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[1] According to the well-known Coulomb failure criterion the variation of either stress or
pore pressure can result in earthquake rupture. Aftershock sequences characterized by
the Omori law are often assumed to be the consequence of varying stress, whereas
earthquake swarms are thought to be triggered by fluid intrusions. The role of stress
triggering can be analyzed by modeling solely three-dimensional (3-D) elastic stress
changes in the crust, but fluid flows which initiate seismicity cannot be investigated
without considering complex seismicity patterns resulting from both pore pressure
variations and earthquake-connected stress field changes. We show that the epidemic-type
aftershock sequence (ETAS) model is an appropriate tool to extract the primary fluid
signal from such complex seismicity patterns. We analyze a large earthquake swarm that
occurred in 2000 in Vogtland/NW Bohemia, central Europe. By fitting the stochastic
ETAS model, we find that stress triggering is dominant in creating the observed seismicity
patterns and explains the observed fractal interevent time distribution. External forcing,
identified with pore pressure changes due to fluid intrusion, is found to directly trigger
only a few percent of the total activity. However, temporal deconvolution indicates that
a pronounced fluid signal initiated the swarm. These results are confirmed by our
analogous investigation of model simulations in which earthquakes are triggered by fluid
intrusion as well as stress transfers on a fault plane embedded in a 3-D elastic half-space.
The deconvolution procedure based on the ETAS model is able to reveal the underlying
pore pressure variations.
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1. Introduction

[2] Stress triggering has been identified as an important
mechanism for aftershock sequences [Stein, 1999]. This
mechanism is based on a well-known criterion for earth-
quake occurrence, the Coulomb failure criterion [Harris,
1998],

CFS � t� m s� Pð Þ � 0 ð1Þ

stating that a positive Coulomb failure stress (CFS) could
promote failures. Here, t defines the shear and s the normal
stress on the failure plane (positive for compression), and m
is the coefficient of friction. In the presence of fluids, the
pore pressure P has to be taken into account. The (s � P)
term is known as the effective normal stress.
[3] The activity rate l of aftershock sequences generally

decays according to the modified Omori law, l(t) = K(c +
t)�p, where K, c and p are constants, and t is the elapsed time

since the main event [Utsu et al., 1995]. The epidemic-type
aftershock sequences (ETAS) model is a stochastic point
process incorporating the empirically observed character-
istics of stress triggered activity, where each earthquake has
some magnitude-dependent ability to trigger its own Omori
law type aftershocks [Ogata, 1988, 1993; Helmstetter and
Sornette, 2002]. In particular, the rate of aftershocks induced
by an earthquake that occurred at time ti with magnitude Mi

is given by

li tð Þ ¼
K0

cþ t � tið Þp e
a Mi�Mminð Þ ð2Þ

for time t > ti. The parameters K0, a, c and p are constant to
all earthquakes of a given area and Mmin is the lowest
magnitude cut of the catalog. The total occurrence rate,

l tð Þ ¼ l0 þ
X

i:ti<tf g
li tð Þ ð3Þ

is sum of the rate of all preceding earthquakes and a
constant background rate l0. Note that we use here the
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symbol l0 instead of the commonly used m to avoid
confusion with the coefficient of friction. This background
rate l0 refers to activity which is not triggered by precursory
earthquakes, or in other words, which is not a part of an
aftershock sequence. At tectonic plate boundaries, l0 is
usually assumed to result from stress accumulation due to
tectonic plate motion.
[4] The Coulomb failure criterion also explains earth-

quake clustering initiated by pore pressure variations. Fluids
are often assumed to trigger earthquake swarm activity,
which differs significantly in its temporal clustering and
energy release from aftershock sequences [Nur, 1974;
Scholz, 2002]. However, earthquakes induced by fluids
themselves produce local stress field changes. Thus the
mechanism of fluid triggering is always accompanied by
stress triggering. However, fluid induced seismicity can also
be described by the ETAS model, because it deals with
internally (stress) triggered as well as externally forced
events. In this case, the background rate l0 refers to activity
forced by pore pressure changes instead of the movement of
tectonic plates.
[5] In this study, we investigate the complex seismicity

