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Abstract (258/300 words) 

Research suggests wearables and not instrumented walkways are better suited to quantify gait outcomes 

in clinic and free-living environments, providing a more comprehensive overview of walking due to 

continuous monitoring. Numerous validation studies in controlled settings exist, but few have examined 

the validity of wearables and associated algorithms for identifying and quantifying step counts and 

walking bouts in uncontrolled (free-living) environments. Studies which have examined free-living step 

and bout count validity found limited agreement due to variations in walking speed, changing terrain or 

task. Here we present a gait segmentation algorithm to define free-living step count and walking bouts 

from an open-source, high-resolution, accelerometer-based wearable (AX3, Axivity). Ten healthy 

participants (20-33years) wore two portable gait measurement systems; a wearable accelerometer on 

the lower-back and a wearable body-mounted camera (GoPro HERO) on the chest, for one hour on two 

separate occasions (24hrs apart) during free-living activities. Step count and walking bouts were derived 

for both measurement systems and compared. For all participants during a total of almost 20 hours of 

uncontrolled and unscripted free-living activity data, excellent relative (rho ≥ 0.941) and absolute 

(ICC(2,1) ≥ 0.975) agreement with no presence of bias were identified for step count compared to the 

camera (gold standard reference). Walking bout identification showed excellent relative (rho ≥0.909) 

and absolute agreement (ICC(2,1) ≥0.941) but demonstrated significant bias. The algorithm employed 

for identifying and quantifying steps and bouts from a single wearable accelerometer worn on the lower-

back has been demonstrated to be valid and could be used for pragmatic gait analysis in prolonged 

uncontrolled free-living environments. 
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1. Introduction 1 

Typically gait analysis is performed using complex systems like pressure sensor walkways and force 2 

platforms [1]. However, such techniques are expensive, require expert personnel for operation and are 3 

limited to specialist facilities [2]. Wearable technology (wearables) in combination with published 4 

algorithms and open-source platforms provide a more pragmatic approach to gait analysis and facilitate 5 

cost effective assessment in a range of environments [3-5]. Accelerometer-based wearables can provide 6 

comprehensive, continuous and objective measures of gait [6] with greater flexibility than their 7 

laboratory-restricted counterparts.  8 

Early validation studies consisted of accelerometer-based wearables and focused on their ability to 9 

detect steps and walking bouts. These typically consisted of protocols involving scripted activities [7, 10 

8], comparison to pedometers on a treadmill [9, 10] or bout detection at low-resolutions of approx. 1min 11 

[11, 12]. Many commercial wearable accelerometers utilise their own proprietary algorithms which can 12 

be limited, the majority showing poor capacity to identify and quantify gait during non-scripted 13 

activities, i.e. in free-living conditions [13, 14]. While manufacturers are moving towards the provision 14 

of raw data for more bespoke analysis [8, 15], embedded ‘black box’ programming make it difficult to 15 

understand why reliability and validity are poor, attributed to the closed system and exact algorithm 16 

functionality [16]. This in turn limits their potential use as robust academic or clinical tools, particularly 17 

for those unable to develop tailored algorithms from ad-hoc devices created in specialist facilities [17, 18 

18]. 19 

The use of bespoke wearable accelerometers, designed by individual research groups has grown 20 

due to the necessity for access to the raw acceleration data, benefiting algorithm development. Utilising 21 

novel algorithm techniques on accelerometer data has resulted in an increase in the number of more 22 

(clinically) useful outcomes. Specifically, these relate to spatio-temporal gait characteristics [19-21] 23 

which require a more stringent approach to validation procedures. Algorithm methodologies for this 24 

purpose must be systematically assessed prior to application [22], transparency ensuring appropriate 25 

methods are implemented for new systems or conditions.  26 

Spatio-temporal gait characteristics have been collectively termed ‘micro’, the step to step 27 

timings/lengths and fluctuations that have been shown to be sensitive in ageing and pathological studies 28 
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[23, 24]. These constitute a clinically relevant conceptual model of gait inspired by the use of current 29 

