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Abstract

Different news articles about the same topic

often offer a variety of perspectives: an arti-

cle written about gun violence might empha-

size gun control, while another might promote

2nd Amendment rights, and yet a third might

focus on mental health issues. In communica-

tion research, these different perspectives are

known as “frames”, which, when used in news

media will influence the opinion of their read-

ers in multiple ways. In this paper, we present

a method for effectively detecting frames in

news headlines. Our training and performance

evaluation is based on a new dataset of news

headlines related to the issue of gun violence

in the United States. This Gun Violence Frame

Corpus (GVFC) was curated and annotated by

journalism and communication experts. Our

proposed approach sets a new state-of-the-art

performance for multiclass news frame detec-

tion, significantly outperforming a recent base-

line by 35.9% absolute difference in accuracy.

We apply our frame detection approach in a

large scale study of 88k news headlines about

the coverage of gun violence in the U.S. be-

tween 2016 and 2018.

1 Introduction

The political climate in the United States is

increasingly polarized (Pew Research Center,

2018a). To many media scholars and pundits,

the main reason that liberals and conservatives in-

habit different worlds is that news media of var-

ied political orientations have been depicting two

distinct versions of social reality (Mitchell et al.,

2014; Stroud, 2011). To address this problem, one

needs to assess the ways in which news reporters

frame important public affairs. In communication

research, “to frame” means “to select some as-

pects of a perceived reality and make them more

salient in a communicating text” (Entman, 1993).

Like any type of communication, news involves

framing. In a polarized media environment, par-

tisan media outlets intentionally frame news sto-

ries in a way to advance certain political agen-

das (Jamieson et al., 2007; Levendusky, 2013).

Even when journalists make their best efforts to

pursue objectivity, media framing often favors one

side over another in political disputes, thus always

resulting in some degree of bias (Entman, 2010).

Hence, a news framing analysis is helpful because

it not only tells us whether a news article is left-

or right-leaning (or positive or negative), but also

reveals how the article is structured to promote a

certain side of the political spectrum.

In communication research, manual identifica-

tion of media frames is a challenging task due

to the large amount of media data in this news-

saturated environment. More importantly, there is

a high level of complexity in framing analysis that

often requires a careful investigation of nuances in

news coverage, which is time-consuming. In the

field of Natural Language Processing (NLP), au-

tomated news framing analysis is a relatively un-

explored area. Existing sentiment-analysis tech-

niques fall short of addressing the nuances needed

for framing analysis, which requires the detection

of perspectives beyond positive and negative.

In this paper, we develop a neural network

based approach for classifying frames in news ar-

ticle headlines by fine-tuning a state-of-the-art lan-

guage representation model (BERT: Bidirectional

Encoder Representations from Transformers (De-

vlin et al., 2018)) for the task of frame detection.

Here, we focus on the application of news frame

detection on one prominent public affairs issue in

the United States, namely, gun violence. Some of

the deadliest mass shootings have happened dur-

ing the past few years. In fact, the United States

has the highest rate of gun-related homicides in

the developed world. However, Republicans and

Democrats remain divided on whether gun vio-
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lence is an important issue and disagree on most

gun-related policies, making gun violence one of

the most polarized issues in the country. (Pew Re-

search Center, 2018b). As a result, despite the

seriousness of the issue in reality, it is not con-

sidered a priority that should be tackled at the

Congressional level. One factor that potentially

explains the divergence of public opinion is how

different politically oriented news media cover

gun violence. It is likely that liberal-leaning and

conservative-leaning media frame the issue in dif-

ferent ways, which may ultimately determine dif-

ferent publics’ perception of the issue.

We use our frame detection approach to au-

tomatically detect frames of news article head-

lines related to gun violence during the past few

years, which enables large scale analysis of fram-

ing trends surrounding this issue in the United

States. Specifically, we focus on the years 2016,

2017, and 2018 because these three years have

witnessed a number of high-profile mass shoot-

ings, which often reignited national gun debate.