pattern of an earthquake swarm that occurred in 2000 in
Vogtland/NW Bohemia, central Europe (see Figure 1). This
region is well known for its episodic occurrence of earth-
quake clusters consisting of small magnitude events
(Jentzsch et al. [2003] and papers in the same special issue).
Although there is no active volcanism, CO2 emanations
present in this region are assumed to originate from degass-
ing of an active magma body in the upper mantle [Weinlich

et al., 1999]. The correlation of the isotopic content of
these gasses with swarm activity has led to the conclusions
that the swarm activity is induced by fluid overpressure
[Brauer et al., 2003]. On the other hand, the fluid signal is
not obvious in the seismicity pattern and the earthquake
sequences have features in common with tectonic earth-
quake clusters (section 2). We show that the main charac-
teristics of this swarm activity can be reproduced by model
simulations in which earthquakes are triggered by fluid
intrusion as well as stress transfers (section 3). In section 4,
we analyze both the Vogtland swarm seismicity and model
simulations by means of the ETAS model in order to extract
the underlying fluid signal and demonstrate the efficiency of
the method.

2. Vogtland Earthquake Swarm

[6] The earthquake swarm analyzed in this study
occurred between August and December 2000 in the Novy
Kostel focal area (Figure 1). It is the most recent and best
documented strong earthquake swarm in Vogtland/NW
Bohemia. The investigated earthquake catalog is recorded
by the WebNET local seismic network [Horalek et al.,
2000] and consists of more than 8400 earthquakes with
local magnitude ML � �0.5 [Fischer, 2003]. The catalog is
found to be complete for ML � 0.2 [Hainzl and Fischer,
2002]. Thus we restrict our investigations to the N = 4823
earthquakes with magnitudes �0.2. The earthquakes are
shown in Figure 2 as a function of their occurrence times.
[7] From previous investigations of this earthquake

swarm [Hainzl and Fischer, 2002; Fischer, 2003], it is
known that (1) all the earthquakes occur approximately on
the same fault plane; (2) the spatial spreading of the swarm
activity scales with the cumulative seismic moment release
according to the theoretical relation for a crack growthM0 

R3 [Scholz, 2002], but the space-time pattern is complex;
(3) the average seismic moment release increases during the
swarm evolution according to hM0i / i1/4, where i is the
earthquake index; and (4) the temporal occurrence is fractal
(clustered on all timescales), in particular, the interevent
time distribution can be described by the power law t�1.5.

Figure 1. Map of the location of the Vogtland/NW
Bohemia earthquake swarm region and its fault structure
(line segments). Earthquake epicenters are indicated by
circles, and the main swarm area is marked by the ellipse
enclosing the year 2000 swarm activity.

Figure 2. Local magnitudes of the Vogtland swarm
earthquakes as a function of their occurrence. The time is
measured from 28 August 2000.
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Furthermore, embedded aftershock sequences have been
identified [Hainzl and Fischer, 2002; Hainzl, 2003].

3. Simulated Swarm Activity

[8] In addition to the Vogtland swarm, we investigate
earthquake catalogs resulting from the physical fault model
proposed by Hainzl [2004]. After briefly introducing the
model (section 3.1), we show the main characteristics of the
simulations in section 3.2.

3.1. Physical Model

[9] The analyzed model [Hainzl, 2004] has been intro-
duced to simulate seismicity patterns initiated by fluid
migration in a narrow, porous, planar fault zone embedded
in a three-dimensional (3-D) elastic half-space. For the most
part, it is identical to the model proposed by Yamashita
[1997, 1998] but with an added mechanism of postseismic
creep on the fracture zone which leads to realistic aftershock
activity according to the Omori law.
[10] Because the general description of the model is given

elsewhere [Yamashita, 1997, 1998; Hainzl, 2004], we only
give a brief summary and specify the parameter values used
for our simulations here.
[11] The model is illustrated in Figure 3a. The fault plane

of the Vogtland earthquake swarm is adapted by a 3 km �
3 km rectangular fault patch dipping 73�. The lower edge of
the brittle segment is set to 10 km depth [Hainzl and
Fischer, 2002]. This patch is discretized in 50 � 50 cells
each of dimension 60 m � 60 m. The normal stress s, the
pore pressure P and the static coefficient of friction m are
assumed to be initially constant on the fault plane. The
effective normal stress s � P is arbitrarily set to 25 MPa
and the coefficient of friction is initially set to m = 0.6. The
normal stress is assumed to remain constant during the
simulation. Thus the effective stress only varies in response
to pore pressure changes.

