
The search for genetic factors that influence common 
complex traits and the characterization of the effects of 
those factors is both a goal and a challenge for modern 
geneticists. In recent years, the field has been revolution-
ized by the success of genome-wide association (GWA) 
studies1–5. Most of these studies have used a single-locus 
analysis strategy, in which each variant is tested individu-
ally for association with a specific phenotype. However, a 
reason that is often cited for the lack of success in genetic 
studies of complex disease6,7 is the existence of interac-
tions between loci. If a genetic factor functions primarily 
through a complex mechanism that involves multiple 
other genes and, possibly, environmental factors, the 
effect might be missed if the gene is examined in isola-
tion without allowing for its potential interactions with 
these other unknown factors. For this reason, several 
methods and software packages8–15 have been developed 
that consider the statistical interactions between loci 
when analysing the data from genetic association studies. 
Although in some cases the motivation for such analyses 
is to increase the power to detect effects16, in other cases 
the motivation has been to detect statistical interactions 
between loci that are informative about the biological 
and biochemical pathways that underpin the disease7. We 
return to this complex issue of biological interpretation  
of statistical interaction later in the article.

The purpose of this Review is to provide a survey of 
the methods and related software packages that are cur-
rently being used to detect the interactions between the 
genetic loci that contribute to human genetic disease. 
Although the focus is on human genetics, many of the 
concepts and approaches are strongly related to methods 

used in animal and plant genetics. I begin by describing 
what is meant by statistical interaction and by setting 
up the definitions and notation for the following sec-
tions. I then explain how one might test for interaction 
between two or more known genetic factors and how 
one might address the slightly different question of test-
ing for association with a single factor while allowing 
for interaction with other factors. In practice, one rarely 
wishes to test for interactions that occur only between 
known factors, unless perhaps to replicate a previous 
finding or to test a specific biological hypothesis. It is 
more common to search for interactions or for loci that 
might interact, given genotype data at potentially many 
sites (for example, from a GWA analysis or from a more 
focused candidate gene study). I continue the article 
by outlining different methods and software packages 
that search for such interactions, ranging from simple 
exhaustive searches to data-mining and machine-learning 
approaches to Bayesian model selection approaches. 
Throughout these sections I use the analysis of a pub-
licly available genome-wide data set on Crohn’s disease 
from the Wellcome Trust Case Control Consortium 
(WTCCC) as a recurring example1. I conclude the article 
with a section discussing the biological interpretation of 
results found from such statistical interaction analyses.

There is a long history of the investigation of inter-
actions in genetics, ranging from classical quantitative 
genetic studies of inbred plant and animal populations17–19 
to evolutionary genetic studies20 and, finally, to linkage 
and association studies in outbred human populations. 
In this article, I focus primarily on human genetic asso-
ciation studies; readers are referred to REFS 20–25 for a 
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Data mining

The process of extracting 

hidden patterns and 

potentially useful information 

from large amounts of data.

Machine learning

The ability of a program to 

learn from experience, that is, 

to modify its execution on the 

basis of newly acquired 

information. A major focus of 

machine-learning research is to 

automatically produce models 

(rules and patterns) from data.

Bayesian model selection

A statistical approach for 

selecting models by 

incorporating both prior 

distributions for parameters of 

the models and the observed 

experimental data.

Detecting gene–gene interactions  
that underlie human diseases
Heather J. Cordell

Abstract | Following the identification of several disease-associated polymorphisms by 

genome-wide association (GWA) analysis, interest is now focusing on the detection of effects 

that, owing to their interaction with other genetic or environmental factors, might not be 

identified by using standard single-locus tests. In addition to increasing the power to detect 

associations, it is hoped that detecting interactions between loci will allow us to elucidate 

the biological and biochemical pathways that underpin disease. Here I provide a critical 

survey of the methods and related software packages currently used to detect the 

interactions between genetic loci that contribute to human genetic disease. I also discuss 

the difficulties in determining the biological relevance of statistical interactions.
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Maximum likelihood

A statistical approach that is 

used to make inferences about 

the combination of parameter 

values that gives the greatest 

probability of obtaining the 

observed data.

Saturated

A term for a statistical model 

that is as full as possible 

(saturated) with 

parameters. Such a model is 

sometimes useful as it serves as 

a benchmark to quantify how 

well a simpler model (one with 

fewer parameters) fits the data.

discussion of interactions in the context of evolutionary 
genetics or in human genetic linkage analysis.

definition of statistical interaction

Interaction as departure from a linear model. The most 
common statistical definition of interaction relies on the 
concept of a linear model that describes the relationship 
between an outcome variable and a predictor variable 
or variables. We propose a particular model for how we 
believe the predictors might relate to the outcome and 
we use data (measurements of the relevant variables 
from a number of individuals) to determine how well the 
model fits our observed data and to compare the fit of  
different models. Arguably the most well-known form 
of this type of analysis is simple linear or least squares 
regression26, in which we relate an observed quantitative 
outcome y (for example, weight) to a predictor variable x 
(for example, height) using a ‘best fit’ line or regression 

equation y = mx + c. More generally, we might use multiple  
regression26 to include several different predictor vari-
ables (for example, x

1
, x

2
 and x

3
, to represent height, age 

and gender).
From a statistical point of view, interaction repre-

sents departure from a linear model that describes how 
two or more predictors predict a phenotypic outcome 
(BOX 1). For a disease outcome and case–control data, 
rather than modelling a quantitative trait y, the usual 
approach is to model the expected log odds of disease as 
a linear function of the relevant predictor variables26,27. 
Using genotype data, we can evaluate the likelihood of 
the data under this model and use maximum likelihood 
or other methods to estimate the regression coeffi-
cients and test hypotheses, such as the hypothesis that 
the interaction term (i in the mathematical formula in 
BOX 1) equals zero.

Supplementary information S1 (box) describes some 
specific models that follow this general formula, includ-
ing the saturated genotype model. Although this model 
provides the best possible fit to the data, it includes many 
parameters. We can make parameter restrictions to gen-
erate fewer degrees of freedom and thus increase power. 
Although written in terms of nine or fewer regression 
parameters, the models in Supplementary information 
S1 (box) represent an infinite number of different mod-
els, depending on the values taken by the regression 
parameters. There has been some interest in categorizing 
these models28–30 to aid mathematical or biological inter-
pretation. As discussed below, biological interpretation 
is usually easiest when the penetrance values all equal 
either zero or one, leading to a clear relationship between 
the genotype and phenotype; however, this situation is 
unlikely for complex genetic diseases.

Marginal effects. An important issue in genetic studies is 
whether there are factors that display interaction effects 
without displaying marginal effects6,31. Factors that display 
interaction effects without displaying marginal effects 
will be missed in a single-locus analysis, as they do not 
lead to any marginal correlation between the genotype 
and phenotype when each locus is considered individu-
ally. It is not clear in practice how often this might occur, 
as many models that include an interaction term even in 
the absence of main effects (α and β in the mathematical 
formula in BOX 1) lead to substantial marginal effects, 
that is, they show correlations between the genotype and 
phenotype that are detectable in a single-locus analysis. 
Thus, although one may derive mathematical models 
(sets of specific values for the regression coefficients) that 
lead to single-locus models without marginal effects6, 
it remains to be seen whether such models represent 
common underlying scenarios — and thus a potentially  
serious problem — in complex genetic diseases.

For simplicity, I have concentrated here on defining 
interaction in relation to two genetic factors (two-locus 
interactions). In practice, however, for complex diseases 
we might also expect three-locus, four-locus and even 
higher-level interactions. Mathematically, such higher-
level interactions are simple extensions to the two-locus 
models described earlier. The problem with these models 

 Box 1 | statistical models of interaction

Linear, multiple and logistic regression

Statistical interaction can best be described in relation to a linear model that 

describes the relationship between an outcome variable and some predictor 

variable or variables. In linear regression, we model a quantitative outcome y as a 

function of a predictor variable x using the regression equation y = mx + c. Here  

the regression coefficient m corresponds to the slope of the best-fit line and the 

regression coefficient c corresponds to the intercept. We use the values of pairs of 

data points (x, y) (for example, if x and y are, respectively, measurements of height and 

weight in different individuals) to estimate m and c, such that the line y = mx + c fits 

the observed data as closely as possible.

In multiple regression, we extend this idea to include several different predictor 

variables using an equation such as y = m
1
x

1
 + m

2
x

2
 + m

3
x

3
 + c. Here we are implicitly 

assuming that there is a linear relationship between each of the predictor variables x
1
, 

x
2
 and x

3  
and the outcome variable y, so that for each unit increase in x

1
, y is expected 

to increase by m
1
 (and similarly for x

2
 and x

3
).