Overall, our analysis results in interesting find-

ings about U.S. media coverage of gun violence

that speak to the divided media and political land-

scape in the country. Our contributions are two-

fold: Firstly, we have developed a state-of-the-

art news frame detection approach by fine-tuning

BERT language model to perform the multiclass

(frame) classification on news article headlines.

Our approach significantly outperforms a recent

baseline in automated news frame detection (Field

et al., 2018) and other neural network baselines.

Secondly, we have curated a new dataset of

news articles related to U.S. gun violence: the Gun

Violence Frame Corpus (GVFC), which contains

news headlines and their frame annotations from

21 major U.S. news organizations. This dataset is

the first of its kind in that it is carefully curated

and contains domain-expert annotations of frames

in news headlines. We use our model trained on

GVFC to do a large scale analysis of U.S. gun vi-

olence framing trends in the U.S. between 2016

and 2018.

2 Related Work

2.1 News Framing

Framing is a subtle form of media manipulation in

which some aspects of a topic are highlighted in

order to promote a particular interpretation. It is

related to the word choice and labeling by jour-

nalists (Hamborg et al., 2019) for example, by

choosing “illegal alien” instead of “undocumented

immigrant”, journalists can highlight different as-

pects of an immigration issue.

Communication researchers have developed a

variety of approaches to analyzing media fram-

ing. One popular quantitative approach is to first

identify a list of frames and then manually clas-

sify news articles into one of the identified frames.

Journalists often use generic frames that are com-

mon across a range of issues, such as human in-

terest, conflict, and economic consequences (Rus-

sell Neuman et al., 1993; Nisbet, 2010; Semetko

and Valkenburg, 2000), on top of issue-specific

frames in their reporting. There are a number of

issue-specific frames that have been particularly

related to the issue of gun violence in the United

States. On a basic level, the debate about guns has

been framed as a threat to public safety (Haider-

Markel and Joslyn, 2001; Lawrence and Birkland,

2004), enabled by weak gun laws (Birkland and

Lawrence, 2009), versus an individual right to

have access to guns secured by the 2nd Amend-

ment’s “right to bear arms” (Haider-Markel and

Joslyn, 2001). Lawrence and Birkland (2004);

Birkland and Lawrence (2009) also described how,

after the Columbine shooting, the media discourse

framed violent popular culture (e.g., movies and

video games that glorify violence) as a culprit. Be-

yond the issue itself, the debate surrounding gun

violence has also been framed as a Democrat vs.

Republican political contest (Schnell, 2001).

In health communication, researchers have also

examined the extent to which the news media

frame the issue from the perspective of “danger-

ous people” (e.g., those with mental illness) wield-

ing weapons as compared to “dangerous weapons”

(e.g., large-capacity assault rifles) causing gun vi-

olence (McGinty et al., 2013). The mental illness

of gunmen is often a focal point in the coverage

of mass shootings (McGinty et al., 2014). Related

to the issue of mental health are broader concerns

about troubled individuals who lack the social sup-

port and resources to receive the help that they

need (DeFoster and Swalve, 2018). The discus-

sion about race and ethnicity has also emerged as

a salient frame, in that news coverage of gun vio-

lence may differ somewhat depending on who the

perpetrators are (Leavy and Maloney, 2009).

For our dataset, we detect these issue-specific

frames typically found in media coverage of gun
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violence, as well as generic frames like economic

consequences. While it would be beneficial to au-

tomate the framing analysis across a variety of is-

sues, here we argue that developing issue-specific

tools will allow for a more nuanced understanding

of each issue. Using our approach of combining

expert-chosen frames for a particular issue and an

automatic detection of these frames, communica-

tion researchers can further investigate how differ-

ent news media influence public opinion in subtle

ways and at scale, and thus be able to help prepare

stronger arguments for journalistic practice and ul-

timately policy changes about the issue.