high resolution (≥100Hz) accelerometer-based wearables: examining micro as well as the broader signal 30 

profiles representing walking activity (macro) within free-living environments [25]. This provides a 31 

comprehensive, two-tiered approach to gait assessment and its potential use as a pragmatic and low-32 

cost diagnostic [26-28]. Utilising this approach one can gather habitual micro gait, while also examining 33 

the broader trends in ambulatory behaviour within free-living, leading to novel insights on the 34 

accumulation and distribution of macro gait [28-30]. Thus, a micro and macro approach offers a more 35 

informative approach to gait analysis. However, macro outcomes measured by high resolution wearable 36 

accelerometers rely on the correct identification and quantification of walking (gait) bouts from free-37 

living data in the first instance. Validation of free-living gait algorithms from high resolution devices 38 

remains limited. Although some wearable accelerometers have demonstrated reliability in semi-39 

structured protocols [31-33], assessment in free-living uncontrolled environments has not been 40 

completed. Additionally, validation studies usually compare algorithms to criterion pedometers [13], 41 

fixed or observer video recording [33] which limits long-term feasibility. Wearable cameras have been 42 

successfully used to validate gait detection of a single trunk-mounted wearable accelerometer [34] and 43 

their concurrent use with devices in free-living conditions have help develop and analyse activity 44 

taxonomies [35]. Therefore, wearable cameras can be viewed as the most appropriate comparative 45 

measure currently available for validating devices that define free-living macro gait outcomes. This is 46 

due to their ability to provide contextual information (e.g. type of terrain) as well as clarify exact 47 

movement types (e.g. stair ascent/descent). 48 

Current research has identified the need for robust validation of free-living gait algorithms and the 49 

need to harmonise analytical methods, for a unified approach to gait assessment [25, 36]. The aim of 50 

this study was to examine the validity of an algorithm for macro gait detection (step count and walking 51 

bout) using a single accelerometer-based wearable worn on the lower-back in uncontrolled free-living 52 

conditions. We adopt the novel use of a body worn camera as a gold standard, eliminating any potential 53 

for observer bias and allowing a more habitual collection of data. The novelty of the algorithm presented 54 

here is the utility of a methodology to quantify micro and macro gait characteristics, the former 55 

previously validated within controlled laboratory settings [26, 37, 38]. This constitutes ongoing work 56 
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to accurately and robustly quantify gait during free-living. Here, we present a macro gait identification 57 

and segmentation validation. 58 

 59 

2. Methods 60 

2.1 Participants: 61 

Ten healthy (free from physical and neurological conditions) participants ranging in age 20-33 years 62 

(27.5 ± 4.7yrs; 1.74 ± 0.07m; 70.4 ± 8.8kg) volunteered for this study. Ethical approval was granted by 63 

the Newcastle University Research Ethics Committee, reference: 3759/2016. All participants provided 64 

informed written consent prior to participating. 65 

 66 

2.2 Protocol: 67 

Participants simultaneously wore two synchronised body worn devices (Figure 1, section 2.3) for one 68 

hour on two separate occasions (approx. 24 hours apart) while performing their normal activities of 69 

daily living (ADL). Participants were aware of the study aim but free to perform their normal activities 70 

(inc. running, cycling) to ensure a comprehensive stress test of the algorithm. Collected data were 71 

unscripted and took place in a variety of different environments, e.g. home, leisure (descriptions 72 

provided in the results). Systems were synchronised by gesture recognition (tapping the wearable 73 

accelerometer 3 times) in field view of the camera before attachment to the lower-back. This was 74 

repeated upon removal of the wearable accelerometer. Start and stop times were determined from the 75 

manual recognition of the peaks in acceleration (3 taps) when overlaid to video (section 2.4.2). 76 

 77 
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 78 

Figure 1: 1) Location of wearable accelerometer (A) and wearable camera (B). 2) Example of wearable (A) and 79 

wearable camera (B) data for multiple walking bouts in an indoor environment. 3) Example of wearable (A) and 80 

wearable camera (B) data for multiple walking bouts in an outdoor environment. 81 