In logistic regression, rather than modelling a quantitative outcome y, we model the 

log odds ln(p/(1 – p)) (in which p is the probability of having a disease). For example, we 

might propose the model ln(p/(1 – p)) = α + βx
B
 + γx

C
 + ix

B
x

C
, in which x

B
 and x

C
 are 

measured binary indicator variables that represent the presence or absence of genetic 

exposures at loci B and C respectively, β and γ are regression coefficients that 

represent the main effects of exposures at B and C, and the coefficient i represents an 

interaction term16 (a term that is required in addition to the linear terms for B and C).

Testing for interaction

Tests of interaction correspond to testing whether the regression coefficients that 

represent interaction terms in the above mathematical formula equal zero or not. In 

the logistic regression example above, this would correspond to a one degree of 

freedom test of i = 0. In the saturated genotype model described in Supplementary 

information S1 (box), it would correspond to a four degrees of freedom test of  

i
11

 = i
12

 = i
21

 = i
22

 = 0. Tests of association (for example, at a given locus C) while allowing 

for interaction (for example, with another locus B) correspond to comparing a linear 

model in which the main effects of B, C and their interactions are included with  

a model in which all the terms (main or interaction) that involve locus C are removed. 

For example, if modelling the log odds as ln(p/(1 – p)) = α + βx
B
 + γx

C
 + ix

B
x

C
, then the 

test of association at C allowing for interaction with B corresponds to a two degrees of 

freedom test of γ = i = 0. This is in contrast to the one degree of freedom pure 

interaction test of i = 0. One could also construct a pairwise test of the joint effects at 

both loci, including interactions, by comparing a model in which the main effects of 

loci B, C and their interactions are included with a model in which only the baseline 

intercept α is included. This gives a three degrees of freedom test of association 

allowing for interaction if a binary or allelic code is used, or an eight degrees of 

freedom test52 if a saturated genotype model (Supplementary information S1 (box)) is 

used. Tests with fewer degrees of freedom could be used by prior grouping of the 

two-locus genotypes according to certain prespecified classification schemes15,29.
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Penetrance

The probability of displaying  

a particular phenotype (for 

example, succumbing to a 

disease) given that one has  

a specific genotype.

Marginal effects

The average effects (for 

example, penetrances) of a 

single variable, averaged over 

the possible values taken by  

other variables. These could be 

calculated for one locus of a 

two-locus system as the 

average of the two-locus 

penetrances, averaged over the 

three possible genotypes at 

the other locus.

Logistic regression model

A statistical model that is used 

when the outcome is binary.  

It relates the log odds of the 

probability of an event to a 

linear combination of the 

predictor variables.

Multinomial regression

A statistical approach, similar 

to logistic regression, which is 

used when the outcome takes 

one of several possible 

categorical values.

Confounding

A phenomenon whereby  

the measure of association 

between two variables is 

distorted because other 

variables, associated with  

both variables of interest,  

are not controlled for in the 

calculation.

Empirical Bayes procedure

A hierarchical model in which 

the hyperparameter is not a 

random variable but is 

estimated by another (often 

classical) method.

Information theory

A branch of applied 

mathematics involving the 

quantification of information.

Entropy

A key measure used in 

information theory that 

quantifies the uncertainty 

associated with a random 

variable. For example,  

a variable indicating the 

outcome from a toss of a coin 

will have less entropy than a 

variable indicating the outcome 

from a roll of a die (two versus 

six equally likely outcomes).

is that they contain many parameters, and extremely 
large data sets would be required to accurately estimate 
these parameters. Interpreting the resulting parameter 
estimates is also complicated, except perhaps in some 
simple cases; for example, when risk alleles at all loci are 
required to alter disease risk (that is, when only the full 
multi-locus interaction term differs from zero).

testing for interaction between known factors

Regression models. For two or more known or hypothet-
ical genetic factors that influence disease risk, arguably 
the most natural way to test for statistical interaction on 
the log odds scale is to fit a logistic regression model that 
includes the main effects and relevant interaction terms 
and then to test whether the interaction terms equal 
zero. A similar approach can be used for quantitative 
phenotypes, in which case linear rather than logistic 
regression is used. These analyses can be performed in 
almost any statistical analysis package after construc-
tion of the required genotype variables. Alternatively, 
the ‘--epistasis’ option in the whole-genome analysis 
package PLINK12 provides a logistic regression test for 
interaction that assumes an allelic model for both the 
main effects and the interactions.

A more powerful approach in case–control stud-
ies is to use a case-only analysis32–34. Case-only analy-
sis exploits the fact that, under certain conditions, an 
interaction term in the logistic regression equation cor-
responds to the dependency or the correlation between 
the relevant predictor variables within the population 
of cases. A case-only test of interaction can therefore be 
performed by testing the null hypothesis that there is 
no correlation between alleles or genotypes at the two 
loci in a sample that is restricted to cases alone. This test 
can easily be performed using a simple χ2 test of inde-
pendence between genotypes (a four degrees of freedom 
test) or alleles (a one degree of freedom test), or using 
logistic or multinomial regression in any statistical analysis 
package.

The main problem with the case-only test is its 
requirement that the genotype variables are not cor-
related in the general population. It is this assumption, 
rather than the design per se, that provides the increased 
power compared with case–control analysis. The case-
only test is therefore unsuitable for loci that are either 
closely linked or show correlation for another reason 
(for example, if certain genotype combinations are 
related to viability). In contrast to epidemiological stud-
ies of environmental factors, in which correlation and  
confounding between variables is common, in genetic 
studies the assumption of independence between 
unlinked genetic factors seems reasonable. One could use 
a two-stage procedure to test first for correlation between 
the loci in the general population and then use the out-
come to determine whether to perform a case-only or 
case–control interaction test. However, this procedure  
has potential bias35.

A preferable approach is to incorporate the case-only 
and case–control estimators into a single test. Zhao et al.36  
proposed a test based on the difference in inter-
locus allelic association between cases and controls, 

an idea originally suggested by Hoh and Ott37. The  
‘--fast-epistasis’ option in PLINK12 performs a similar 
test. Zhao et al.36 found that their test had greater power 
than a four degrees of freedom logistic regression test of 
gene–gene interaction. However, this increase in power 
might be largely due to the lower number of degrees of 
freedom in their allelic test compared with a genotypic 
test. Mukherjee and Chatterjee35,38 proposed an empirical 

Bayes procedure that uses a weighted average of the case–
control and case-only estimators of the interaction. This 
approach exploits the gene–gene independence assump-
tion and thus the power of case-only analysis, and addi-
tionally incorporates controls, allowing the estimation of 
main effects. Routines that implement this procedure are 
available for Microsoft Office Excel and MATLAB.

Other approaches. Although regression-based tests 
of interaction seem the most natural approach, given 
the definition of interaction as departure from a linear 
regression model, alternative approaches have been pro-
posed. Yang et al.39 proposed a method based on parti-
tioning of χ2 values that, similarly to REF. 36, compares 
inter-locus association between cases and controls. Their 
method was more powerful than logistic regression 
when the loci had no marginal effects. Recently, there 
has been interest in information theory or entropy-based 
approaches for modelling genetic interactions40–43. It is 
unclear whether this framework offers any advantage 
over more standard statistical methods of modelling of 
the same predictor variables as, in most cases, the condi-
tional probability statements that are implied by the two 
approaches are equivalent44.

Family-based studies. Here I focus on testing for interac-
tion in the context of case–control or population-based 
studies. Several related methods have been proposed to 
test for interaction in the context of family-based asso-
ciation studies45–49. The case–pseudocontrol approach46 
offers a regression-based framework that allows interac-
tion tests that are similar to those described here. Given 
the larger sample sizes that are required when testing 
for interaction rather than main effects50,51, it is unclear 
whether investigators will have family-based cohorts 
of a sufficient size to provide high power to detect 
interactions. However, such cohorts might provide a 
useful resource for the replication and characteriza-
tion of interaction effects that have been found using 
alternative methods.

tests for association allowing for interaction

Rather than testing for interaction per se, many research-
ers are interested in allowing for interaction with other 
genetic or environmental factors when testing for asso-
ciation at a given genetic locus. The rationale is that, if 
the test locus influences the disease or phenotypic out-
come by interacting with another factor, then allowing 
for this interaction should increase the power to detect 
the effect at the test locus. From a mathematical point of 
view, a test for association at a given locus C while allow-
ing for interaction with another locus B (a joint test16) 
corresponds to comparing the fit to the observed data 
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Permutation

This method is often used  

in hypothesis testing. An 

empirical distribution of a  

test statistic is obtained by 

permuting the original sample 

many times and recalculating 

the value of the test statistic  

in each permuted data set.  

Each permuted sample is 

considered to be a sample of 

the population under the null 

hypothesis.

Multiple testing

An analysis in which multiple 

independent hypotheses are 

tested. If a large number of 

tests are performed, the 

significance level (p value) of 

any particular test must be 

interpreted in light of this fact, 

as the overall combined 

probability of making a type I 

error will increase.

