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Abstract 

Background: Understanding the genetic structure of natural populations provides insight into the demographic and 

adaptive processes that have affected those populations. Such information, particularly when integrated with geospa-

tial data, can have translational applications for a variety of fields, including public health. Estimated effective migra-

tion surfaces (EEMS) is an approach that allows visualization of the spatial patterns in genomic data to understand 

population structure and migration. In this study, we developed a workflow to optimize the resolution of spatial grids 

used to generate EEMS migration maps and applied this optimized workflow to estimate migration of Plasmodium 

falciparum in Cambodia and bordering regions of Thailand and Vietnam.

Methods: The optimal density of EEMS grids was determined based on a new workflow created using density 

clustering to define genomic clusters and the spatial distance between genomic clusters. Topological skeletons were 

used to capture the spatial distribution for each genomic cluster and to determine the EEMS grid density; i.e., both 

genomic and spatial clustering were used to guide the optimization of EEMS grids. Model accuracy for migration 

estimates using the optimized workflow was tested and compared to grid resolutions selected without the optimized 

workflow. As a test case, the optimized workflow was applied to genomic data generated from P. falciparum sampled 

in Cambodia and bordering regions, and migration maps were compared to estimates of malaria endemicity, as well 

as geographic properties of the study area, as a means of validating observed migration patterns.

Results: Optimized grids displayed both high model accuracy and reduced computing time compared to grid 

densities selected in an unguided manner. In addition, EEMS migration maps generated for P. falciparum using the 

optimized grid corresponded to estimates of malaria endemicity and geographic properties of the study region that 

might be expected to impact malaria parasite migration, supporting the validity of the observed migration patterns.

Conclusions: Optimized grids reduce spatial uncertainty in the EEMS contours that can result from user-defined 

parameters, such as the resolution of the spatial grid used in the model. This workflow will be useful to a broad range 

of EEMS users as it can be applied to analyses involving other organisms of interest and geographic areas.
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Background
Understanding the genetic structure of natural popula-

tions provides insight into the demographic and adap-

tive processes that have affected those populations, such 

as migration or natural selection. Such information can 

have important applications in fields such as conservation 

biology or public health, particularly when integrated 

with geographic data. For example, geospatial modeling 

methods have been used to analyze pathogen genetic or 

genomic data to understand spatial transmission patterns 

of influenza virus [1–4] and typhoid fever [5], the sources 

of imported malaria [6] and dengue infections [7], and 

malaria parasite landscape genetics [8].

Often estimates of population structure are made with-

out regard to the geographic coordinates of sampling 

locations and then later interpreted in the context of the 

geographic information. However, approaches have been 

developed that model both the spatial and genomic data. 

One such approach, called estimated effective migration 

surfaces (EEMS) [9, 10], uses genomic data for a species 

to visualize the spatial contours of migration and diver-

sity for this species for a given study area. �e model 

broadly assumes isolation-by-distance, whereby genetic 

similarity and geographic distance are negatively corre-

lated, and identifies areas where genetic similarity decays 

faster than expected for a given geographic distance (low 

effective migration) and areas where genetic similarity 

decays more slowly than expected for a given geographic 

distance (high effective migration). �e model output 

is a map of areas of high and low effective migration or 

diversity for the study region. An assumption underlying 

EEMS is that the population structure is consistent with 

isolation-by-distance and as such, EEMS results repre-

sent effective (i.e., relative) rather than absolute migra-

tion rates and are likely to capture patterns associated 

with more historic timescales. It should be noted that the 

EEMS toolkit has also been expanded to support iden-

tity-by-descent approaches and estimations of migration 

and population-size surfaces for more recent time scales 

with the MAPS toolkit [11]. For a historic understand-

ing of migration patterns in a region, EEMS is a useful 

tool and has been used, for example, to understand the 

population structure of human populations in southern 

[12] and eastern [13] Africa and in Europe [14], and to 

visualize barriers and corridors of gene flow associated 

with human migration in Scandinavia [15] and Peru [16]. 

EEMS has also been applied to simulate historical gene 

flow patterns for the gray wolf (Canis lupus) [17] and 

the blunt-nosed leopard lizard Gambelia sila [18], and 

to investigate the genetic diversity of Atlantic Bluefin 

tuna in the Mediterranean Sea [19]. In this paper, we use 

EEMS to estimate migration surfaces for Plasmodium 

falciparum, the deadliest human malaria species.