 82 

 83 

2.3 Equipment 84 

2.3.1 Wearable 85 

Participants wore a low-cost (≈£100) tri-axial accelerometer-based wearable (AX3; Axivity, York, UK; 86 

23.0mm ×32.5mm ×7.6mm, 9g) located on the fifth lumbar vertebra (L5). The wearable was attached 87 

using double sided tape and Hypafix (BSN Medical Limited, Hull, UK) and programmed to capture 88 

with a sampling frequency of 100Hz (16 bit resolution, range ±8g, battery life >7days). Recorded 89 

signals were stored locally on the sensor’s internal memory (512MB) as a raw binary file and then 90 

downloaded to a computer via USB cable upon the completion of each testing session.  91 

 92 

2.3.2 Wearable camera 93 

Participants also wore a single camera (GoPro HERO, GoPro Inc., CA, USA; 71.3mm × 67.1mm × 94 

39.0mm, 111g) attached to the chest (GoPro Chest Harness, GoPro Inc., CA, USA). The camera was 95 

programmed to capture with a sampling frequency of 50Hz, video resolution 720p, screen resolution 96 

1280 × 720, and field of view 170°, and was directed at the participant’s feet. Recorded video was 97 

stored locally on a micro-SDHC memory card (SanDisk UHS-1.32 GB, SanDisk Corporation, CA, 98 
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USA) before being downloaded upon completion of each testing session. This was the gold-standard 99 

reference. 100 

 101 

2.4 Data processing 102 

2.4.1 Algorithms 103 

The purpose of this study is to validate the algorithm (used on the wearable accelerometer data) to detect 104 

gait in free-living environments for step and bout count. The algorithm was written using a bespoke 105 

MATLAB® (version 2015a) program utilising previously validated methods [26, 37] and employing a 106 

two stage approach to processing and gait detection, similar to previous methodologies [17, 39]. An 107 

overview is provided here:  108 

Data preparation: Mean accelerations were computed and subtracted from each axes to account for 109 

offset (i.e. gravity and misalignment due to placement). Data were filtered using a low-pass, second-110 

order low-pass Butterworth two-pass digital filter, with a cut-off frequency of 17-Hz [40].  111 

Walking bout detection: The detection and segmentation algorithm (Figure 2) utilised for examining 112 

walking bouts in free-living conditions relies on a logical heuristics paradigm as follows. A moving 113 

window analysed the signal for bouts of ‘upright movement’ based on the combined standard deviation 114 

(SD) of tri-axial accelerations and the corresponding mean of the vertical acceleration (av, -1g) every 115 

0.1 seconds [41] with predefined thresholds (g = 0.77 and 0.05, respectively). Due to device location 116 

(L5) and orientation this identifies bouts that are ‘upright and moving’. Bouts <0.5s were ignored and 117 

treated as spurious movement, constituting an unrelated gait (step) time value [42]. Once the start/end 118 

of these bouts are identified the segmented data are analysed with a secondary stage examining potential 119 

gait events (step detection) within each identified bout (possible walking/gait).  120 

Step identification: Further correction of the acceleration data for misalignment, unaccounted for when 121 

removing gravity (subtracting the mean acceleration) was performed by transforming data to a 122 

horizontal-vertical coordinate system [43, 44], aligning with recommended gait data processing 123 

guidelines [45]. Once corrected, data for each bout is subjected to a continuous wavelet transform 124 

(‘CWT’; a convolution of the acceleration data and analysing function) technique to identify initial 125 

contact (IC), within a predefined timed period from a previous step (0.25-2.25s [46]), and final contact 126 
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(FC) events within the gait cycle [47]. These temporal IC/FC micro [26, 37] events are used to verify 127 

the presence of micro gait and subsequently used to calculate the step count within each, i.e. macro 128 

values. The functionality of the CWT for IC/FC detection consists of the following: 129 