Bonferroni correction

The simplest correction  

of individual p values for  

multiple hypothesis testing  

can be calculated using  

p
corrected

 = 1 – (1 – p
uncorrected

)n,  

in which n is the number of 

hypotheses tested. This 

formula assumes that the 

hypotheses are all 

independent, and simplifies  

to p
corrected

 = np
uncorrected

 when 

np
uncorrected

 <<1.

Q–Q plot

A quantile–quantile plot is a 

diagnostic plot that can be 

used to compare the 

distribution of observed test 

statistics with the distribution 

expected under the null 

hypothesis. Those tests that lie 

significantly above the line of 

equality between observed 

and expected quantiles are 

considered significant in the 

context of the number of tests 

performed.

of a linear model in which the main effects of B, C and 
their interactions are included with a model in which 
all the terms (main or interaction) involving locus C are 
removed (BOX 1).

Theoretically, if no interaction effects exist, these 
joint tests will be less powerful than marginal single-
locus association tests. However, if interaction effects 
exist, then the power of joint tests can be higher than that  
of single-locus approaches52. Kraft et al.16 showed  
that the joint test of a genetic effect while allowing for 
interaction with a known environmental factor had a 
near optimal performance over a wide range of plausible 
underlying models. This test uses case–control data to 
test the combination of a main effect at locus C and an 
interaction effect. As case-only analysis provides a more 
powerful test for the interaction effect32–34, Chapman and 
Clayton53 proposed using a version of the joint test that 
combines a case–control main effect component with a 
case-only interaction component.

The joint test of association while allowing for inter-
action assumes that there is some known or hypothetical 
measured factor that might interact with the test locus. 
In the absence of a specific factor of this type, a natural 
approach is to average over all other potentially interact-
ing genetic factors when performing a test at a locus. 
A Bayesian method for this approach in the context  
of GWA studies is in development14 and a beta version of  
the associated Bayesian Interaction Analysis software is 
available in limited release from its authors on request. 
Rather than averaging over all possible interacting loci, 
Chapman and Clayton53 proposed using the maximum 
value of the joint test evaluated over a predefined set 
of potentially modifying loci and assessing significance 
using a permutation argument.

I have concentrated on the issue of testing either for 
interaction or for association while allowing for interac-
tion at one or two specific genetic variants of interest. 
Rather than testing a single variant, it is now common 
to have genotype data for many variants that might 
or might not have any prior evidence for involvement 
with disease. Given such data, various model selection 
approaches have been proposed that allow one to step 
through a sequence of regression models searching 
for significant effects, including both main effects and 
interactions8–10,13,37,54–56. These approaches are described 
in more detail in subsequent sections. First, I describe an 
approach that is feasible provided the number of main 
and interaction effects to be examined is not too large, 
namely, a simple exhaustive search.

exhaustive search

Two-locus interactions. Given genotype data at sev-
eral different loci, arguably the simplest way to search 
for interactions between these loci is by an exhaustive 
search. For example, to test all two-locus interactions, 
one could analyse all possible pairs of loci and perform 
the desired interaction test for each pair. Similarly, if 
testing for association while allowing for interaction, 
one could perform the relevant three or eight degrees of 
freedom test52 (BOX 1, Supplementary information S1 
(box)). Clearly, an exhaustive search of this type raises 

a multiple testing issue analogous to the multiple testing 
issue encountered in single-locus analysis of GWA stud-
ies1. If all the tests are independent, a Bonferroni correc-

tion is appropriate52; however, linkage disequilibrium 
between loci can induce correlation between many of 
the tests. When testing for association while allowing for 
interaction, additional correlation occurs owing to the 
fact that the main effect of a locus will be a component 
of all tests that involve that locus. Theoretically, one can 
use permutation53 to assess significance while allowing 
for the multiplicity of and correlation between the tests 
performed, but, for several loci, this approach might be 
computationally prohibitive.

A pragmatic approach to the multiple testing issue in 
single-locus analysis of GWA studies is to use a stringent 
significance threshold (for example, p = 5 × 10–7) cou-
pled with replication in an independent data set to avoid 
generating large numbers of false positives. Stringent sig-
nificance thresholds can also be motivated by Bayesian 
arguments concerning the low prior probability of any 
given variant being associated with disease1. In prac-
tice, the Q–Q plot1 has emerged as the tool of choice for  
visualizing the results from an entire-genome scan.

An exhaustive search of all two-locus interactions 
from a genome scan is time consuming but compu-
tationally feasible. Marchini et al.52 quote a time of 
33 hours on a 10-node cluster to perform all pairwise 
tests of association allowing for interaction at 300,000 
loci in 1,000 cases and 1,000 controls. The PLINK12 web-
site quotes 24 hours to test (using the ‘--fast-epistasis’ 
option) all pairwise interactions at 100,000 loci typed in 
500 individuals. Given that genome-wide studies now 
routinely generate between 500,000 and 1,000,000 mark-
ers in 5,000 or more individuals, these times will need 
to be scaled upwards by several weeks or even months, 
but an exhaustive search of all two-locus interactions still 
remains feasible. In addition, as each test can be com-
puted independently of all other tests, the entire search 
can be split up into several separate jobs and analysed by 
parallel processing facilities, if they are available.

Higher-order interactions. The problem with an 
exhaustive search is that it does not scale up to analyse 
higher-order interactions. Because the number of tests 
and therefore the time taken to perform the analysis 
increases exponentially with the order of interaction 
analysed, an exhaustive search of all three-way, four-
way or higher-level interactions seems impractical in 
a genome-wide setting. For this reason, two-stage pro-
cedures have been proposed52,57,58, in which a subset of 
loci that pass some single-locus significance threshold 
are chosen, and an exhaustive search of all two-locus 
interactions (or a higher order if required, perhaps con-
ditional on significant lower-order effects58) is carried 
out on this ‘filtered’ subset. The obvious drawback with 
this approach is that loci will only be filtered into the 
second or subsequent stages of the testing procedure if 
they show a marginal association with the phenotype. 
Therefore, this procedure would not be expected to be 
useful for detecting interactions that genuinely occur in 
the absence of marginal effects.
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High-dimensional data

Data that contain information 

on a large number of variables, 

albeit possibly measured in a 

small number of subjects or 

replicates.

Cross-validation

This approach involves 

partitioning a data set into 

smaller subsamples, 

performing an analysis in  

one subsample and using the 

other subsample to measure or 

validate how well the analysis 

has performed. To reduce 

variability, multiple rounds of 

cross-validation are often 

performed using different 

partitions of the data and the 

validation results are averaged 

over the rounds.

Overfitting

The phenomenon in which a 

complex model might provide  

a good fit to the current data 

set but is overfitted to the 

random quirks present in  

that particular data set and 

therefore cannot be generalized 

to future data sets in the way 

that a simpler model might be.

Use of a single-locus significance threshold is not the 
only way to reduce the number of markers for testing. 
Several of the machine-learning approaches described 
in the next section (in particular ReliefF and random 
forests) could be used, as they do not require a locus to 
have a significant marginal effect. Biological plausibility 
offers an alternative strategy. Bochanovits et al.59 used 
evidence of co-adaptation between loci in the mamma-
lian genome to select genes for interaction testing in a 
human study. Emily et al.60 used experimental knowl-
edge of biological networks to reduce the number of 
interaction tests from 1.25 × 1011 to 7.1 × 104 when 
analysing genotype data from the WTCCC1. In their 
analysis of seven disease cohorts, they found four sig-
nificant interaction effects, including one of p = 1 × 10–9 
between rs6496669 on chromosome 15 and rs434157 
on chromosome 5 in Crohn’s disease. An example of 
applying semi-exhaustive testing to this same data set 
using the ‘--fast-epistasis’ and ‘--case-only’ options in 
PLINK12 is shown in FIG. 1.

data-mining methods and related approaches

Traditional regression-based methods are often criti-
cized8,31,61 for their inability to deal with nonlinear 
models and with high-dimensional data that contain 
many potentially interacting predictor variables, lead-
ing to sparse contingency tables that have many empty 
cells. For this reason, machine-learning or data-mining 
methods developed in the field of computer science are 
sometimes preferred. The selection of predictor vari-
ables and the interactions between them that predict an 
outcome variable is a well-known problem in the fields 
of machine learning and data mining. Data-mining 
approaches do not fit a single prespecified model, nor 
do they attempt an exhaustive search, but rather they 
attempt to step through the space of possible models, 
including potentially large numbers of main effects and 
multiway interactions, in a computationally efficient way. 
Many data-mining approaches are equivalent to stepping 
through a particular sequence of regression models and 
attempting to find the model that best fits the data; the 
distinction that is often made between data-mining and 
regression models is therefore, to some extent, false. 
Nonlinearity is not an issue when fitting a saturated 
model, although it might be an issue for more restricted 
models. One common theme in data mining is the use of 
cross-validation62 to avoid overfitting problems.