In our previous research, we have applied EEMS as well 

as approaches based on identity-by-descent to investigate 

migration patterns and population structure of Plasmo-

dium falciparum in the Greater Mekong Subregion [20], 

an area of emerging multidrug resistance being targeted 

for malaria elimination [21]. EEMS maps are visually–

intuitive and may be useful to malaria elimination pro-

grams by identifying defined geographic areas that can 

be targeted with interventions. However, to be useful for 

this purpose, it will be important to reduce spatial uncer-

tainty in the EEMS contours that can arise from user-

defined parameters, such as the resolution of the spatial 

grid used in the model. �e spatial grid is a grid of reg-

ular triangles that covers the study area. Each vertex in 

the grid represents a deme, and EEMS uses the number 

of demes selected by a user to generate the spatial res-

olution of its spatial grids. �e random selection of the 

number of demes can result in a high standard deviation 

among posterior distributions estimated using EEMS and 

in turn, higher levels of spatial uncertainty in the migra-

tion contours generated by EEMS. For example, if the 

grid is too sparse (i.e., relatively fewer demes), then many 

sampling locations may be assigned to a single deme, 

reducing model accuracy through excessive smoothing 

of genomic differences. On the other hand, if the grid is 

too dense (i.e. relatively high numbers of demes) spatial 

uncertainty may result from estimation of parameters 

for many demes lacking genomic data [20]. In addition, 

the number of demes included in the analysis has a sub-

stantial impact on computing time, with computing time 

scaling cubically with the number of demes. Researchers 

typically employ either an average of the results obtained 

from running multiple MCMC iterations using different 

numbers of demes to infer migration patterns [9, 17, 22, 

23], or apply maximum likelihood values to guide selec-

tion of the number of demes [20]. In both cases, users 

must run EEMS at multiple grid resolutions, which can 

be time-consuming.

Here we present an approach that utilizes a density 

clustering algorithm to define genomic clusters, which 

are then used to determine the optimal maximum 

length of triangle edges and grid resolution. �is work-

flow provides a systematic method to select the optimal 

number of demes that will maximize model accuracy 

and minimize computing time. We tested the optimized 
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workflow by applying it to estimate geospatial patterns 

of Plasmodium falciparum migration in Cambodia and 

bordering regions of �ailand and Vietnam, and found 

that migration contours corresponded to estimates of 

malaria endemicity and geographic properties of the 

region that might be expected to impact malaria para-

site migration.

Methods
Study area and data collection

Our approach was tested on a subset of the P. falcipa-

rum genomic data from our previous publication [20], 

including 28,496 biallelic, genome-wide SNPs from 

1007 samples collected in 35 districts in Cambodia and 

8 bordering districts of �ailand and Vietnam between 

2008 and 2013 (Fig. 1) [24–28]. SNPs were either called 

from whole genome sequences generated as part of 

the MalariaGEN Plasmodium falciparum Community 

Project [29], or, for samples that did not meet quality 

control criteria for whole genome sequencing or were 

not part of the Community Project, were genotyped 

using a P. falciparum-specific Nimblegen DNA micro-

array [30] (NIH Gene Expression Omnibus, Accession 

number: GSE100704. European Variant Archive, Acces-

sion PRJEB28530). �e same nucleotide positions typed 

on the microarray were extracted from whole-genome 

data for analysis, with missingness cut-offs applied as 

previously described [20].

Computing estimated e�ective migration surfaces

EEMS utilizes a grid of regular triangles that cover the 

study area. �e grid is created using two user-defined 

parameters, a bounding box that defines the geographic 

area where gene flow will be modeled, and the number 

of demes, where a deme represents a vertex in the grid. 

�e EEMS toolkit allows the number of demes to vary up 

to a maximum value of 1000, allowing for different grid 

resolutions. Genomic data from a given sampling loca-

tion is assigned to the nearest deme, and the model uses 

the deme locations to estimate and map effective migra-

tion surfaces. EEMS assumes individuals migrate locally 

between subpopulations (at demes) and that migration 

rates vary by location. �e model also assumes that each 

subpopulation exchanges migrants only with its neigh-

bors (i.e., a stepping-stone model). For every triangle in 

the grid, EEMS assigns diversity estimates to demes and 

migration estimates to triangle edges. Markov chain 

Monte Carlo (MCMC) methods are employed to esti-

mate both migration and diversity parameters by sam-

pling from their posterior distributions given observed 

genetic dissimilarities. �e matrix of average pairwise 

genetic dissimilarities is computed using bed2diffs, and 

EEMS is then run using runeems_snps: a C ++ imple-

mentation of EEMS for SNP data.

For each iteration, two sets of Voronoi tessellations are 

generated, representing spatial patterns of migration and 

diversity respectively. �ese tessellations are generated 

based on a user-defined value nseeds that represents the 

number of Voronoi cells and that is also assigned to the 

grids. �e two Voronoi tessellations are independent of 

each other and are updated with a birth/death process 

since the number of Voronoi cells is initially unknown. A 

maximum likelihood method is commonly used to adjust 

estimates of diversity and migration so that simulated 

genetic dissimilarity rates fit observed genetic dissimilar-

ity in both cases.