 Integration and differentiation of av using a Gaussian CWT, where IC’s were identified as the 130 

times of the minima.  131 

 The differentiated signal undergoes a further CWT differentiation from which FC’s were 132 

identified as the times of the maxima.  133 

 Use of a timing classification for absolute step detection [26]: restricting IC peaks within the 134 

predetermined timed interval (above). 135 

A complete representation of the algorithm is presented in Figure 2. 136 

 137 
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 138 

Figure 2: Processing flow of the gait detection and quantification algorithms performed by the MATLAB® 139 

program. 140 

 141 

 2.4.2 Video data 142 

Video data extracted from the wearable camera were analysed for macro gait (step and bout count) 143 

using ELAN Linguistic Annotator (Version 4.9.2, The Language Archive, Nijmegen, Netherlands) and 144 

annotated alongside the wearable acceleration signals. Video data were further processed (see points 145 

below) in order to be consistent with current research directives for the wearable: 146 

 All events (walking, postural transitions, ADLs etc.) were recorded with their relative contextual 147 

information (e.g. location, purpose, duration, etc.) from the video data. All periods of non-148 
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walking (‘non step-event’) activity were removed and step events were collated into their 149 

respective bouts with a minimum resting period of 2.5 seconds between bouts [48].  150 

 Furthermore, all bouts less than three steps were removed as this sequence previously defined 151 

walking bout detection [46, 49]. 152 

A single researcher with a background in applied movement science extracted all walking information 153 

[33]. 154 

 155 

2.5 Statistical analysis 156 

Validity of the algorithm (agreement to video) was assessed using SPSS v22 (IMB Inc., Armonk, NY, 157 

USA). Shapiro-Wilks tests suggested the use of non-parametric measures for step and bout count 158 

(p<0.04). Spearman’s correlations and intra-class correlations (ICC(2,1)) were used to examine the 159 

relative and absolute agreement between the video and algorithm, respectively [17, 39]. Predefined 160 

acceptance ratings for ICC(2,1) were: excellent (>0.900), good (0.750–0.899), moderate (0.500–0.749) 161 

and poor (<0.500) [50, 51]. Bias (difference of video – algorithm) of the two measurement systems 162 

were assessed using Wilcoxon matched-pairs tests. Bland-Altman plots were examined for wearable 163 

systems to check for nonlinear or heteroscedastic distributions of error. 164 

 165 

3.  Results  166 

3.1 Environments and algorithm functionality 167 

A large range of activities were observed in the video data inclusive of both indoor (78%) and outdoor 168 

(22%) environments. To provide context a pictorial representation of the different conditions and their 169 

respective ADLs are provided, Figure 3. A summary of times spent during walking in different 170 

environments is also presented, Table 1. Participants spent the majority of time walking sporadically 171 

indoors (large number of bouts, few steps) or in long continuous bouts outdoors (small number of bouts, 172 

many steps). 173 
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 174 

Figure 3: Pie chart containing contextual information for the walking and ADLs observed in the video data. 175 

 176 

<Table 1, see end > 177 

 178 

A preliminary examination of the magnitude of error between the measurement systems (n=20 179 

sessions, 20 hrs) identified a single outlier, i.e. quantified step count differences between the algorithm 180 

and rater/video were excessively large in comparison to other data. Manual investigation of the data 181 

found that the difference related to two bouts and approximately 2262 steps. It was found that the 182 

participant had completed two bouts of high intensity cycling (windy conditions on a negative gradient) 183 

in both seated and standing postures (≈1942 revolutions) that had been incorrectly identified and 184 

segmented as gait by the algorithm. In order to compare the effect of including these two false-positive 185 
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events the results are presented with (all activities: n=20, ~20hrs) and without those bouts (removal of 186 

cycling: n=20, ~19.68hrs), Table 2 and Table 3.  187 

<Table 2, see end> 188 

<Table 3, see end > 189 

 190 

3.2 Algorithm analysis – all activities 191 

Spearman correlations demonstrated excellent relative agreement between the algorithm and video data 192 

for step count (rho = 0.941, p ≤ 0.0005) and bout count (rho = 0.909, p ≤ 0.0005). Intra-class correlations 193 

demonstrated excellent absolute agreement for step count (ICC2,1 = 0.975, p ≤ 0.0005) and bout count 194 