2.2 News Frame Detection

Media Frame Corpus (MFC) (Card et al., 2015) is

one of the first large-scale datasets of frame an-

notations. It contains 11,900 hand-annotated En-

glish news articles for media framing that cover

three issues: immigration, tobacco, and same-sex

marriage. Undergraduate student annotators high-

light the span of text that covers a frame follow-

ing an annotation codebook. MFC has 15 generic

media frames, which are defined in the Policy

Frames Codebook by Boydstun et al. (2014), such

as economics, political, quality of life, and also an

“other” label for news articles that cannot be cov-

ered by any of the 15 frames. These news articles

have been collected using keyword search from

13 national U.S. newspapers from 1990 to 2012

and contains 38,283 news articles. Duplicate and

near-duplicate articles were removed and 20,037

of these articles were randomly selected for man-

ual framing annotation. Aside from spans of text,

headlines and entire news text are also annotated

with the headline and primary frames respectively.

Naderi and Hirst (2017) detect news frames at

the sentence-level using deep recurrent neural net-

works, specifically LSTM, BiLSTM, and GRU.

They used news articles from MFC dataset (Card

et al., 2015) to train and evaluate their model.

They show that their results for frame detection are

better than classifiers that rely on topics models for

detecting frames (Tsur et al., 2015; Nguyen et al.,

2015). Our work is different from theirs in that

we focus on detecting the frame in the news arti-

cle headline, which unlike a complete sentence, is

typically a short phrase. We implement these deep

recurrent networks in our experiments as baselines

and find that our approach performs better for de-

tecting frames in headlines, both in MFC and our

GVFC. We also implement a recent word-based

method for detecting frames in English and Rus-

sian news articles (Field et al., 2018) as another

baseline. We detail these baseline approaches and

their results in our experiment section (section 4).

3 Dataset Creation

3.1 News Article Collection

We drew our sample of news articles from a list

of top U.S. news websites defined in terms of

traffic to the websites. We cross-referenced sev-

eral sources that had “top news sites” of their

own: the Pew Research Center (2018b), Statista

(2017), Alexa (2018), and MediaCloud, which

is an open-source online platform. We synthe-

sized these lists towards creating one list that con-

tained news sites from the left, center, and right

sides of the ideological spectrum based on cate-

gories defined in MediaCloud; Pew Research Cen-

ter (2016); Ad Fontes Media (2019). We started

with list of 30 media outlets based on these refer-

ences.

We collected articles from these outlets from

four time periods over the course of 2018 in or-

der to capture a diversity of articles. Some arti-

cles were collected over periods during or imme-

diately after a mass shooting (e.g., the Parkland

School shooting in 02/2018). Other articles were

collected when gun violence was not necessarily

the most salient current event. We also included

articles from several months before the 2018 U.S.

midterm elections as the gun-related issue was a

central topic for political discussion during this pe-

riod. The articles were retrieved using Crimson

Hexagon’s ForSight social media analytics plat-

form (Hexagon, 2018), retrieving articles that had

at least one keyword in their headlines from the

following list: {“gun,” “firearm,” “NRA,” “2nd

amendment,” “second amendment,” “AR15,” “as-

sault weapon,” “rifle,” “Brady act,” “Brady bill,”

“mass shooting”}. We came up with the list of

keywords based on the previous literature and on

the review of a sample of our data. After collect-

ing the articles, news articles with duplicate titles

were removed and the rest sampled to be analyzed

and annotated. After sampling and annotation, the

final dataset contains frame annotations of news

articles from a total of 21 media outlets1.

1For reproducibility and future research, we make
our dataset and annotation codebook publicly available at
https://derrywijaya.github.io/GVFC.html

https://derrywijaya.github.io/GVFC.html
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3.2 News Article Annotation

Quantitative content analysis (QCA) in commu-

nication research is a commonly used method to

derive “replicable and meaningful inferences from

texts (or other meaningful matter)” (Krippendorff,

2004). To perform QCA, one draws a representa-

tive sample of text (or other types of content), on

which two or more trained coders (i.e., annotators)

apply a codebook protocol, which should include

all of the variables for annotation and their defini-

tions. Prior to coding the entire sample indepen-

dently, coders are first trained on the codebook,

and their agreement on how to apply the codes is

measured with inter-coder reliability (ICR). High

ICR values implies that two or more coders con-

sistently categorized the content similarly, which

signals a high validity of the coded results. Once

coders have reached an acceptable ICR (above

90% agreement or 0.70 Krippendorff α (Krippen-

dorff, 2004)), they can code the rest of the sample

independently.