[12] Slip on a cell occurs if the Coulomb failure criterion
(equation (1)) is fulfilled. The coseismic sliding is governed
by a static/kinetic friction law [Ben-Zion and Rice, 1993]. If
sliding is initiated, the coefficient of friction, i.e., the
frictional resistance, drops to its lower dynamic value md
and remains there until the earthquake is terminated. The
dynamic weakening of the fault strength is accompanied
by a stress drop. The shear stress t drops to the arrest
stress ta which is smaller than the frictional dynamic stress
md (s � p) because of dynamic overshoot. To account for
heterogeneities of the brittle properties, the values of ta and
md vary in space. The arrest stresses ta are uniformly
distributed in the arbitrarily chosen interval between 2 and
8 MPa; the dynamic coefficient of friction varies between
ta/25 MPa and 0.6.
[13] The stress change at the fault plane due to relative

slip of one segment is calculated with the analytic solution
given by Okada [1992], where slip is in the strike direction
and the half space rigidity is assumed to be 30 GPa [Kurz et
al., 2003].
[14] The sliding of one cell can lead to an instability in other

cells and so on. An earthquake ends when all cells are stable
with regard to the Coulomb failure criterion (equation (1)).
The duration of earthquakes is much shorter than the typical
time separating subsequent earthquakes. Thus we assume
instantaneous coseismic slip, or in other words, that thewhole
earthquake occurs at the same time.
3.1.1. Healing and Postseismic Creep
[15] To account for logarithmic healing after coseismic

slip observed in laboratory experiments [Dieterich, 1972;
Ruina, 1983; Scholz, 1998], the fault strength is assumed to
recover according to

m Dtð Þ ¼ md þ m0 � mdð Þ log 1þ Dtð Þ
log 1þ Tð Þ ð4Þ

Figure 3. (a) Illustration of the model configuration and (b) assumed healing and slip characteristics.
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where T is the time interval required for complete healing
and Dt is the time in minutes elapsed since the earthquake
occurred (Figure 3b).
[16] It is known from laboratory experiments that the

logarithmic healing results from asperity creep on the
fracture zone, which leads to an increase of the contact area
[Scholz and Engelder, 1976]. The model assumes that, after
coseismic slip, the dislocation slowly extends due to creep
on the earthquake rupture area, adapting observed afterslip
characteristics in a simplified way [Burgmann et al., 2002].
It is straightforward to assume that the afterslip is correlated
to the strength; that is, slip is assumed to logarithmically
increase according to

s Dtð Þ ¼ s0 þ s1
log 1þ Dtð Þ
log 1þ Tð Þ ð5Þ

where s0 and s1 refer to the coseismic and postseismic slip.
The fraction of postseismic slip k � s1/(s0 + s1) is a
parameter in our simulations. The assumed slip character-
istic is illustrated in the lower part of Figure 3b.
3.1.2. Fluid Diffusion
[17] According to Darcy’s law, pore pressure variations in

the fault plane due to an intrusion of fluids from a high-
pressure source can be described by the diffusion equation

d

dt
P ¼ D

d2

dx2
P ð6Þ

where D is the hydraulic diffusivity [Shapiro et al., 1997;
Yamashita, 1997]. The diffusivity of the crust is generally
expected to be between 0.01 and 10 m2/s [Scholz, 2002].
The model assumes a high-pressure source which starts to
release fluids at depth x0. This source is assumed to be large
and laterally extensive, thus the one-dimensional version of
equation (6) can be solved to find deviations from the
initially constant pressure state.
[18] Slip and strength evolution, as well as the pore

pressure, diffusion are simulated by means of a finite
difference scheme.