(ICC2,1 = 0.941, p ≤ 0.0005). Wilcoxon matched pairs tests demonstrated no bias was observed for step 195 

count (Z = -1.456, p=0.154) but significant bias between measures for bout count (Z = -2.074, p = 196 

0.037).  197 

 198 

3.3 Algorithm analysis – removal of cycling 199 

Spearman correlations showed slight improvement in relative agreement between the algorithm and 200 

video data for step count (rho = 0.985, p ≤ 0.0005) and bout count (rho = 0.909, p ≤ 0.0005) when the 201 

false positive cycling activity was removed, Figure 4. Intra-class correlations also demonstrated similar 202 

improvements for both step count (ICC2,1 = 0.994, p ≤ 0.0005) and bout count (ICC2,1 = 0.942, p ≤ 203 

0.0005) and. Wilcoxon matched-pairs tests were consistent for step count (Z = -1.307, p=0.202) and 204 

bout count (Z = -2.036, p = 0.041).  205 

 206 
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 207 

Figure 4: Bland-Altman plots showing agreement between the algorithm and video for bout (left plots) and step 208 

(right plots) count values. Top plots show the cycling outlier incorrectly identified by the algorithm as stepping. 209 

Included in both stages are the values identified by the algorithm for running. Solid line in each plot represents 210 

the systematic bias; dashed lines represent 95% limits of agreement (±SD×1.96). 211 

 212 

4. Discussion 213 

Current research uses free-living macro gait outcomes (steps, bouts) derived from wearable 214 

accelerometers to examine the behaviour of older adults and people with neurodegenerative diseases 215 

during free-living [26, 52-54]. However, many commercial devices with proprietary (non-descript, 216 

‘black box’) algorithms have been shown to be inaccurate when quantifying free-living macro gait [13]. 217 

This study validated a gait identification and segmentation algorithm for step and bout count (macro) 218 

in uncontrolled free-living conditions with the aid of temporal events (micro). The approach used here 219 

can facilitate a combined micro and macro approach to free-living gait analysis [25]. 220 

 221 

4.1 Algorithm Function  222 
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Step quantification in each walking bout demonstrated excellent relative (rho = 0.985, p<0.0005) and 223 

absolute agreement (ICC(2,1)=.994, p<0.0005) and no presence of bias (Z = -1.307, p=0.202). Any 224 

marginal difference between the measurement systems may be attributed to the algorithm functionality 225 

and classification of a step by the rater. The CWT methodology uses a timed IC/FC detection 226 

methodology (micro outcomes) [37, 46] to prevent the presence of spurious events that may occur due 227 

to scuffing (‘dragging of the feet’, [55]) a result of extraneous steps associated with functional tasks 228 

during ADL, e.g. household cleaning, Figure 3. It is likely that the uncontrolled nature of the free-living 229 

conditions facilitated the misidentification (algorithm or rater) of ‘non-step’ events leading to these 230 

minor discrepancies between algorithm and video/rater. This remains a grey area within the field of 231 

free-living gait algorithms: definition of a step and subsequent bout(s) of walking from acceleration 232 

data. Presently no guidelines/classifications exist, leading to heterogeneity of step and bout definitions 233 

[49, 56], making short bout (or single step) distinction, for algorithms or manual observation, less clear.  234 

To date, algorithm studies have defined steps, solely for the purposes of their work: change of 235 

acceleration profiles with zero-crossing [56], detected peaks [57] and subsequently bouts as a 236 

consecutive number of steps e.g. 2 or 3 [33, 46]. Inevitably, these events are reliant on heel strikes (IC) 237 

that may not always be defined/identified by clear and distinctive peaks in the accelerometer signal due 238 

to reduced/varied gait speed [15], often evident during habitual activities. Yet, defining steps/bouts from 239 

free-living data is complex due to the abundance of gait variations and tasks that may be undertaken, 240 