Data-mining methods typically have problems 
dealing with incomplete or unbalanced data sets; for 
example, when the number of cases and controls are 
unequal63. They also do not always deal well with cor-
related predictors that show colinearity. This has been 
addressed in the mainstream statistics literature by the 
introduction of penalized regression approaches64,65 that 
allow large numbers of predictor variables to be included 
in a regression model but with many estimated regres-
sion coefficients reduced towards zero. In genetics, the 
use of such techniques is just starting to emerge, includ-
ing penalized logistic regression66,67 and least-angle 
regression68 for identifying gene–gene interactions69,70 
in binary traits.

A good overview of several machine-learning 
approaches for detecting gene–gene interactions is given 
by McKinney et al.31. For the remainder of this section, 
I focus on several methods that have become popular 
or seem to show promise for detection of gene–gene 
interactions or, more precisely, for detection of genes 
that might interact.

Recursive partitioning approaches. Recursive parti-
tioning approaches (BOX 2) have been used as an alter-
native to traditional regression methods for detecting 
the genetic loci and their interactions that influence a 
phenotypic outcome71–73. These approaches produce  
a graphical structure that resembles an upside-down tree 
that maps the possible values of certain predictor vari-
ables (for example, SNP genotypes) to a final expected 
outcome (for example, disease status). Each vertex or 
node of the tree represents a predictor variable and 
there are arcs or edges from each node leading down to 
‘child’ nodes, in which each edge corresponds to a dif-
ferent possible value that could be taken by the variable 
in the ‘parent’ node. A path through the tree represents 
a particular combination of values taken by the predic-
tor variables that are present within that path. Recursive 
partitioning approaches do not include interaction vari-
ables per se in the model. Rather, the trees constructed 
allow for interaction in the sense that each path through 
a tree corresponds to a particular combination of values 
taken by certain predictor variables, thus including the 
potential interactions between them. The aim of tree-
based approaches therefore corresponds most closely 
to testing for association while allowing for interaction 
rather than testing for interaction per se. One limitation 
of recursive partitioning is that, because it conditions on 
the main effects of variables at the first stage and on the 
main effects conditional on previously selected variables 
at subsequent stages, pure interactions in the absence of 
main effects can be missed74.

Rather than using a single tree, substantial improve-
ments in classification accuracy can result from growing 
an ensemble of trees. A popular ensemble tree approach 
is the random forests approach75 (BOX 2), which has been 
used in several genetic studies76,77. Apart from the classi-
fication of future observations (which is not our focus of 
interest), the main result of a random forests analysis is a 
list of variable importance measures. These measure the 
effect of each predictor variable both individually and 
through multiway interactions with other predictor vari-
ables, and therefore have an advantage over a list of sig-
nificance values from single-locus association testing.

Random forests provide a fast algorithm that can be 
applied in parallel for measuring variable importance 
partly because, at each split, only a small random sub-
set of predictors is used. To allow each predictor the 
opportunity to enter the model and to make an accu-
rate prediction, one must carefully choose important 
parameters, such as the number of trees in the forest, the 
number of randomly chosen SNPs analysed at each node 
and the number of permutations used to assess variable 
importance. Ideally, one would repeat the analysis sev-
eral times to assess the sensitivity to the choice of these 

R E V I E W S

396 | JUNE 2009 | VOLUME 10  www.nature.com/reviews/genetics

© 2009 Macmillan Publishers Limited. All rights reserved



O
b

se
rv

e
d

 χ
2  

st
at

is
ti

c

Expected χ2 value

30 402520 3515

70

60

50

40

30

20

O
b

se
rv

e
d

 χ
2  

st
at

is
ti

c

Expected χ2 value

70

60

50

40

30

20

O
b

se
rv

e
d

 χ
2  

st
at

is
ti

c

Expected χ2 value

70

60

50

40

30

20

O
b

se
rv

e
d

 χ
2  

st
at

is
ti

c

Expected χ2 value

30 402520 3515 30 402520 3515

30 402520 3515

50

40

30

20

Aa Ab

Ad

–
lo

g 10
(p

)

SNP position

20

15

10

5

0

6 × 1074 × 1072 × 107 8 × 1070

Ac

B

Figure 1 | semi-exhaustive search of pairwise interactions between 89,294 snPs. I used the ‘--fast-epistasis’  

and ‘--case-only’ options in PLINK to analyse the Wellcome Trust Case Control Consortium (WTCCC) Crohn’s disease and 

control samples. I used the same quality control procedures as the WTCCC to remove poor quality SNPs and samples 

before analysis. I additionally discarded 561 SNPs that had been analysed by WTCCC but were subsequently discarded 

on the basis of visual inspection of the SNP intensity cluster plots (J. Barrett, personal communication). To reduce the 

number of interaction tests to be performed, I selected a set of 89,294 SNPs that passed a single-locus p value threshold 

of 0.2. Analysis of the 89,294 SNPs on a single node of a computer cluster took 14 days. Unfortunately, neither SNP in the 

interaction detected by Emily et al.60 were included in my analysis, as neither had a single-locus p  ≤ 0.2. A | Results from 

‘--case-only’ analysis, in which SNP pairs were discarded if they were <1 Mb apart (panel a), <5 Mb apart (panel b), and 

<50 Mb apart (panel c). The default in PLINK is to exclude tests of pairs of SNPs that are less than 1 Mb apart. Even when 

extreme separations of 5 Mb or 50 Mb are enforced (panels b and c), we find a large number of apparently significant 

results. A closer inspection showed that in many cases, these significant results are due to correlation within the sample 

of cases between alleles at loci on different chromosomes. Given the general departure from the expected distribution, 

it seems likely that these significant case-only results are artefacts rather than genuine interaction effects. Panel d shows 

a Q–Q plot of all results from the ‘--fast-epistasis’ option with p < –0.0001. These results lie much closer to the expected 

line; only one result seems to show strong departure from the expected significance. The top-ranking results (those with 

χ2 > 35, as indicated by the dashed line on panel d are shown in Supplementary information S3 (table). Interestingly, 

most of the SNPs involved in the putative interactions show little single-locus significance, apart from rs4471699 on 

chromosome 16. This SNP was not reported as significantly associated by WTCCC1. B | Single-locus association results 

across chromosome 16. rs4471699 at position 30,227,808 shows the highest significance but is far removed from most of 

the significant results, which are situated close to nucleotide-binding oligomerization domain containing 2 (NOD2) 

(approximate position 49,297,083). Further investigation showed that this SNP had been excluded from the WTCCC 

analysis owing to poor genotype clustering (J. Barrett, personal communication), even though it passed the stated 

WTCCC exclusion criteria and was not present in the original list of additional exclusions I was given. It therefore seems 

likely that both the single-locus and interaction results at rs4471699 are false positives.
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parameters. An example of applying random forests to 
the WTCCC Crohn’s disease and control data using the 
Random Jungle software package78 is shown in FIG. 2.

Multifactor Dimensionality Reduction method. A range 
of data-mining approaches have been used for the detec-
tion of interactions or potentially interacting variables 
in genetic association studies, including logic regres-
sion79,80, genetic programming81, neural networks54,55 and 
pattern mining82,83. One particularly popular method is 
Multifactor Dimensionality Reduction (MDR)8–10. MDR 
has been used to identify potential interacting loci in 
several phenotypes, including breast cancer8, type 2 
diabetes84, rheumatoid arthritis85 and coronary artery 
disease86, although to date it is unclear whether any of 
these identified interactions have been replicated in 
larger samples.

The MDR algorithm is described in BOX 3 and in 
detail elsewhere8–11,49. Rather than testing for interaction 
per se, MDR seeks to identify combinations of loci that 
influence a disease outcome, possibly by interactions 
rather than — or in addition to — by main effects. MDR 
reduces the number of dimensions by converting a high-
dimensional multilocus model to a one-dimensional 
model, thus avoiding the issues of sparse data cells and 
models with too many parameters that can cause prob-
lems for traditional regression-based methods. MDR 
classifies genotypical classes as either high risk or low 
risk according to the ratio of cases and controls in each 
class. This approach could be considered overly simplis-
tic, and improvements that embed a more traditional 
regression-based approach into the cell classification 
step, allowing application of the method to continuous 
as well as binary traits and adjustment for covariates, 
have been proposed87,88.

The main problem with MDR, as with other exhaus-
tive search techniques, is that it does not scale up to allow 
analysis of large numbers of predictor variables (for 
example, many loci from a GWA study)8,9. If an exhaus-
tive search for the best n-locus combination (within each 
of ten cross-validation replicates) is performed, anything 
more than a two-locus screen on more than a few hun-
dred variables will be computationally prohibitive. An 
additional problem with early versions of the widely used 
Java implementation of the MDR software (but note that 
other software implementations exist11,88) is that it was 
not designed with genome-wide data sets in mind and 
thus could fail owing to memory and disc usage issues. 
However, these problems seem to have been addressed 
in the most recent version of the software.