3.2. Characteristics

[19] The mean stress level of the initial stress field is
found to determine whether the fault segment is in a
subcritical, critical or supercritical state [Hainzl, 2004].
Similar to the results found for slider-block models [Hainzl
and Zöller, 2001], earthquake ruptures occurring in over-
stressed (supercritical) faults cannot be stopped after grow-
ing beyond a critical size. This results in earthquake
sequences characterized by a single dominant earthquake.
Swarm-like activity occurs for initially subcritical stress
states if the pore pressure increase is sufficient to bring
the fault close to the critical state.
[20] We analyze model simulations with different combi-

nations of themodel parameters: (1) diffusivityD, (2) depth of
the fluid source x0, (3) pore pressure increase DP, (4) healing
time T, and (5) fraction of postseismic creep k. Although the
simulations vary somewhat for different settings, the overall
characteristics are almost independent of the parameter values
and in very good agreement with the natural swarm occur-
rence in Vogtland. Figure 4 illustrates the main characteristics
for one example, where the parameters are set toD = 1.0m2/s,

x0=10km,DP=2MPa,T=0.1 days, andk=0.3: The activity
is not dominated by one large event, instead it occurs in
several subclusters separated in space and time (Figure 4a).Of
particular importance, the temporal occurrence of earth-
quakes is fractal, where the interevent time distribution
reproduces the empirically observed power law 
t�1.5

(Figure 4b). The frequency-magnitude distribution can be
fitted by a similar Gutenberg-Richter law (Figure 4c). We
calculate for each event a local magnitude ML from its
seismic moment M0 (in N m) by means of the empirical
relation for the Vogtland region, ML = 0.95 log(M0) � 10.76
[Hainzl and Fischer, 2002]. The shape of the resulting
frequency-magnitude distribution is very similar to that of
the Vogtland swarm earthquakes, and in particular the b value
is the same. Note that the lower magnitude cutoff
0.8 is due
to the subfault cell dimension of 60 m � 60 m. The seismic
moment, which is on average released per event, monoto-
nously increases during the evolution of the earthquake
swarm according to M0 
 i0.25, where i is the earthquake
index (Figure 4d). Equivalently, the cumulative seismic
moment release increases as SM0 
 i1.25. Exactly, the same
relation has been found for the Vogtland earthquake swarm
[Hainzl and Fischer, 2002].
[21] On basis of these observations indicating clustered

activity, we try to fit the ETAS model in order to separate
the signals of stress triggering and external forcing in both
observed and simulated data.

4. ETAS Modeling

[22] The estimation of the five parameters (l0, K0, a, c, p)
of the ETAS model (equation (3)) is carried out by the
maximum likelihood method. The log likelihood with
respect to the occurrence times of the earthquakes ti is
given by

ln L l0;K0; c;a; pð Þ ¼
X

N

i¼1

lnl tið Þ �
Z

te

ts

l tð Þdt ð7Þ

where ts and te define the starting and the ending time of the
activity [Ogata, 1993].
[23] Model selection, particularly the determination of the

number of parameters, is carried out using the Akaike
information criterion (AIC) [Akaike, 1974; Parzen et al.,
1998]. The statistic AIC = �2 MLL + 2k is computed for
each of the models fit to the same data, where MLL is the
maximum log likelihood value with respect to the param-
eters, and k is the total number of fitted parameters. In
comparing models with different numbers of parameters,
addition of the quantity 2k roughly compensates for the
additional flexibility which the extra parameters provide.
The model with the lower AIC value is taken as giving the
better choice for forward prediction purposes. Insofar as it
depends on the likelihood ratio, the AIC can also be used as
a rough guide for testing the model. In testing a model with
k + d parameters against a null hypothesis with just k
parameters, we take a difference of 2 in AIC values as a
rough estimate of significance at the 5% level. An alterna-
tive to the Akaike information criterion is the modified
version of Schwarz’s information criterion, BIC = MLL �
0.5k ln(N/2p), where N is the number of events [Main et al.,
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1999]. In this case, the best model has the largest BIC value.
The BIC criterion has been shown to be superior in the case
of larger data sets [Koehler and Murphree, 1988].