Codebook Creation Our codebook was devel-

oped by drawing from the literature on framing

gun violence, described earlier, as well as from a

preliminary analysis of the data. This resulted in 9

frames, including both generic: “Politics”, “Pub-

lic opinion”, “Society/Culture”, and “Economic

consequences” and issue-specific: “2nd Amend-

ment” (Gun Rights), “Gun control/regulation”,

“Mental health”, “School/Public space safety”,

and “Race/Ethnicity”.

Unit of Annotation We choose our unit of an-

notation to be a news headline for several rea-

sons. Firstly, psychologists have long argued that

first impressions are lasting impressions (Digiro-

lamo and Hintzman, 1997). This thesis applies

to news reading behavior as well. Media framing

researchers often identify and measure frames in

news headlines (e.g., (Bleich et al., 2015; Trimble

and Sampert, 2004), which are seen by the audi-

ence first and can determine the perception of the

text that follows (Tankard Jr, 2001). As Pan and

Kosicki (1993) suggests, a headline is “the most

salient cue to activate certain semantically related

concepts in readers minds; it is thus the most pow-

erful framing device of the syntactical structure”.

Secondly, the analysis of news headlines be-

came more relevant in the emerging (i.e. digi-

tal) media environment where a large portion of

people only read headlines but nothing else (Ga-

bielkov et al., 2016). Further, driven by the atten-

tion economy, many online media even use news

headlines as “clickbait”, presenting sensational

but misleading information that deviates from the

content included in the actual news story (Chen

et al., 2015). That is, a news story may be framed

differently in its headline and the rest of the article.

In cases like this, research shows that even reading

through the article cannot necessarily correct the

headlines misdirection (Ecker et al., 2014). Taken

together, detecting frames through news headlines

provides the most direct clue to the potential influ-

ence of the news coverage.

Annotation Process Two communication grad-

uate students were recruited to annotate a sam-

ple of the collected news articles. They were in-

structed to first determine whether the news head-

line was relevant to gun violence in the United

States. If yes, they were asked to identify up to

two dominant frames in the headline. They were

trained on the codebook during the training ses-

sions. In the first training session, the students

were given a 100-headline sample to code, and

ICR was not met. Hence, a second training ses-

sion was held to further clarify the codebook and

resolve any confusion. The students coded another

100-headline sample, for which ICR was met on

all variables: relevance (99% agreement, 0.97 α),

frame A (94.10% agreement, 0.90 α) and frame

B (96.04% agreement, 0.82 α). Following QCA,

once the ICR was met, one student continued to

code another 2,790 news headlines, resulting in a

total of 2,990 annotated news headlines.

3.3 Dataset Properties

GVFC includes 2,990 news headlines, 1,300 of

which are annotated as relevant to the gun vio-

lence issue in the United States. Out of the relevant

headlines, only 319 are found to have 2 frames.

Examples of headlines with 2 frames are “It’s

Time to Hand the Mic to Gun Owners”, annotated

with “Public opinion” (frame A) and “2nd Amend-

ment” (frame B); and “Trevor Noah: ’The Second

Amendment Is Not Intended for Black People”,

annotated with “2nd Amendment” (frame A) and

“Race/Ethnicity” (frame B).

We use frame A annotations to train our frame

classification model but find that our model also

identifies some of frame B annotations in its top

predictions (Section 4.2). Table 1 shows frame A

class distribution in GVFC that reflects the varying
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coverage of different frames in the U.S. media.

4 Experiments

We use the most recent method for automatic news

frame detection (Field et al., 2018) as one of our

baselines. They devise a word-based method for

detecting the frames in English and Russian news.

They use MFC to derive a lexicon for each frame

F by computing pointwise mutual information

I(F,w) (Church and Hanks, 1990) for each word

w and each frame F in the corpus. Each frame

F ’s lexicon contains the top 250 words with the

highest I(F,w) for frame F . A news article has

a frame F if it contains at least 3 instances of a

word from F’s lexicon with the primary frame be-

ing the most common frame, based on the number

of words from each frame’s lexicon in the docu-

ment. We create lexicons for the 9 frames in our

GVFC dataset and use them to compute the pri-

mary frames of news headlines.