For investigation of higher-order interactions, MDR 
is therefore perhaps best suited for use with small num-
bers of loci (up to a few hundred), which have perhaps 
been discovered from a candidate gene study or selected 
from a larger set of potential predictors using a prior 
processing or filtering step40. This step could be as simple 
as using a single-locus significance threshold, but that 
seems counter-intuitive if the goal is to detect interac-
tions in the absence of marginal effects. Perhaps a more 
appealing approach would be to use a measure of vari-
able importance that allows for possible interactions, 

Box 2 | Recursive partitioning approach

single classification tree

Recursive partitioning approaches are 

based on classification and regression 

trees111. Trees are constructed (see the 

figure) using rules that determine how well 

a split at a node (based on the values of a 

predictor variable such as a SNP) can differentiate observations with respect to  

the outcome variable (such as case–control status). A popular splitting rule is to use the 

variable that maximizes the reduction in a quantity known as the Gini impurity111,112 at 

each node. In the figure, SNP 3 maximizes the reduction in the Gini impurity at the 

first node and is therefore chosen for splitting (according to the genotype at SNP 3) 

the original data set of 1,000 cases and 1,000 controls into two smaller data sets. Once 

a node is split, the same logic is applied to each child node (hence the recursive nature 

of the procedure). The splitting procedure stops when no further gain can be made 

(for example, when all terminal nodes contain only cases or only controls, or when all 

possible SNPs have been included in a branch) or when some preset stopping rules are 

met. At this stage, it is usual to prune the tree back (that is, to remove some of the later 

splits or branches) according to certain rules111 to avoid overfitting and to produce a 

final more parsimonious model.

ensemble approaches: random forests

Rather than using a single classification tree, substantial improvements in 

classification accuracy can result from growing an ensemble of trees and letting them 

‘vote’ for the most popular outcome class, given a set of input variable values. Such 

ensemble approaches can be used to provide measures of variable importance, a 

feature that is of great interest in genetic studies and that is often lacking in 

machine-learning approaches. The most widely used ensemble tree approach is 

probably the random forests method75. A random forest is constructed by drawing 

with replacement several bootstrap samples of the same size (for example, the same 

number of cases and controls) from the original sample. An unpruned classification 

tree is grown for each bootstrap sample, but with the restriction that at each node, 

rather than considering all possible predictor variables, only a random subset of the 

possible predictor variables is considered. This procedure results in a ‘forest’ of trees, 

each of which will have been trained on a particular bootstrap sample of observations. 

The observations that were not used for growing a particular tree can be used as 

‘out-of-bag’ instances to estimate the prediction error. The out-of-bag observations 

can also be used to estimate variable importance in different ways including through 

use of a permutation procedure31,77,113.

The true model in which the important predictor variables act or interact to 

influence phenotype is somewhat obscured because it results from the predictions of 

many different classification trees, and so one might wish to follow a random forests 

analysis with another approach. For example, one might choose the top-ranking 

variables from a random forests analysis as input variables for a simple regression-based 

search, a standard classification and regression trees analysis or for analysis using an 

alternative data-mining procedure.

See REFS 31,74,113 for a good summary of the approach, the available R software 

(the ‘randomForest’, ‘cforest’ and ‘party’ libraries) and a discussion of some of the 

limitations of the method.
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Figure 2 | Random Jungle analysis of 89,294 snPs. I used the software package Random Jungle78 to perform a 

random forests analysis of the 89,294 SNPs that passed a single-locus p value threshold of 0.2 in the Wellcome Trust 

Case Control Consortium (WTCCC) Crohn’s disease and control data. As Random Jungle, in common with many other 

machine-learning approaches, prefers not to have missing genotype data, the missing genotypes were imputed as  

the single most likely values on the basis of the genotype frequencies in the case–control data set. Analysis of the 

89,294 SNP set took approximately 5 hours, using 6,000 trees in the forest and √n = √89,294 randomly chosen 

variables at each node. a | Importance values from the Random Jungle analysis. These are clearly dominated by the 

result at rs4471699 on chromosome 16, which is likely to be a false positive. b | Results from Random Jungle analysis 

with SNP rs4471699 removed. Once this SNP is removed, the remaining SNPs are better distinguished, but it is unclear 

whether this analysis offers any greater insight than the single-locus analysis. c | Results from single-locus association 

analysis of all 6,113 SNPs using the trend test implemented in PLINK. In many cases, the highest ranking SNPs are in 

similar locations to (b), but with clearer significance in (c).

Bootstrap samples

These are data sets obtained 

by taking a random sample of 

the original data, usually with 

replacement. One then applies 

the same analysis as was 

applied to the real data. This is 

repeated many times, allowing 

one to assess the variability in 

results incurred owing to 

random sampling.

Frequentist

A statistical approach for 

testing hypotheses by 

assessing the strength of 

evidence for the hypothesis 

provided by the data.

such as the variable importance measure from a random 
forests analysis or from one of the alternative filtering 
methods described below.

ReliefF, Tuned ReliefF and evaporative cooling. One 
promising filtering algorithm that has been proposed40 is 
ReliefF89 or its modified version, Tuned ReliefF (TuRF)90. 
This approach uses a measure of proximity between 
observations (individuals) — which is calculated, for 
example, on the basis of the genome-wide genetic simi-
larity between individuals — to determine the nearest 
neighbours of each individual from within their own 
phenotype class and from within the opposite pheno-
type class. The difference in the value of each predictor 
variable between the pairs of neighbouring individuals, 
weighted negatively or positively according to whether 
the individuals come from the same or different phe-
notype classes, can be used to construct an importance 
measure for that variable90. The algorithm is simple and 
scalable, and should be applicable to large numbers of 
predictor variables and observations; an in-house C++ 
implementation was able to analyse 1 million loci in 200 
individuals in approximately 4 minutes90.

ReliefF and TuRF have both been implemented in 
the Java version of the MDR software. One problem 
with ReliefF is that it can be affected by large back-
grounds of genetic variants that do not contribute to 
the phenotype74. This has motivated the development 
of an alternative approach, evaporative cooling74,91, 
which can be used to combine the strengths of ReliefF 
with those of random forests methods74.

An example of analysis using the Java implementa-
tion of TuRF and MDR applied to the WTCCC Crohn’s 
disease data is shown in FIG. 3.

Bayesian model selection approaches

Bayesian model selection techniques92 offer an alterna-
tive approach for selecting predictor variables and the 
interactions between them that are the best predictors of 
phenotype. The key difference between Bayesian model 
selection and simple comparisons of nested regression 
models using frequentist (non-Bayesian) procedures is 
the specification of prior distributions for the unknown 
regression parameters as well as for a dimension param-
eter in a Bayesian approach. This dimension parameter 
specifies how many non-zero predictors are included 
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 Box 3 | multifactor dimensionality Reduction

The Multifactor Dimensionality Reduction (MDR) method is a constructive induction 

algorithm40 that proceeds as follows: the observed data is divided into ten equal 

parts and a model is fit to each nine-tenths of the data (the training data), and the 

remaining one-tenth (the test data) is used to assess model fit, thus using ten-fold 

cross-validation. Within each nine-tenths of the data, a set of n genetic factors is 

selected and their possible multifactor classes or cells are represented in n 

dimensional space. For example, for n = 2 diallelic loci, there are nine possible 

genotype classes or cells (Supplementary information S1 (box)). The ratio of the 

number of cases to the number of controls is estimated in each cell and the cell is 

labelled as either high risk if the case–control ratio reaches or exceeds a 

predetermined threshold (for example, ≥1) and low risk if it does not reach this 

threshold. This reduces the original n-dimensional model to a one-dimensional 

model (that is, one variable with two classes: high risk and low risk). The procedure is 

repeated for each possible n-factor combination and the combination that 

maximizes the case–control ratio of the high-risk group (that is, the combination 

that fits the current nine-tenths of the data best, giving minimum classification error 

among all n-locus models) is selected. The testing accuracy (which is equal to  

1 – prediction error) of this best n-locus model can be estimated using the remaining 

test data portion of the data. The whole procedure is repeated for each of the  

nine-tenth-one-tenth partitions of the data, and the final best n-locus model is  

the model that maximizes the testing accuracy or, equivalently, minimizes the 

prediction error. The cross-validation consistency is defined as the number of 

cross-validation replicates (partitions) in which that same n-locus model was chosen as 

the best model (that is, the number of replicates in which it minimized classification 

error). The average prediction error is defined as the average of the prediction errors 

over the ten cross-validation test data sets. Note that the prediction error of each 

individual cross-validation replicate refers to the prediction error of the n-locus model 

chosen as the best model in that replicate, which will not always correspond to the final 

best n-locus model.

In practice, rather than selecting a single value of n in each cross-validation replicate, 

one might consider all possible values of n up to a certain maximum; for example, all 

single-locus genotype combinations (n = 1), all two-locus combinations (n = 2) or  

all three-locus combinations (n = 3). One thus generates a best model within  

each cross-validation replicate as well as a final best model (with the associated 

cross-validation consistency and average prediction error) for each different value of n. 