4.1. Analysis of the Vogtland Earthquake Swarm

[24] The result of the ETAS parameter estimation for the
Vogtland earthquake swarm activity is shown in Table 1.
The estimated parameters are in agreement with previously
observed values for earthquake activity worldwide [Ogata,
1992]. In particular, the observed a value for the Vogtland
swarm (a = 0.73) is similar to previous findings for
Japanese earthquake swarm activity, where the a value
has been found to scatter in the range [0.35, 0.85], in
contrast to nonswarm activity which is characterized by
higher values, namely, a 2 [1.2, 3.1] [Ogata, 1992]. In
addition, the table shows the differences of the AIC and BIC
value between the ETAS model and a Poissonian (tempo-
rally uncorrelated) process, DAIC = AICETAS � AICrand and
DBIC = BICETAS � BICrand. The negative DAIC and
positive DBIC value indicate that the ETAS model is a
better representation of the data. The quality of the fit can be
visualized by comparing the expected and the observed
number of earthquakes as a function of time. In the case of
the ETAS model, we calculate the cumulative number by
integration of equation (3). The result is shown in Figure 5.
The shape of both curves is almost identical, although there
is some shift in the curves which will be later explained.

[25] The fitted ETAS model gives a low forcing rate of
about l0 = 0.32 events per day leading to a total of about 38
earthquakes in the whole swarm period of 120 days which
means that only 0.8% of all earthquakes are externally
triggered. The great majority is self-triggered activity.
[26] In order to find out whether the ETAS model is an

appropriate description of the swarm activity and is able to
explain the observed fractal interevent time statistics of the
Vogtland swarm, we produce Monte Carlo simulations of
the ETAS model with the parameters given in Table 1. The
simulations are performed by a thinning method using a
piecewise constant rates Poisson processes, where the
earthquake rate is determined at each time by the preceding
earthquakes and the background rate (equation (3)) and

Figure 4. Example of a model simulation: (a) magnitudes as a function of time; (b) interevent time
probability distribution; (c) frequency-magnitude distribution; and (d) cumulative seismic moment
release as a function of the earthquake index i.

Table 1. Estimated ETAS Parameters of the Vogtland Earthquake

Swarm and the Corresponding DAIC and DBIC Values Quantify-

ing the Quality of the Fit

Parameter Value

l0 0.32
K0 0.0137
c 0.00046
a 0.73
p 1.37
DAIC �26,098
DBIC 13,042
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magnitudes are taken from the original swarm sequence. For
that, we use the algorithm given by Ogata [1998]. We end
the simulations after the number of earthquakes reaches that
of the original catalog. Figure 6a shows a typical example
for such a stochastic forward simulation. The synthetic
earthquake sequence consists of several subswarms in
agreement with the original earthquake swarm. The fine
structure is also reproduced by the ETAS simulation.
Figure 6b shows the interevent time distribution of the
Monte Carlo simulation in comparison with that of the
original earthquake swarm. Both distributions are very
similar and can be fitted by the same power law t�1.5.
4.1.1. Time Dependence of the Forcing Rate
[27] For the simulation shown in Figure 6a, we use

the seismic activity of the first 5 swarm days as initial
conditions. We find that simulations without any given
initial activity show a much slower starting phase compared
to the Vogtland swarm. This points to a nonstationary
behavior, in particular at the initiation phase. To explore

this nonstationary behavior, we fit the ETAS model in a
moving time window, the length of which is set to 10 days.
We perform the calculation in two alternate ways: (1) only
the parameter l0 is fitted, where all other parameters are set
to the values found for the whole sequence (see Table 1) and
(2) all five parameters are fitted in each time window. The
latter procedure is more unstable for swarm episodes with a
small number of earthquakes. However, the results for both
calculations are similar. We find a large systematic variation
in the external forcing strength l0 (Figure 7). The earth-
quake swarm seems to be initiated by a strong fluid impulse
which decreases within the first 10 days. A second, weaker
peak is observed about two months later, which decreases
again with time. The curve can be compared with the phases
of diffusion-like hypocenter migration marked as boxes in

Figure 6. Example of a Monte Carlo simulation of the ETAS model with parameters taken from Table 1.
(a) Points representing the magnitudes of the simulated earthquakes as a function of time. The dashed line
marks the first 5 days which are taken from the original swarm sequence as initial activity. (b) A log-log
plot showing the probability density for observing a certain waiting time between successive earthquakes
in the simulated (line) and empirically observed (crosses) swarm activity. Both distributions can be fitted
by the same power law 
t�1.5 (dotted line).