We also implement LSTM-based neural net-

works for a more comprehensive evaluation. Long

short-term memory (LSTM) is a recurrent neural

network (RNN) architecture that is widely used to-

day in text classification tasks. There are plenty of

variants from this type of architecture: Gated Re-

current Unit (GRU), Bi-directional LSTM, and Bi-

directional GRU. We implement these networks

with attention mechanism (Bahdanau et al., 2015)

and use 100-dimensional pre-trained Glove em-

beddings (Pennington et al., 2014) as our initial

word representations. We train and evaluate these

networks for headlines frame classification with

128 units of RNN cells and one layer of attention

mechanism at the end, a batch size of 128 for 2000

steps. We use Adam optimizer with a learning rate

of 0.01.

As the results in Table 1 show, Bi-directional

GRU with attention achieves the highest accuracy

among our baselines. The reason behind this could

be the fact that we have a small dataset and GRU

needs fewer data points to generalize (Kaiser and

Sutskever, 2015; Yin et al., 2017). Furthermore,

the attention mechanism and bi-directionality al-

lows for more contextual interpretation of the

headlines and better detection of their frames.

4.1 News Frame Detection with BERT

Bidirectional Encoder Representations from

Transformers (BERT) (Devlin et al., 2018) take

this idea of attention and bi-directionality further

by building on the Transformer’s encoder model

that solely relies on multi-layer self-attention to

compute contextual representations of its input,

dispensing with any kinds of recurrence (Vaswani

et al., 2017). The encoder is composed of a stack

of identical layers, where each layer contains a

self-attention mechanism, which allows the en-

coder to look at other words in the input sentence

as it encodes the contextual representation of

each word in the sentence, and a fully connected

feed-forward network. The self-attention mecha-

nism computes three vectors from the embedding

of each word in the input sentence: the query

q, key k, and value v vectors. It then computes

the contextual representation of each word w in

the sentence as the weighted sum of the value

vectors of all the words in the sentence, where

the weights are the scaled then normalized dot

products between w’s query vector and the key

vectors of all the words in the sentence. The

weights essentially determine how much focus

to place on other parts of the input sentence as

the encoder encodes a word at a certain position.

Given that the query, key, and value vectors are

computed by multiplying the input word embed-

dings matrix X with weight matrices learned

during training, WQ, WK , W V , the self-attention

output can be formulated in matrix form as:

Attention(Q,K, V ) = softmax(QKT /
√
dk)V

where Q = XWQ, K = XWK , V = XW V .

BERT’s encoder implements the Transformer’s

multi-layer self-attention mechanisms and fully

utilizes its strength in storing the left and right con-

text of each token by using a “masked language

model” (MLM) pre-training objective, inspired by

the Cloze task (Taylor, 1953). In its pre-training,

BERT randomly masks some of the tokens from

its input, and predicts the original vocabulary id of

the masked word based only on its context. Un-

like left-to-right language model pre-training, the

MLM objective enables the representation to fuse

the left and the right context, which allows BERT

to pre-train a deep bidirectional Transformer rep-

resentations from unlabeled large text corpora.

We fine-tune the pre-trained BERT-based un-

cased model on our multiclass frame classification

by adding a frame classification layer on top of the

model and fine-tune all the parameters end-to-end.

Given a headline, BERT tokenizes the headline

to tokens based on WordPiece tokens (Wu et al.,

2016) and appends a special classification token



509

Frame Class # Headlines Baseline LSTM Bi-LSTM Bi-LSTM Bi-GRU BERT
w/ Attention w/ Attention

2nd Amendment 38 44.74 23.68 21.05 44.74 26.32 65.79
Gun control/regulation 215 50.23 63.72 66.51 72.09 76.28 84.19
Politics 373 40.48 78.28 77.75 84.18 85.79 89.54
Mental health 65 35.38 50.77 40.00 58.46 60.00 78.46
School/Public space safety 137 39.42 48.91 50.36 54.74 58.39 78.10
Race/Ethnicity 114 67.54 75.44 71.93 84.21 81.28 92.11
Public opinion 237 63.29 70.46 72.15 75.53 77.22 86.08
Society/Culture 41 43.90 24.39 19.51 36.59 21.95 58.54
Economic consequences 80 38.75 45.00 51.25 61.25 60.00 80.00

Overall 1300 48.38 64.37 64.48 72.15 72.76 84.23

Table 1: Class distribution of frame A annotations and micro-accuracies for the baseline (Field et al., 2018), LSTM, bi-
directional LSTM, bi-directional LSTM and bi-directional GRU with attention, and our method based on fine tuning BERT.