The cross-validation consistencies and average prediction errors can be used to 

determine the best value of n that gives the highest cross-validation consistency or 

lowest average prediction error, and thus the resulting overall best model.

Burn-in period

In Markov chain Monte Carlo  

analysis, a period at the start of 

the computation in which the 

values taken by the parameters 

are ignored when constructing 

the posterior distribution.

Compositional epistasis

The blocking of one allelic 

effect by an allele at another 

locus.

Statistical epistasis

The average effect of substitu-

tion of alleles at combinations 

of loci, with respect to the 

average genetic background  

of the population.

Functional epistasis

The molecular interactions  

that proteins and other  

genetic elements have with  

one another.

in the regression equation. A posterior distribution for 
these parameters, given the observed data, can then be 
calculated using Markov chain Monte Carlo (MCMC)93 
simulation techniques, in which one traverses the space 
of the possible models (sets of parameter values), sam-
pling the outputs of the simulation run at intervals. 
Although MCMC is a flexible approach, it can require 
some care with respect to the choice of prior distribu-
tions, proposal schemes (determining how one moves 
between models) and the number of iterations required 
to achieve convergence.

Lunn et al.56 proposed a Bayesian version of stepwise 
regression implemented in the software WinBUGS. 
This method focuses on the main effects of loci rather 
than interactions, but the inclusion of interaction effects 
is a straightforward extension. The main problem with 
this method is that it can deal with only a few hundred 
variables at most56 and does not scale to the large num-
bers of predictor variables that might be encountered 
in a genome-wide study. However, related approaches 
that can deal with data sets with more dimensions have 
been proposed94.

Bayesian Epistasis Association Mapping. A recently 
proposed MCMC approach that is specifically designed 
to detect interacting, as well as non-interacting, loci 
is Bayesian Epistasis Association Mapping13, which is 
implemented in the software package BEAM. In BEAM, 
predictors in the form of genetic marker loci are divided 
into three groups: group 0 contains markers that are not 
associated with disease, group 1 contains markers that 
contribute to disease risk only by main effects and group 2  
contains markers that interact to cause disease by a satu-
rated model. Given prior distributions that describe the 
membership of each marker in each of the three groups 
and prior distributions for the values of the relevant regres-
sion coefficients given group membership, a posterior 
distribution for all relevant parameters can be generated 
using MCMC simulation. In addition to making infer-
ences in a fully Bayesian inferential framework, one can 
use the results from BEAM in a frequentist hypothesis- 
testing framework by calculating a ‘B-statistic’13 that 
tests each marker or set of markers for significant  
association with a disease phenotype.

BEAM can handle large numbers of markers (for 
example, 100,000 SNPs typed in 500 cases and 500 con-
trols13) although, in practice, some modification to the 
default parameters (namely the burn-in period, number 
of starting points and number of MCMC iterations) 
might be required to apply the method in a reason-
able period of time. BEAM cannot currently handle 
the 500,000–1,000,000 markers that are now routinely 
being genotyped in genome scans of 5,000 or more 
individuals. In theory, BEAM can account for linkage 
disequilibrium between adjacent markers13. However, 
it is unclear whether linkage disequilibrium between 
non-adjacent markers is fully accounted for, suggesting 
that reducing the number of markers in the marker set 
might be required, not only for computational reasons, 
but also to ensure that the markers are in low linkage 
disequilibrium. An example of applying BEAM to the 
WTCCC Crohn’s data is shown in FIG. 4.

Biological interpretation

The extent to which statistical interaction implies bio-
logical or functional interaction has been extensively 
debated in both the genetics19,21,95–99 and epidemiologi-
cal100–102 literature. One problem has been the inherently 
different nature of definitions of interaction and the use 
of a common term, epistasis, to encapsulate these defi-
nitions21,95 (Supplementary information S2 (box)). In a 
recent review, Phillips20 defines three different forms 
of epistasis — compositional epistasis, statistical epistasis 

and functional epistasis — that capture different con-
cepts that are often grouped together under this single 
term. A unified framework, the natural and orthogonal 
interactions (NOIA) model, was proposed by Alvarez-
Castro and Carlborg98 for modelling both statistical 
and functional epistasis. However, Alvarez-Castro and 
Carlborg’s definition of functional differs from that of 
Phillips. The NOIA model is actually a mathematical 
reparameterization of classical quantitative genetics 
models19 (Supplementary information S2 (box)). The 
NOIA model allows the main effects to be defined with 
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Figure 3 | Multifactor Dimensionality Reduction (MDR) and Tuned ReliefF (TuRF) analysis of 6,113 snPs. I used the 

Java implementation of MDR to analyse 6,113 SNPs that passed a single-locus p value threshold of 0.01 in the Wellcome 

Trust Case Control Consortium (WTCCC) Crohn’s disease and control data, with missing genotypes imputed as the single 

most likely values on the basis of the genotype frequencies in the case–control data set. Examination of all pairwise 

combinations in the entire 6,113 SNP set was computationally prohibitive but analysis using a prior filtering step with 

ReliefF or TuRF, which reduced the data set for MDR analysis to 1,000 SNPs, was achievable. The best single-locus model 

identified was rs4471699, providing a testing accuracy of 0.5852 and cross-validation consistency of 10 out of 10.  

The best two-locus model identified was rs4471699 and rs2076756, providing a testing accuracy of 0.5879 and 

cross-validation consistency of 4 out of 10. MDR, in common with the other methods investigated, has clearly been 

dominated by the false positive result at rs4471699. Interestingly, however, this SNP is not selected by TuRF when 

filtering down the set of SNPs for MDR analysis to include only 100 SNPs. Using the 100 SNP set, the best single-locus 

model identified was rs931058, providing a testing accuracy of 0.5114 and cross-validation consistency of 5 out of 10.  

The best two-locus model identified was rs931058 and rs10824773, providing a testing accuracy of 0.5205 but 

cross-validation consistency of only 2 out of 10. Using the 100 SNP set, it was computationally feasible to fit three-locus and 

four-locus models; however, the resulting best models had cross-validation consistencies as low as for the two-locus model. 

I also found extreme sensitivity in both TuRF and MDR to the choice of the random number seed (data not shown), 

suggesting that, overall, these results should be interpreted with caution. A problem with MDR is that it outputs only the 

best model rather than a measure of significance for all of the models or variables considered. An idea of the importance 

of the variables can be determined by examining the ‘fitness landscape’ output from the program, shown here. a | Fitness 

landscape scores from TuRF analysis of all 6,113 SNPs. b | Fitness landscape scores from MDR analysis using the top 

1,000 out of 6,113 SNPs filtered using TuRF. c | Results from single-locus association analysis of all 6,113 SNPs using the 

trend test implemented in PLINK. It is unclear whether the fitness landscape results from TuRF (a) or MDR (b) offer any 

great advantage over standard single-locus analysis (c) with respect to determining the importance of variables.

respect to a different reference point and interaction 
effects to be defined with respect to different definitions 
of the independence of the main effects, thus allowing 
mapping of models between different experimental 
populations. As the whole issue in interaction modelling  
is how one defines the effect of a variable and, therefore, 
how one measures departure from the independence 
of effects (Supplementary information S2 (box)), this 
reparameterization does not seem to be biologically  
enlightening.

It may seem reasonable to assume that functional 
epistasis in the form of biomolecular or protein–
protein interaction is a ubiquitous component of the 
underlying biological pathways that determine disease 

progression7,103. However, this does not mean that epistasis  
will be detected as a mathematical or statistical inter-
action102,104, particularly if the variables that are being 
examined are, as in many cases, simply surrogates for 
the true underlying causal variants that are correlated 
with the causal variants because of linkage disequilib-
rium. The historical lack of success in genetic studies of 
complex disease can largely be attributed, not to ignored 
biological interactions7,61,67, but to underpowered studies 
that surveyed only a fraction of genetic variation. The 
recent success of GWA studies1–5 has shown that single-
locus association analysis in sufficiently large sample 
collections can reliably detect modest genetic effects that 
are robustly replicated105,106.
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Figure 4 | Bayesian epistasis Association Mapping (BeAM) analysis of 47,727 snPs. I used BEAM to analyse a set of 

47,724 SNPs that passed a single-locus p value threshold of 0.1 in the Wellcome Trust Case Control Consortium 

(WTCCC) Crohn’s disease and control samples. Analysis of the 47,724 SNPs took 8 days (with some modification to the 

default settings, most notably imposing a maximum of 5 × 10–7 Markov chain Monte Carlo (MCMC) iterations13 rather 

than using the default value of n2, in which n is the number of loci). I estimated that analysis of the 89,294 SNP set 

passing a single-locus p value threshold of 0.2 with a similar number of MCMC iterations would have taken more than 

5 weeks. a | ‘B-statistic’ p values for the 1,321 single-locus associations detected by BEAM. b | Results from single-locus 

association analysis of all 47,727 SNPs using the trend test implemented in PLINK. BEAM detects the same loci as are 

detected by single-locus analysis. BEAM additionally detects (with a quoted p value of 0.000000) four two-locus 

interactions, each involving an interaction of rs2532292 on chromosome 17 with a nearby SNP (either rs12150547, 

rs17689882, rs17650381 or rs17574824) within the same cluster. None of these SNPs shows particularly strong 

single-locus associations and so this putative interaction is intriguing. However, none of these pairs of SNPs showed 

significant (defined as a p < 0.0001) interaction in the PLINK ‘--fast-epistasis’ analysis. Closer inspection of these SNPs 

in the control sample indicated that they are in strong linkage disequilibrium (D′> 0.99) with one another, suggesting 

that the detected interactions might correspond to marker dependencies owing to linkage disequilibrium, rather 

than to genuine interaction effects.