Figure 5. Cumulative number of earthquakes as a function
of time observed in the Vogtland swarm compared with that
expected by the ETAS model.

Figure 7. Time dependence of the forcing rate l0 resulting
from fitting only l0 (solid line) or all parameters
simultaneously (dotted line), in a moving time window. In
addition, the points indicate the analyzed Vogtland earth-
quake sequence, and the boxes mark the phases in which the
spatial spreading indicates pore pressure diffusion [see
Parotidis et al., 2003].
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Figure 7. These phases have been previously detected by
analyzing the local spreading characteristics within this
swarm activity [Parotidis et al., 2003]. Both results corre-
late. In particular, the large subswarm that occurred after
20 days shows no sign of fluid triggering either in its
temporal or in its spatial characteristics. After about
110 days, however, our curve shows a small fluid signal
previously not observed.
4.1.2. Declustering Based on ETAS Model
[28] The ETAS modeling can also be used to decluster the

earthquake catalog. To begin with, we use the declustering
procedure proposed by Zhuang et al. [2002]. The probability
that an event i belongs to the background is calculated by the
ratio between background rate and the total occurrence rate,
l0/l(ti), where l(ti) is calculated according to equation (3).
Events are assigned to the background on a random basis.
We thus obtain different stochastic versions of declustered
catalogs by repetition of the procedure. For 1000 versions,
we calculate the percentage of background earthquakes.
The mean value is 0.8% with a standard deviation of
0.1%. This value is in agreement with our previous
estimate.
[29] The declustering procedure does not, however, con-

sider the nonstationary nature of the background rate. To
account for this variability, we use the curve l0(t) (Figure 7)
as an input to the declustering procedure. The resulting
percentage of background earthquakes is 2.4 ± 0.2%. In
addition, we use a simpler procedure which requires no
previous knowledge of the nonstationarity. In this case, we
calculate for each event whether or not it is likely to be a
part of an earthquake cluster by means of the log likelihood
ratio, D = MLLETAS � MLLrand; that is the difference
between the maximum log likelihood value of the ETAS
model and that of a Poissonian process. This value is
computed for the sequence with (Dall) and without (D�i)
the event under investigation. In the case Dall > D�i, the
activity becomes more similar to a Poisson process if the
event is not taken into account. Thus the earthquake is part
of an earthquake cluster. Vice versa, the event occurred
temporally uncorrelated in the case Dall < D�i. In this way,
we can remove the clustered earthquakes from the catalog.

[30] Applying the latter procedure to the Vogtland earth-
quake swarm, the catalog is reduced to 342 events (7.1% of
the activity). For a comparison, in Figure 8 we show the
spatiotemporal distribution of the complete and declustered
swarm activity. Here, the distance from the first event of the
sequence is plotted as a function of the occurrence time.
First, we find that the main clusters have disappeared. Some
clustering remains in the time period between 50 and
70 days after the swarm initiation. This is in agreement
with our previous finding that the fluid signal is enlarged in
this swarm period (see Figure 7). Second, we compare the
data points with the theoretical prediction for fluid induced
earthquake activity. In the simplest case of fluid diffusion,
the distance r of the propagating pore pressure front from
the point source is given by r =

ffiffiffiffiffiffiffiffiffiffiffi

4pDt
p

[Shapiro et al.,
1997], where t is the time and D the hydraulic diffusivity.
The earthquakes are expected to occupy the space beneath
this curve. The fit of this theoretical curve is rather poor for
the complete catalog, but becomes much better for the
declustered data. In the latter case, the previously proposed
value of D = 0.27 m2/s [Parotidis et al., 2003] fits the
swarm migration well. This indicates that the ETAS mod-
eling in the time domain can also be used to reveal the
spatial patterns of the fluid signal.
4.1.3. Discussion
[31] The ETAS modeling can be used in order to identify

the background as well as the triggered component of
seismicity. Statistical modeling of the Vogtland earthquake
swarm has shown that the fractal temporal statistics are
solely explainable by the triggered component, namely an
epidemic aftershock occurrence, whereas the signal of the
external forcing is almost completely buried. Applying a
stationary ETAS model, the percentage of background
events is estimated to be 0.8 ± 0.1%. Accounting for
nonstationary behavior, the two applied declustering proce-
dures yield slightly larger values of about 2.4% and 7.1%,
respectively.
[32] The deconvolution of the time dependence of the

external forcing signal reveals a dominant forcing signal
initiating the swarm activity and a secondary smaller peak
after 50 days. For Figure 7, we use an arbitrary value of

