kept as small as possible by using discrete shifts in the subsampled grid,
according to the current guess for the disparity at each pixel.

From the results of the previous section, we know the disparity field for
the floor plane is

d(x) = m(x, k) - m(x, k0), (3)

where &o a r e ls related to any prewarping used. Substitution of equation
(3) into the disparity constraint equation (2) provides

m(x, k) - m(z, fc0)] + c3(x) = 0. (4)

We get one constraint of this form for each disparity constraint vector c[x)
that we measure during the image matching stage. One might consider
solving the resulting set of equations for k using nonlinear least squares.
The trouble is that such a straight forward approach cannot be expected to
work when there are significant outliers in these regression equations due
to floor anomalies. A successful solution strategy must be robust to the
presence of such outliers.

4 Mixture Model for Disparity

For a robust solution we follow the mixture model approach described in
[11,10]. The idea is to consider the disparity d(x) as arising from one of
several simple distributions. In particular, the disparity may arise from a
point on the floor, in which case we assume its value is distributed according
to the simple Gaussian model

Pf(d!\x, jfc) = N(d?\d(x, jfc), C). (5)

Here N(d'\d,C) is given by

± l(J-d)
T
C-\d

>
-d)). (6)

with d(x, k) the mean and C the covariance of the distribution. Note that
we have taken the mean to be the disparity provided by the warp parameters
k. Also, the covariance C represents both a tolerance for imperfections
in the floor and errors in the disparity measurements themselves. In our
experiments below we take

C = a2l, a = A/16. (7)

For A = 8, then, the standard deviation of the disparity is thus just a half
a pixel in any direction.
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In addition to points on the floor, the actual disparity may arise from
anomalies close to the floor. The phase-based method can produce con-
straints within a disparity range of ±A/2 of the initial guess. Disparities
outside of this range will produce false targets and outlier measurements
(see below). The stereo configuration specifies that the true disparities
must lie along particular epipolar lines, which can be easily computed from
L, R and the current image position x [9]. To model this set of disparities
we use the anisotropic Gaussian

pe(d?\x, k) = N(t?\d(x, k), C(x)). (8)

Again the mean of the distribution is just our current disparity estimate,
d(x, k). The covariance C(x) is taken to have a principle axis directed along
the epipolar line at x, with the second axis perpendicular to the epipolar
line. We take the standard deviation along the epipolar line to be A/2,
which is roughly the range of disparities that can be measured with the
phase-based approach. In the perpendicular direction we use the standard
deviation, a = A/16, which is the same as the one used for pj above.

The two distributions pe and pj are used to define the likelihoods of
measuring a constraint, c, given that the disparity arises from that distri-
butions. For example, the likelihood that c arises from the distribution pf
is

pUc\x,k) = a0-+ ai pf(d'\x,k)ds. (9)
A Jc-(d',i)=o

Here ds in the integral represents arclength along the specified line. We
have also included a flat distribution in this expression for p\ in order to
account for outliers in the measurement process which arise when the phase
constancy assumption fails. In all the experiments we set the proportion of
measurement outliers, ao, at 0.25. This allows for 25% of the constraints
measured off of the floor to be outliers. The above expression for pi can be
simplified to

which is just a mixture of a uniform distribution and a Gaussian distribution
having standard deviation a. A similar approach provides a closed form
expression for p2(c\x,k), which is the likelihood of observing constraint c
from the distribution pj.

Finally, 'outlier' disparities beyond the range of tne phase-based method
can also occur, as well as bogus constraints from regions which are only
visible in one of the images. The distribution of these outlier constraints is
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taken to be a uniform distribution

po{c\d) = - (11)

in the disparity range of ±A/2 about the current estimate d(x,k). This
range is again the limit imposed by phase-based methods. Note that we
are using four separate orientation channels and therefore we can model
each outlier distribution as effectively one dimensional.

Given the three likelihood functions, po, p\ and P2, the mixture model
for the distribution of a constraint vector c\x) at image location x is then
taken to be

p(c\x, rh, k) = mopo(c\x, k) + mipi(c\x, k) + ra2p2(c|z, k). (12)

We refer to pn as the nth component probability distribution of this mixture
model. The corresponding mixture proportion, mn, gives the prior proba-
bility that a constraint arises from this component of the distribution. Of
course, the mixture proportions mn, n = 0,1,2 must sum to one.

5 The EM-Algorithm

Given a set of disparity constraint vectors, {CJ(XJ)}J=1, we seek parameter

values k and mixture probabilities {mo, mi, m2} which provide a maximum

likelihood fit to this data set. In particular, assuming that the observations

are independently distributed, the log likelihood of generating this set of

observations from a specific mixture model of the form (12) is

J

log L(m,k) = ̂ log p(cj\m,d(x"j,k)). (13)

At a local extrema, it can be shown that the parameters m and k must
satisfy

d -

/ —* | 7 / —* j \ \ /-\

for n = 0,1,2. Here 7 arises as a Lagrange multiplier in imposing the

constraint that the mixture probabilities sum to one. The quantity qnj

satisfies
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Figure 1: A calibrated stereo image pair.

and is called an ownership probability. It is the probability that the j t h

constraint belongs to the nth component. These equations for a maximum
likelihood fit have been derived by a number of authors; for further details
see [13].