Although the extent to which biological interaction 
can be inferred from statistical interaction might be lim-
ited102, some interesting recent studies107–109 have focused 
on whether, given a strong prior biological model or set 
of models, one can use genetic or genomic data from 
outbred populations or inbred strains to assess the fit of 
the model and compare the fits of competing models. 
This is a more modest goal because it relies on a prior 
understanding or at least a strong biological hypothesis 
with respect to the action of the relevant predictors.

conclusions

As we have seen, there are numerous methods and an 
even larger number of software implementations  that 
allow investigators to examine or test for interaction 
between loci, using data that is currently generated from 
large-scale genotyping projects. Although the precise 
details of the methods differ, in many cases there are 
close conceptual links between the different approaches. 
The best way to understand these links might be pro-
vided by understanding the difference between test-
ing for interaction versus testing for association while  
allowing for interaction.

From a practical point of view, probably the main 
difference between the methods I have described is the 
computational time required to implement the analysis. 
As data sets become larger, the development of efficient 
computational algorithms that can be implemented in 
parallel will become more important. On this note, the 
use of filtering approaches that allow one to preselect a 
subset of potentially interesting loci to input into a more 
computer-intensive exhaustive or stochastic search 
algorithm might hold promise. In my application of 
various methods to the WTCCC Crohn’s disease data, I  
found that a semi-exhaustive search of two-locus inter-
actions implemented in PLINK12 and a random forests 
analysis implemented in Random Jungle78 were the most 
computationally feasible of the methods examined. 
Bayesian Epistasis Association Mapping implemented in 
BEAM13 was feasible only for a filtered data set and with 
some modification to the default recommended input 
parameter settings; it is unclear what effect, if any, this 
will have had on the reliability of the results. MDR was 
feasible for examining two-locus interactions in a filtered 
data set or for examining higher-level interactions in an 
even further reduced data set.
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Supplementary Box S1: Different models of interaction

The regression model described in Box 1 is quite general, encompassing a number of different specific

cases. Suppose we consider a model of recessive effects (on the log-odds scale) at each of two diallelic

interacting loci, so that the binary factors xB and xC correspond to indicators of homozygosity for the risk-

modifying allele at each locus. The expected log-odds of disease implied by the regression formulation,

given an individual’s two-locus genotype combination, are shown below:

Locus C

Genotype c/c c/C C/C

b/b α α α+ γ

Locus B b/B α α α+ γ

B/B α+β α+β α+β+ γ+ i

If, instead, we consider a dominant model, whereby a single allele at each locus is sufficient to

modify disease risk, we obtain the expected log-odds:

Locus C

Genotype c/c c/C C/C

b/b α α+ γ α+ γ

Locus B b/B α+β α+β+ γ+ i α+β+ γ+ i

B/B α+β α+β+ γ+ i α+β+ γ+ i

The actual value of the expected log-odds in each genotype category will depend on the values of

the regression parameters α, β, γ and i. For example, under the recessive model, if these parameters took

values α = 0.5, β = 0.5, γ = 1 and i= 3, we would obtain log-odds values:

Locus C

Genotype c/c c/C C/C

b/b 0.5 0.5 1.5

Locus B b/B 0.5 0.5 1.5

B/B 1 1 5

The penetrance values (probabilities of getting disease) corresponding to this model (i.e. the values

of p rather than of ln[p/(1− p)]) may be calculated using the identity p= exp(ln[p/(1−p)])
1+exp(ln[p/(1−p)]) , and are:
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Locus C

Genotype c/c c/C C/C

b/b 0.62 0.62 0.82

Locus B b/B 0.62 0.62 0.82

B/B 0.73 0.73 0.99

Note that models with interaction effects on one scale (e.g. the penetrance scale) may correspond to

models with no interaction effects on another scale (e.g. the log-odds scale). For example, if under the

recessive model on the log-odds scale the regression parameters took values α = 0.5, β = 0.5, γ = 1 and

i= 0, we would obtain log-odds values:

Locus C

Genotype c/c c/C C/C

b/b 0.5 0.5 1.5

Locus B b/B 0.5 0.5 1.5

B/B 1 1 2

Here, possession of the risk genotype B/B adds a unit of 0.5 to the log-odds while posession of the

risk genotype C/C adds a unit of 1.0 to the log-odds, with no additional (interaction) term required for

possession of risk genotypes at both loci. The penetrance values corresponding to this model are:

Locus C

Genotype c/c c/C C/C

b/b 0.62 0.62 0.82

Locus B b/B 0.62 0.62 0.82

B/B 0.73 0.73 0.88

Here, possession of the risk genotype B/B adds a unit of 0.11 to the penetrance while posession of

the risk genotype C/C adds a unit of 0.20. However, subtraction of an additional -0.05 (i.e. an interac-

tion term) is required when both risk genotypes (B/B and C/C) are possessed. This example illustrates

the well-known fact that statistical interaction effects are affected by changes of scale 1: essentially the

regression parameters, including interaction terms, are defined relative to some particular scale of inter-

est. This phenomenon has led to some confusion in terminology 2 concerning whether interaction effects
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represent departure from a linear (i.e. additive) model or from a multiplicative model, with respect to the

main effects of the two loci. A model that is additive on the log-odds scale will be equivalent to a model

that is multiplicative on the odds scale, and so departure from either of these models may be considered

as equivalent. However, this departure would not be equivalent to departure from multiplicativity on the

original log-odds scale.

A more general ‘genotype’ model for the effects of two loci allows for different parameters to repre-

sent the effects of having a single copy (i.e. being heterozygous) or two copies (i.e. being homozygous)

of a risk-modifying allele, as shown below:

Locus C

Genotype c/c c/C C/C

b/b α α+ γ1 α+ γ2

Locus B b/B α+β1 α+β1+ γ1+ i11 α+β1+ γ2+ i12

B/B α+β2 α+β2+ γ1+ i21 α+β2+ γ2+ i22

This model includes nine different parameters: a parameter α that represents the ‘baseline’ log-

odds for an individual who has genotypes b/b and c/c, parameters β1 and β2 representing the effects of

replacing one or both alleles at locus B with the modifying allele B, parameters γ1 and γ2 representing

the effects of replacing one or both alleles at locus C with the modifying allele C and four interaction

parameters i11, i12, i21, and i22. This is known statistically as a ‘saturated’ model, which means that it is

fully parameterized: nine two-locus genotype categories are modelled by nine parameters, and so these

parameters may be chosen (estimated) to fit the observed nine two-locus penetrances or log-odds values

precisely. No other model exists that can fit the observed penetrances any better. All other models can

be considered as sub-models of (‘nested’ in) this most general model. Although the saturated model

provides the best possible fit to the data, it includes many parameters. In statistical terms, we are usually

interested in determining whether a model with fewer parameters can fit the data ‘almost as well’. The

4 degree of freedom (df) test of interaction (i11 = i12 = i21 = i22 = 0) tests whether the interaction terms

are required at all. We may also make parameter restrictions to the interaction model to generate fewer

df (while retaining one or more interaction parameters) and thus increase power. The recessive and

dominant models correspond to models in which certain parameters are set equal either to zero or to each

other. An alternative is to assume alleles act additively within a locus, which corresponds to assuming
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β2= 2β1, γ2= 2γ1, i12= i21= 2i11 and i22= 4i11. This restriction converts the nine-parameter ‘genotype’

model into a four parameter ‘allelic’ model, ln[p/(1− p)] = α+β1xB+ γ1xC+ i11xBxC, where xB and xC

are variables taking values (0,1,2) according to the number of risk alleles at locus B and C respectively.