Figure 8. (a) Hypocenter distances measured from the first event as a function of the earthquake
occurrence times for the Vogtland swarm (light points are clustered events; dark points are background
events). The line refers to the theoretical position of the propagating pore pressure front in the case of a
hydraulic diffusivity of D = 0.27 m2/s. (b) Only the first 10 days.
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10 days for the moving time window. We find that the time
window acts like a filter; in other words, shorter time
windows produce additional short period fluctuations and
longer time windows smooth the curve. However, the
general shape of this l0 curve is found to be independent
of the chosen time window.
[33] Generally, it cannot be determined whether the

background activity results from tectonics or pore pressure
changes. However, we are confident that our observed
signal is related to fluids because of the large variations
on a short timescale which are inexplicable by tectonic
causes. In section 4.2 we demonstrate by means of model
simulations that the observed temporal variations of the
forcing parameter l0 are directly correlated with the under-
lying fluid flows.

4.2. Analysis of Model Simulations

[34] We now repeat the analysis of the Vogtland swarm in
section 4.1. First, we fit the ETAS model to the simulated
earthquake catalogs in order to deconvolute the stress and
the fluid signal. The estimations of the five parameters of
the ETAS model (l0, K0, a, c, p) and the differences of the
AIC and BIC values between the ETAS model and a
Poissonian process are summarized in Table 2 for six
different simulations. The values l0, K0, and p are found
to scatter in the same range as for the Vogtland swarm
(Table 1). Furthermore, the differing values of c and
DAIC(DBIC) can be understood as follows: The larger
values of c are likely to result directly from the chosen
timescale in equation (5) which yields an afterslip rate
proportional to (1[min] + Dt)�1. If the rate of aftershocks
is proportional to the afterslip rate, then a c value of 1 [min]�
0.0007 [days] is expected. Thus a slightly reduced timescale
in equation (5) could explain the smaller c value for the
Vogtland swarm. The smaller differences of the AIC and
BIC values can be explained by the smaller number of
earthquakes in the catalogs due to the limited magnitude
range. However, the deviation of the parameter a seems to
be significant. This value is found to be close to 2 in
contrast to 0.73 in the case of the Vogtland swarm. Thus
the simulations resemble the a values typical for seismicity
at tectonic plate boundaries rather than for swarm activity
[Ogata, 1992]. Probably, the differing a value indicates that
the postseismic creep triggering mechanism overestimates
the magnitude dependence found in the swarm activity.
Because afterslip is assumed to be proportional to coseismic
slip in our model, the stress changes due to the proposed
mechanism scale with the seismic moment M0 of the
earthquake. Note that the parameters in Table 2 are esti-
mated for local magnitudes which are calculated from the
seismic moment according to ML = 0.95 log(M0) � 10.76.
Thus a value of a = ln 10/0.95 � 2.4 should be observed if

exp(aML) 
 M0 is assumed; in this case the aftershock
productivity is strictly correlated to the stress changes,
particularly M0. However, the effect of stress changes
depends on the Coulomb failure stress field which is
dynamically evolving during our model simulations. The
stress field evolution explains the slightly reduced value
(a � 2.0), but it cannot explain the discrepancy with the
observed value in the Vogtland region. A possible explana-
tion is that we neglect the mechanism of pore creation
proposed by Yamashita [1999]. This effect is assumed to
increase with earthquake magnitude, but would counteract
the mechanism of afterslip, because the creation of pore
volume results in a drop of pore pressure, thus a decrease of
Coulomb failure stress (equation (1)). Therefore afterslip, in
combination with pore creation, could explain the lower
value of a found for swarm activity.
[35] In the next step, we asses whether the underlying