([CLS]) at the beginning of the headline. We use

the final hidden vector C ∈ R
H corresponding to

[CLS] as the aggregate representation of the head-

line that is input to the classification layer (since

encoding this token with self-attention effectively

includes attention to all the tokens in the head-

line). The only new parameters are our classifi-

cation layer weights W ∈ R
KxH , where K = 9,

the number of our frame classes. Given the im-

balance in our class distribution, we compute a fo-

cal loss (FL) (Lin et al., 2017) that improves our

classification performance compared to the stan-

dard cross entropy loss. We compute FL(p) =
−α(1 − p)γ log(p), where p ∈ R

K contains the

probabilities of classifying the headline into each

of the K frames i.e., p = softmax(CW T ) and

α ∈ R
K contains the weighting factors, which

we set for each frame to be its normalized inverse

class frequency ∈ [0, 1]: the smaller the class, the

higher the α and vice versa, which balances the

importance of each class’ examples. The modu-

lating factor: (1 − p)γ in FL down-weights the

loss contribution of the easy examples – those that

are well classified (i.e. have high pk) – and thus

focuses the training on hard-to-classify examples.

Following Lin et al. (2017), we use γ = 2.

We train for 10 epochs with a batch size of 4,

2e-5 learning rate, and maximum sequence length

of 128 tokens. Training and testing on the same

stratified folds that we use for all our baselines, we

achieve a 5-fold cross validation micro-accuracy

of 84.23%. Our method based on BERT signifi-

cantly outperforms not only the most recent news

frame classification baseline, but also some state-

of-the-art deep classification models, including bi-

directional LSTM/GRU with attention on every

frame of our GVFC dataset (Table 1).

We also evaluate our method to classify frames

of news headlines in another dataset (MFC). As

MFC Issue # Head- Bi-GRU w/ BERT
lines Attention

Immigration (I) 7231 40.84 52.38
Tobacco (T) 3959 57.20 67.94
Samesex (SS) 3842 61.57 71.50
I (top-5 frames) 4175 53.65 67.28
T (top-5 frames) 2759 71.44 82.32
SS (top-5 frames) 2937 74.94 83.07

Table 2: 10-fold cross-validation micro-accuracy on the
MFC dataset for our best baseline from previous evaluation,
and our model based on BERT.

Table 2 shows, our method significantly outper-

forms our top-performing baseline, both on the 15-

frame classification task and on the top-5 (most

frequent) frame classification on all issues: im-

migration, tobacco, and same-sex marriage. This

shows that our method can perform well for de-

tecting frames in headlines in different datasets

and across a diverse range of issues.

4.2 Discussion

Our results show that fine-tuning on BERT per-

forms well even on a small dataset like GVFC,

which agrees with the findings of Devlin et al.

(2018) that fine-tuning on BERT’s pre-trained

model can lead to large improvements even on

very small scale tasks. Part of the reasons may

be due to BERT’s deep attention mechanism. At-

tention mechanism has been shown to be data-

efficient and helps improve performance signif-

icantly even when the dataset is small (Vinyals

et al., 2015). Even adding standard attention im-

proves the accuracy of our LSTM-based baselines

significantly (Table 1). BERT’s success can also

be traced to its design of bidirectional Transformer

that offers richer contextual information. Further-

more, BERT was pre-trained on a large corpus to

produce this representation. Fine-tuning on BERT

allows us to transfer this contextual knowledge to
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Figure 1: Visualization of our fine-tuned model, the headlines and the predicted frames. The thicker the line, the

more attention placed on the token for computing the aggregate i.e., [CLS] representation for the classification

classifying frames in headlines, which are very

short compared to the entire news text. The ability

to transfer contextual knowledge from a large cor-

pus leads to better representation for these short

pieces of texts and better generalization of our

model compared to the lexicon-baseline that only

relies on word-frame co-occurrences in GVFC.