These equations suggest an iterative algorithm, known as the EM-
algorithm [13], for obtaining a maximum likelihood fit for the parameters
m and k. Given an initial guess for these parameters, we first estimate
the ownership probabilities qnj for each constraint belonging to each com-
ponent. This expectation step, or "E-step", simply involves evaluating
(15). Next, the maximization step, or "M-step", maximizes L with these
ownerships held fixed. The result is a simple iterative algorithm which is
guaranteed to increase the log likelihood of its fit each iteration [13]. In
the experiments discussed below we do not accurately locate a maximum
value for k during the M-step; instead we use only one iteration of Newton's
method applied to equation (14b).

It is important to understand precisely what is being modeled by the
mixture model given in equation (12). Note that the mixture proportion mn

is independent of the image location, and thus represents a spatial average
across the entire image of the occurrence of the nth mode. Clearly, for a
stereo pair which includes some floor anomalies (see Figure 1) the mixture
proportions should depend on image location. In any region consisting of
a floor anomaly we would expect m0 and m-i to account for most of the
constraints, while in a region containing only the floor, we expect mj to
dominate. This spatial variation is not being modeled here.

This fact that the mixture proportions represent averages over the entire
image is important when we come to display ownership results at specific
pixels. For the purposes of display it is convenient to show ownership likeli-
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Figure 2: Log likelihood ownership maps for outliers (left), the floor model
(middle), and for objects near the floor (right), consistent with the epipolar
geometry (right), for the stereo pair in Figure 1. Here white corresponds
to high likelihood, and the uniform grey background represents equal like-
lihood.

hoods for the various components of the mixture model at each pixel. These
likelihoods avoid the global averaging process discussed above, and clearly
exhibit the information available at each pixel separately. The ownership
likelihoods are computed simply by clamping the mixture proportions at
uniform probability levels, that is, for a three component mixture mn =
1/3 for each n, and then evaluating qnj according to equation (15).

One final implementation detail, which is important for inaccurate ini-
tial guesses, is that it is often convenient to use a coarse to fine strategy. In
particular, by decimating the original images by a factor of 2, 4, or 8, we
obtain disparity measurements corresponding to wavelengths 16, 32, and
64, respectively. These longer wavelengths increase the range of disparities
that a single constraint vector C(XJ) can measure. In addition to using
longer wavelengths, we have also found it useful to begin with the standard
deviation, a, of the disparity model at A/8 and decrease it slowly to the
value A/16. This provides a form of graduated non-convexity which helps
avoid local minima.

6 Experimental Results

The calibrated image pair shown in Figure 1 was obtained using a camera
separation of 56cm, with the distance to the floor near the middle of the
image about 180cm and the angle of the center ray with the floor about 45
degrees. The floor anomalies consisted of books, which have thicknesses of
of 0cm (top row, a piece of paper), 5.0cm (second row), 0.5cm, 4.3cm, 1.0cm
(third row, left to right), and 1.2cm, 1.7cm, 1.8cm (bottom row). The mix-
ture model procedure described in the previous section was used to fit the
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rational warp parameters k. The convergence behaviour was found to be
excellent in that the initial guess could be inaccurate, and the method con-
verged within 5 to 10 iterations. The fitted warp parameters were observed
to bring points on the floor into a nearly perfect correspondence. Similar
results have been observed on many other image pairs.

The ownership likelihoods for the three components of our mixture
model are shown in Figure 2. Note that in regions with little texture,
no disparity constraints were obtained, and thus the likelihood is left at
the intermediate level of 1/3 for all three components. Also, for regions in
which the texture of the floor (or an object) is roughly horizontal, we see
that the likelihoods for mixture components p\ and p2 are roughly equal.
This is as expected, since gradients which are nearly perpendicular to the
epipolar lines provide no information about depth, and are thus equally
likely to arise from either process p\ of p2. In the remaining places on the
floor, the likelihood maps show strong evidence for the floor model, while
the objects out of the floor plane are identified as outliers. The book on the
left end of the second row from the bottom, which is 0.5cm high, appears
to be close to the resolution limit of our system in that its top surface and
left edge are not clearly identified as an anomaly.

In summary, we have demonstrated a simple approach for fitting planar
models to stereo data which is robust in the presence of a significant number
(eg 50%) of outliers. The model involves fitting eight parameters for a
rational image warp, which is exact for planar surfaces and for cameras
free from radial distortion. Moreover the results of the fitting procedure
can be used to verify which portions of the floor are safe for transit.
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