Figure 3. Overcoming these limitations may be realised with more stringent algorithms, such as those 241 

utilising regions of interest within an acceleration period and learned template gait features [15, 58], 242 

and the clear ratification of how these outcomes are to be physiologically defined in all populations.  243 

The algorithm quantified slightly larger values for both outcomes (Table 2, Figure 4), with bout 244 

count showing a greater relative magnitude of error (median error between measurement systems/mean 245 

observed value from video) ~13% in comparison to step count ~7%. In comparison previous validations 246 

of single sensor gait algorithms have reported greater accuracy in both controlled [37] and semi-247 

controlled environments [13], however direct comparison is difficult due to the controlled protocols and 248 

restrictive conditions employed in such studies. The logical heuristics approach showed excellent 249 

relative (rho=.909, p<0.0005) and absolute agreement (ICC(2,1) = 0.942, p<0.0005) for walking bout 250 
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identification but had significant bias (Z = -2.036, p=0.041). Identification of prolonged walking bouts 251 

(e.g. ≥10-60s) were readily identifiable, periods that have been generally quantified and utilised within 252 

free-living gait analysis [59, 60]. Generally these occur in outdoor environments or in work places with 253 

long corridors, Figure 3 and Table 2. However, gait is largely accumulated in cluttered, indoor 254 

environments where gait is limited to only a few strides, e.g. <<10s in duration [52, 61]. Walking bouts 255 

were predominantly short to moderate with few accumulating greater than 250 steps (approx. 2 mins of 256 

continuous walking). Greater accuracy (reduced relative error) was observed in participants whose 257 

walking was composed of these longer bouts (Figure 4), but in order to properly compare this to the 258 

relative error of short bouts (a more prominent feature of free-living walking) more data is required.  259 

It is also important to consider the detection of the false positive events, specifically the incorrect 260 

recognition of ‘intense cycling’ as walking. The resultant effect of these non-walking bouts on results 261 

was minimal (Table 2/3: all activities vs. all activities less cycling), and the validity observed did not 262 

change when considering the data with and without this activity included. Appropriate methods for 263 

eliminating the presence of extraneous activities that are incorrectly segmented and subsequently 264 

quantified as gait events are still required. The emerging applications of machine learning techniques 265 

for differentiating between gait and other ADL present a potential solution. The use of support vector 266 

machine classifiers and artificial neural networking have already showed promise in gait identification 267 

[62-64] and could be applied to the identification algorithm presented in this paper.  268 

 269 

4.2 Implications for Free-living Gait Outcomes 270 

These promising results have provided valuable insights into the validity of the algorithms embedded 271 

in this single wearable accelerometer. This has implications for studies using more advanced macro 272 

characteristics such as pattern and variability [26] which rely on the accurate identification of walking. 273 

The success observed in both the identification and quantification of steps/bouts also has connotations 274 

for the accuracy of subsequent micro spatio-temporal gait analysis stemming from the same CWT 275 

methodology [26], whereby the accuracy in detecting a bout and its constituent steps will have a direct 276 

influence on the accuracy of spatio-temporal characteristics derived from that bout. As such, these 277 
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results provide important information regarding the potential for accurately implementing gait 278 

assessments and their outcomes in free-living community settings [52]. 279 

 280 

4.3 Limitations  281 

Although a small sample size (n=10) was examined, it was inclusive of 20 hours of data which could 282 

be considered as sufficient for the purpose of this investigation. The fundamental differences in the 283 

capture methods (differences in sampling frequencies between systems) is viewed as necessary due to 284 

the lack of validated gold-standard activity tracking technology.  285 

The gait algorithms generated false positive events, in particular, mistaking intense cycling for 286 

walking. This occurred due to cycling generating similar acceleration profiles for the centre of mass 287 

making it a suitable input for the algorithm. In consideration of the range of uncontrolled environmental 288 

conditions that were observed in one hour of free-living gait, encompassing a range of indoor and 289 

outdoor activities, it is unlikely that these ‘false’ events would have statistical effect on bout count and 290 

step count outcomes when examining up to 7 days (~112 waking hours) of data, as the additional gait 291 

events would be absorbed by measures of central tendency. Moreover, this would likely see a reduction 292 

in relative magnitude of bout count error due to a greater number of bout events [52]. 293 