We use a visualization tool (Vig, 2019) to ob-

tain insights into what our fine-tuned model is at-

tending to when making decisions. For exam-

ple, we observe that pre-training on a large cor-

pus may have helped our model predict the frame

“School/Public Space Safety” for the headline:

”Doctors release new recommendations to reduce

gun violence” by attending to words like “Doc-

tors” and “recommendations” (Figure 1(a)). Al-

though these words do not co-occur frequently

with this specific frame in GVFC, they may be re-

lated to school/public safety in general. The lex-

icon model, on the other hand, incorrectly pre-

dicts the “Gun control/regulation” frame due to the

words “release” and “gun” in the headline.

Because news framing is closely related to

journalists’ word choice (Hamborg et al., 2019),

we find that on frames such as “Race/Ethnicity,”

which has a specific set of keywords that the

model can attend to like “black”, “white”, or “anti-

semitic”, both our model and the lexicon-baseline

perform the best on this frame.

On the other hand, the performance of our

model and the baseline differ significantly for

generic frames such as “Politics,” whose keywords

may overlap with issue-specific frames such as

“Gun control/regulation”. Since BERT is pre-

trained to take context into consideration, words

like “gun”, which appears with all the frames, can

have different contextual representation depend-

ing on its context i.e., “gun lobby” vs. “gun per-

mit”. For example, the headline “That’s it – no

more guns” is classified correctly by BERT as hav-

ing “Gun control/regulation” frame by attending

to the context “no more” of “guns” (Figure 1(b)).

Also, despite not being trained to predict multi-

ple frames, some of BERT’s predictions of what it

believes to be top frames align with that of human

experts. There are 319 headlines in GVFC that

were annotated with two frames: frame A and B,

meaning that the headline is equally likely to be-

long to either frame. In our experiments, we only

train our model with frame A annotations. How-

ever, we notice that out of the 319 headlines that

have two frames, 164 of them have both frames

predicted in the top-2 predictions of our model,

showing the potential to fine-tune BERT for multi-

label multi-class frame classification, which we

will explore in the future. Furthermore, the accu-

racy of our model on GVFC increases to 87.92%

if we consider our model’s prediction to be correct

if it predicts either frame for these 319 headlines.

More interestingly, we observe that our model

can predict additional frames that may be appli-

cable to the headlines but are not annotated. In

Figure 1(c) for example, for the headline “Man

charged in ’stand your ground’ shooting death

threatened them”, our model first attends to the

word “ground” and then “threatened” and pre-

dicts the frame “Race/Ethnicity” and then “Mental

health”. Even though this headline was only an-

notated with the “Mental health” frame (possibly

due to the word “threatened” which, in the “Men-

tal Health” description of the annotation code-

book, may be referring to an individual’s behav-

iors that indicate instability, impulsivity, anger,

etc.), we believe that in this particular headline the
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“Race/Ethnicity” frame is more applicable given

the presence of ’stand your ground’, a legislation

that has been shown to have a quantifiable racial

bias (Ackermann et al., 2015).

Overall, what we observe from visualizing our

model suggests that the model is able to generalize

beyond word-frame co-occurrences in the limited

annotations by virtue of the contextual knowledge

transfer obtained by pre-training on a large corpus.

5 Framing Trends, Analysis, and

Conclusion

Figure 2: The number of times each frame is repre-

sented in new article headlines related to gun violence

across the 3-year (per month) period. Some of the

peaks represent the deadliest mass shootings in the U.S.

since 1949 (CNN Library, 2019).

We used the same search words to retrieve news

article headlines from the 21 U.S.news media out-

lets from 2016 to 2018. To apply our framing anal-

ysis, we first train a model to predict whether a

news headline is relevant to the issue of U.S. gun

violence by fine-tuning BERT-base uncased using

the relevance annotations in GVFC. This relevance

prediction model achieves a 10-fold cross valida-

tion precision of 0.93, 0.95 recall, and 0.94 F-

score. We apply this model to find relevant head-

lines among the 88,470 collected, and apply our

frame classification on the relevant headlines.