pore pressure change can be recovered by the procedure
applied to the Vogtland swarm in section 4.1.1. For that, we
fit the ETAS parameter l0 in a moving time window of
10 days. All other ETAS parameters are set to the values
which are estimated for the whole earthquake sequence. To
assess if the deconvolution of stress and fluid signal works,
we compare the resulting variation of l0 with the spatially
averaged rate of pore pressure increase, which is known
exactly for these model simulations. Figure 9 shows the
result for each of the simulations summarized in Table 2.
We find that the deconvolution works well. Despite some
fluctuations, the main shape of the fluid signal is reproduced
in all cases. Furthermore, not only the shape but also the
absolute values of l0 are correlated with the strength of the
pore pressure increase. Note that we have arbitrarily set
the time window to 10 days for both the analysis of the
simulations and the Vogtland swarm. Optimization of the
time window will probably be able to clarify the results.

5. Summary and Conclusion

[36] Two mechanism are often assumed to cause earth-
quake clustering: stress triggering and fluid flow. Whereas
stress triggering can be tackled sometimes in isolation, e.g.,
in the case of undrained rocks, fluid induced seismic
activity will always incorporate both mechanisms. Thus
stress triggering can dominate seismicity patterns, although
it is not the initial process. We find that this is the case for
swarm activity in the Vogtland region. The stress triggering
signal which is identified with Omori-like aftershock
sequences dominates the whole activity. The epidemic type
aftershock sequence (ETAS) model fits the earthquake
sequence very well. Only a few percent of the activity is
found to be directly triggered by the fluid signal. The
temporal evolution of the fluid signal is revealed by fitting

Table 2. Estimated ETAS Parameters and Corresponding DAIC, DBIC Values for Different Model Simulations

Model
Simulation D, m2/s x0, km DP, MPa T, days k l0 K0 c a p DAIC DBIC

a 1 10 2 0.1 0.3 0.34 0.0067 0.0022 2.06 1.48 �7264 3627
b 1 11 2 0.1 0.3 0.75 0.0025 0.0028 1.99 1.73 �7343 3667
c 0.27 10 5 0.5 0.2 0.70 0.0173 0.0022 1.95 1.19 �1878 935
d 0.27 11 5 0.5 0.2 1.10 0.0086 0.0021 2.18 1.29 �1601 798
e 0.1 10 5 0.5 0.3 0.78 0.0120 0.0027 2.07 1.34 �3773 1882
f 0.1 11 5 0.5 0.2 0.55 0.0098 0.0012 1.88 1.28 �570 284
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the ETAS model in moving time windows. We find a clear
indication for fluids initiating the swarm activity within the
first days. Afterward only a smaller secondary peak is
observed during the swarm evolution. This finding is in
agreement with the previously observed nonfractal temporal
clustering characteristics in the initiation phase [Hainzl and
Fischer, 2002] and observations related to hypocenter
diffusion [Parotidis et al., 2003]. The pattern of hypocenter
diffusion itself is shown to be resolved by an ETAS-based
declustering of the earthquake catalog. Note that the pro-
posed method analyzes solely earthquake sequences and
make no use of hypocenter information.
[37] The efficiency of the deconvolution procedure is

proved by an analogous analysis of simulated earthquake
activity, which is forced by pore pressure diffusion and
incorporates stress field changes in a three-dimensional

elastic half-space. The statistical characteristics of these
simulations are in good agreement with the Vogtland
earthquake swarm; in particular, the magnitudes and the
interevent times are distributed in a very similar way.
Although the most conspicuous seismicity patterns of these
simulations result from stress triggering, we find that our
deconvolution procedure is able to reconstruct the buried
fluid signal in its main parts. Thus this procedure seems to
be a promising method to unveil fluid signals in seismicity
patterns, even in the case of poor hypocenter information.
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improve this paper significantly. Furthermore, we are thankful to Tomas
Fischer and Lindsay Schoenbohm for stimulating discussions and discerning
reading of the manuscript. S.H. was supported by the Deutsche Forschungs-
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Figure 9. For each of the model simulations a–f in Table 2, Figures 9a–9f show the time dependence
of the forcing rate l0 resulting from fitting l0 (solid line) in a moving time window. In each case, this
curve is compared with the really underlying rate of pore pressure increase (dashed line). The points refer
to the analyzed earthquakes.
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