 294 

4.4 Future Research 295 

This study is the first attempt to validate a macro gait algorithm, defining step and bout detection for 296 

free-living gait analysis and builds upon the micro laboratory based validations that already exist [26, 297 

37, 38]. Further validations of the algorithm in older and pathological groups are required if this device 298 

is to be used as a clinical research tool. Utilising machine learning paradigms to develop more accurate 299 

activity profiling techniques, i.e. the development of more precise input thresholds for detection 300 

algorithms, may eliminate the presence of false positive results and should be explored. 301 

 302 

5. Conclusion 303 

The algorithm successfully detected bouts of gait (walking/ambulation) and their respective step counts 304 

in a range of free-living environments. Although the magnitude of error observed between the wearable 305 
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accelerometer and video reference analysis is small, appropriate methods for removing error in activity 306 

recognition should be addressed for future examinations, especially in the assessment of young healthy 307 

adults where the range of ADL could be more diverse. These results will inform the accuracy of future 308 

studies utilising a single wearable accelerometer worn on the lower back for free-living gait analysis 309 

seeking to adopt a two tiered approach, macro and micro.  310 

 311 
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TABLES 
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IV
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T
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IT
Y

 

Work Home Rural Urban Other 

Location mins Location mins Location mins Location mins Activity mins 

Total 77.1 Total 14.8 Total 71.9 Total 100.6 Total 88.2 

Desk-based workspace 

(cluttered office environment) 
51.8 Sitting-room 4.9   Supermarket 2.0 Golf 48.4 

Office-Kitchen 10.6 Kitchen 3.7     Running 21.6 

Laboratory 6.8 Bedroom 2.7     Cycling 18.2 

Stair-walking 4.1 Dining-room 1.7       

Other 3.2 Stair-walking 0.7       

Reception 0.6 Other 1.1       

Table 1: Ranked time spent by all participants (all test sessions/occasions) walking in the broad range of 

environments. 

 

 

  

(n=20) 

Video  Algorithm Difference 

Observed Values Observed Values Magnitude of error 

Mean max  min Mean max  min Median 

IQR 

25th 

IQR 

75th 

All activities 

(20 hrs) 

BC 30 81 4 33 66 4 5 -1 9 

SC 1459 6207 57 1596 5696 65 28 -31 193 

Removal of 

cycling 

(19.68hrs) 

BC 30 81 4 33 66 4 4 -1 9 

SC 1459 6207 57 1489 5696 65 28 -30 109 

Table 2: Descriptive data demonstrating the range of outcomes observed from the video and algorithm, and the 

difference between each. All activities contain all walking data detected by the algorithms. Removal of cycling 

presents the findings from all activities but without the false positive cycling events included. (BC = bout count 

and SC = step count). 

 

  

(n=20) 
Median Percentiles 

Agreement 
Bias 

Relative Absolute 

(n) 25th 75th rho p ICC(2,1) p Z p 

All 

activities     

(20 hrs) 

BC 
Video 22 13 50 

0.909 <0.0005 0.941 <0.0005 -2.074 0.037 
Algorithm 30 20 52 

SC 
Video 587 244 2359 

0.941 <0.0005 0.975 <0.0005 -1.456 0.154 
Algorithm 685 272 2596 

Removal 

of cycling   

(19.68 hrs) 

BC 
Video 22 13 50 

0.909 <0.0005 0.942 <0.0005 -2.036 0.041 
Algorithm 29 20 52 

SC 
Video 587 244 2359 

0.985 <0.0005 0.994 <0.0005 -1.307 0.202 
Algorithm 647 272 2401 

Table 3: Relative and absolute agreement, and bias between the video and algorithm. All activities contain all 

walking data detected by the algorithms. Removal of cycling presents the findings from all activities but without 

the false positive cycling events included. (BC = bout count and SC = step count). 