Several patterns emerged from the framing

analysis. It appears that news media of all types

have largely politicized the gun violence issue

right after each major mass shooting (Figure 2).

The focus on party politics, the divide between

Democrats and Republicans on the issue domi-

nated the coverage. This finding speaks to the

highly polarized political environment in the U.S.

We also observe in Figure 2 that right af-

ter the Parkland school shooting in 02/2018,

the discussion surrounding “Public opinion”,

“School/Public space safety”, and “Economic

consequences” frames increases. The increase in

“Public opinion” and “School/Public space safety”

frames is due to the growth of student activism in

the wake of the shooting. Meanwhile, the increase

in the “Economic Consequence” frame is due to

the decision of several major companies such as

Dick’s Sporting Goods to stop selling assault-style

weapons in the wake of the event.

We also observe in Figure 2 that frames that

spike during every major shooting event, such as

“Politics”/“Public opinion”, are not the most per-

sistent. Their frequency peaked during the month

but dropped, often drastically, after. Notably, the

“Mental health” frame (the cyan bar) appears to

be the most persistent, appearing consistently over

time in coverage about gun violence.

Another noticeable cross-media pattern in the

U.S. media coverage of the gun violence issue

is that the conservative-leaning and neutral media

emphasized the mental health of individual gun-

men to a greater extent than liberal-leaning media

(see the cyan bar representing the “Mental health”

frame in the left, center, and right plots of Fig-

ure 3). About a quarter of news articles from neu-

tral and conservative-leaning media in 2017 are

classified as having the “Mental Health” frame

(27% and 22% of the articles respectively). In

comparison, only 8% of news articles from liberal-

leaning media are classified as having this “Mental

Health” frame.

This finding about the conservative media (Fig-

ure 3 right) is not surprising because connect-

ing mental illness and mass shooting has been a

common stance among pro-gun Republican lead-

ers (i.e., “guns don’t kill people, people kill peo-

ple”). More surprisingly though (and contrary to

the common perception of mainstream media such

as NYT, CNN, and CBS being liberal-leaning),

our study suggests that these neutral, mainstream

media (Figure 3 center) has also largely framed the

issue from the aspect of mental health, often more

than the conservative media, which may indicate

conservative media’s strong agenda-setting power

in the U.S. media ecosystem.

Media framing scholars have also pointed out

the importance of examining what aspects of the

story has been left out. In our analysis, the frame

of “Society/Culture” – a frame that is important

and yet would not attract much web traffic – has

not been a focus of gun violence coverage in the

U.S. As the results demonstrate (Figure 3), major
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Figure 3: The proportion of each frame occurring in the 2017 news from news sites of different political leanings.

shootings were only able to trigger liberal-leaning

media to pay more attention to this frame. 16%

of articles from liberal-leaning media in 2017 are

classified as having the “Society/Culture” frame,

while only 9% of articles from neutral media (and

only 5% from conservative-leaning media) are

classified as having this “Society/Culture” frame.

The lack of framing focus on the underlying cul-

tural/societal issues as well as the aforementioned

focus on party politics and strong agenda-setting

speak to the status quo of the current U.S. news en-

vironment: profit-driven, sensational, and highly

partisan.

In conclusion, we have presented in this pa-

per a method for news headline frame classifi-

cation that achieves state-of-the-art performance.

We also release the codebook and a carefully cu-

rated Gun Violence Frame Corpus (GVFC) news

articles whose headlines have been annotated with

their corresponding frames by domain experts. We

demonstrate the application of our framing detec-

tion to analyze a large corpus of news headlines

for framing trends surrounding the U.S. gun vio-

lence coverage. We observe interesting findings

and believe that frame detection and analysis can

potentially be used to gain a deeper understanding

of various issues of public affairs. Automatically

detected frames in news headlines can also be used

to curate more balanced news collections on vari-

ous issues and perspectives.
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