This model contains a single interaction parameter i11 that may be freely estimated; a modified version

of this model, that makes further restrictions on the relative magnitudes of β1, γ1 and i11, has also been

proposed 3.
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Supplementary Box S2: Effects – interacting, independent or otherwise

A key issue in defining and interpreting genetic interaction – epistasis – is understanding what is meant by

the ‘effect’ of a locus, and what is meant by ‘independent’ effects of several loci. These concepts were

first introduced in genetics by Bateson et al. 1 who described the concept of a character (phenotype)

produced by the meeting of two distinct genetic factors, without using the specific terms ‘interaction’,

‘epistasis’, ‘epistacy’ or ‘epistatic’. Subsequently, Bateson 2 used the term ‘interaction’ to describe this

concept in the situation where one factor is not visible unless the other is also present, and the term

‘epistatic’ 3 4 to describe this concept in the context of one factor preventing another from manifesting

its effect. This terminology may perhaps originate from an earlier paper by Gadow 5 who used the term

‘epistasis’ in the context of arrested development in lizards, citing a German paper by Eimer 6 as the

origin of the term.

The Batesonian concept of epistasis can be described in relation to tables such as the one shown

below:

Locus C

Genotype c/c c/C C/C

b/b White Brown Brown

Locus B b/B Black Brown Brown

B/B Black Brown Brown

This table shows the coat colour in mice that results from a specific combination of two genetic factors.

Note that here there is a clear (prior) understanding that the ‘baseline’ (reference point) genotype is the

wild-type combination (b/b, c/c) which displays a phenotype of no colour (i.e. white), and that the

effect of allele B at locus B is to change the color to black, while the effect of allele C at locus C is to

change the colour to brown. Therefore, the modifying alleles at the different loci not only have different

‘effects’ but they also lead to different phenotype manifestations (black/brown) – meaning that which

locus is operating can be determined directly by looking at the phenotype. This situation is perhaps

somewhat analagous to consideration of biochemical interactions between proteins, where the function

of each protein differs and has been well-established a priori.

Given well-defined effects such as these, the obvious question is what happens when modifiying
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alleles at both loci are present. One might speculate as to what one might expect to happen if the alleles

continued to act ‘independently’ – would the coat colour perhaps be mottled? In the table above we see

that this does not happen; the alleles at locus C take precedence and locus C is said to be epistatic to

locus B (or, more precisely, allele C at locus C is said to be epistatic to allele B at locus B).

Things became confused when Fisher 7 used the terms ‘epistacy’ and ‘epistatic’ to describe an ap-

parently rather different concept, defined in terms of linear effects on a quantitative trait, much closer to

the concept of statistical interaction described in Box 1. Indeed, R.C. Punnet pointed out this apparent

difference in concept in his review of Fisher’s paper 8. Subsequently, the terms ‘epistasis’, ‘epistacy’,

‘epistasy’ or ‘epistatic’ seem to have been used more-or-less interchangably, but with potentially differ-

ent implied meanings. In the quantitative genetics literature 9 (and more recently the human complex

genetic disease literature) the usage seems to have mostly stemmed from Fisher’s definition i.e. a sta-

tistical interaction signifying departure from linear effects with respect to prediction of a trait outcome,

whereas biologists and biochemists have mostly used functional definitions closer in form to Batesonian

epistasis.

The classical quantitative genetics formulation takes several different forms depending on the refer-

ence point and inbred line in question 9 10 11; one common form is the F∞ model shown below:

Locus C

Genotype c/c c/C C/C

b/b µ−ab−ac µ−ab+dc µ−ab+ac

Locus B b/B µ+db−ac µ+db+dc+ idd µ+db+ac+ ida

B/B µ+ab−ac µ+ab+dc+ iad µ+ab+ac+ iaa

This table shows the expected quantitative trait value for each genotype combination. In human genetics,

rather than tabulating expected quantitative trait values, one might tabulate the expected log-odds or

penetrance values as described in Supplementary Box S1. For simple Mendelian disorders, one would

anticipate that the pentrances values should all be either 0 or 1, leading to penetrance tables such as:
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Locus C

Genotype c/c c/C C/C

b/b 0 0 1

Locus B b/B 0 0 1

B/B 1 1 1

The table above has classically been considered to represent a heterogeneity or non-epistatic model

12 (since one can aquire the disease through having the high-risk genotype at either or both loci) but

note that this interpretation depends crucially on what we consider the ‘effect’ of each locus to be 13.

Although a 0/1 penetrance classification might seem at first sight to be similar to a categorical phenotype

(as in the mouse coat colour example), in fact it is not completely equivalent since risk alleles at the

two loci do not lead to different phenotype manifestations and so it is not clear which locus is actually

‘causing’ the phenotype; in a sense, for each cell, it is the genotype combination at both loci that ‘causes’

the disease. In practice, for complex diseases we do not expect to see pentrances values of 0 or 1, rather

we expect a continuum of disease risks leading to penetrance tables such as:

Locus C

Genotype c/c c/C C/C

b/b 0.1 0.2 0.2

Locus B b/B 0.3 0.4 0.4

B/B 0.3 0.4 0.4

Here, whether or not the loci ‘interact’ depends on what one defines the ‘effect’ of each locus to be.

If one defines the ‘effect’ of a risk genotype at locus B to be the addition of a term 0.2 to the baseline

pentrance, and the ‘effect’ of a risk genotype at locus C to be the addition of a term 0.1 to the baseline

pentrance, then the loci above do not interact. If one defines the ‘effect’ of a risk genotype at locus B

to be the multiplication of the baseline pentrance by a factor of 3, and the ‘effect’ of a risk genotype

at locus C to be the multiplication of the baseline pentrance by a factor of 2, then the loci do interact

(the non-interactive model would have values 0.6 instead of 0.4 in the table above). If one defined the

‘effect’ of a risk genotype at locus B to be the conferring of a penetrance value of 0.2 and the ‘effect’

of a risk genotype at locus B to be the conferring of a penetrance value of 0.3 then it is unclear what
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the non-interactive model should be - perhaps the conferring of an average penetrance value of 0.25

instead of 0.4 in the relevant cells of the above table? Hence, depending on our definition of ‘effect’, and

what we expect to observe if the effects operate ‘independently’, we may come to different conclusions

concerning the presence or absence of interaction between the loci.

The relationship between linear statistical models for outcomes as observed in a population and ‘ef-

fects’ in terms of possible underlying biological causal mechanisms has been debated extensively in the

epidemiological literature 14 15 16. Of particular interest in this debate is the sufficient cause framework

17 18 19, in which it may be postulated that certain ‘causes’ of an outcome (e.g. disease) participate

together in the same causal mechanism (resulting in so-called ‘synergism’). Although departure from

additivity with respect to a linear model defined on the absolute risk (as opposed to the log-odds) scale

can, in some situations, allow one to conclude the presence of interaction or synergism in the sufficient

cause sense 20, the assumptions and conditions required for this conclusion to hold are quite restrictive. It

has been shown that, even if the assumptions of no unmeasured confounding and correct specification of

the statistical model are met, interaction terms in statistical models do not, in fact, in general correspond

to interaction or synergism in the sufficient cause sense 20.
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Supplementary Table 1: Top pairwise interactions as detected from a --fast-epistasis analysis of the WTCCC Crohn’s disease

and control data using PLINK

SNP1 SNP2 Interaction test

Single-locus Single-locus

SNP Chr Position p value SNP Chr Position p value χ2 p value

rs9436212 1 61643372 0.08463 rs11649428 16 76266378 0.1423 37.94 7.315e-10

rs12751992 1 63186351 0.1514 rs1601668 12 18826761 0.08044 35.10 3.144e-09

rs4677143 3 72439370 0.04577 rs8006622 14 39419113 0.05631 35.32 2.809e-09

rs1584444 4 59536174 0.02352 rs2201677 4 102215684 0.07998 38.25 6.233e-10

rs1584444 4 59536174 0.02352 rs12647454 4 102219636 0.0633 37.73 8.157e-10

rs1584444 4 59536174 0.02352 rs6532916 4 102227529 0.02714 38.18 6.493e-10

rs1584444 4 59536174 0.02352 rs10027689 4 102233096 0.03322 35.26 2.899e-09

rs668394 6 154460193 0.1078 rs10156534 9 2926864 0.1464 38.13 6.637e-10

rs511435 6 154460661 0.1116 rs10156534 9 2926864 0.1464 36.56 1.486e-09

rs509544 6 154460900 0.1049 rs10156534 9 2926864 0.1464 37.66 8.461e-10

rs524731 6 154467206 0.1094 rs10156534 9 2926864 0.1464 37.19 1.078e-09

rs7773053 6 156486474 0.1308 rs17825620 14 77254414 0.1664 36.94 1.225e-09

rs2358356 10 19538800 0.08709 rs9540533 13 65213814 0.06114 35.53 2.517e-09

rs2478836 10 30454756 0.09764 rs7217284 17 56691176 0.187 37.43 9.515e-10

rs636646 13 76492331 0.04548 rs301630 16 85211439 0.009047 37.56 8.895e-10

rs7202714 16 30085308 0.0322 rs4471699 16 30227808 1.593e-22 51.56 6.979e-13
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