Clustering based on the distribution of P. falciparum 

genomic data

To optimize the grid, we first applied a density clus-

tering algorithm to define clusters based on parasite 

genomic data [31]. Clustering was performed using 

densityClust, an algorithm that is an improvement 

on K-means clustering, and is available as an open 

source package in R [32]. �is clustering method did 

not require prior knowledge of the desired number of 

clusters and assumed that cluster centers were distinct 

from points with higher local density and were sur-

rounded by points with low local density. Clustering 

was performed using the matrix of pairwise genetic dis-

similarities generated through the EEMS toolkit, as a Fig. 1 Sampling locations in Cambodia, Thailand and Vietnam
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measure of genetic distance. A decision graph (Fig. 2a) 

and a multidimensional scaling graph (Fig.  2b) were 

generated for all the samples, where the x-axis repre-

sented the local density  pi of sample i and the y-axis 

represented the genetic distance from the nearest 

points with a higher density δi. �e local density  pi was 

defined as:

where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise. dc was 

the cutoff distance and  pi was equal to the number of 

samples that were closer than dc to sample i. δi was cal-

culated by measuring the minimum distance between the 

sample i and other samples with higher density:

For the sample with the highest density, we assumed 

δi = maxj(dij), where δi would be much greater than the 

typical nearest neighbor distance only for samples that 

with the local or global maxima density and cluster cent-

ers were recognized as samples for which the δi value was 

anomalously large.

�e output of the decision graph was used to confirm 

the number of genomic clusters. Points located in the 

upper-right quadrant distant from the other points are 

more likely to be cluster centers (Fig. 2a). All points were 

treated as cluster centers as long as their pi and δi were 

higher than the mean pi and δi value. After the number 

of cluster centers and hence, the number of clusters was 

determined, all the samples were assigned to a cluster 

based on genetic similarity (Fig. 2b).

(1)
pi =

∑

j

χ

(

dij − dc
)

(2)δi = min
j:pj>pi

(

dij
)

Computing the length of triangle edges and determining 

the number of demes

�e genomic clustering results were used to determine 

the optimal maximum length of triangle edges. For each 

cluster, a kernel density map was generated based on 

sample sizes and locations. A natural breaks classification 

was used to group each kernel density map into binary 

categories of high and low sample density, respectively. 

�is classification method minimized the average devia-

tion from the class mean and maximized the deviation 

from the means of the other groups. It also reduced the 

variance within classes while maximizing the variance 

between classes. �e category representing the high-

est sample density was selected to determine the spatial 

distribution of boundaries that represent each cluster 

and from which triangle lengths could be established. 

Since the cluster polygons were often irregularly shaped, 

the topological skeletons of polygons were used to cap-

ture polygon shapes. To represent the spatial distance 

between clusters, the nearest distance between each 

pair of topological skeletons was computed. Finally, the 

shortest distance between each pair of clusters was deter-

mined and selected to represent the maximum length of 

a triangle edge in the grid. To determine the number of 

demes that optimizes the grid, this optimized triangle 

edge length was used as input in an inverse function to 

the EEMS grid generation function with the result that 

the edge length of the generated EEMS grid is shorter 

than the optimized triangle edge length. In this way, both 

genomic and spatial clustering were used to guide the 

optimization of triangle sizes and the density of demes, 

i.e., grid resolution, used for generating P. falciparum 

parasite migration maps.

Fig. 2 a Decision graphs generated from clustering by fast search and find of density peaks [31] and b multidimensional scaling graph generated 

from extracting density peaks
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Evaluation of model accuracy

While the EEMS toolkit can be used to generate both 

migration and diversity maps for a bounded region 

[9], in this study, we focused particularly on migra-

tion maps, using genomic data from P. falciparum. 

�e EEMS toolkit allows the generation of scatterplots 

to visualize the correlation between observed and fit-

ted genetic dissimilarity between demes to determine 

model accuracy for migration maps. Such scatterplots 

have been used by researchers to evaluate the model 

accuracy of EEMS contours [33–36]. For each grid 

density,  R2 was estimated and compared to determine 

how migration model accuracy varied by the number of 

demes.

Results
Applying density clustering to the P. falciparum 

genomic data from Cambodia and bordering sites in 

�ailand and Vietnam, the decision graph identified 

five genomic clusters (Fig.  3a). Kernel density analy-

sis was applied to generate a map of these clusters and 

showed the five genomic clusters occupied six differ-

ent locations (Fig.  3b). �e six locations included, (1) 

northwestern Cambodia bordering �ailand (Oddar 

Meanchey and Preah Vihear Provinces), (2) western 

Pailin Province on the eastern border with �ailand, 

(3) south of Tonle Sap Lake in Pursat Province, (4) the 

adjacent region in southeastern Koh Kong Province, 

southwestern Kampong Speu Province and the north-

ern part of Kampot Province, (5) eastern Cambodia in 

an area that overlapped southern Ratanakiri Province 

and northern Mondulkiri Province, and (6) Bu Dop dis-

trict, Vietnam (Fig. 3b). In Fig. 3a, one genomic cluster 

(colored red) was identified in all six locations, while 

another cluster (cyan) was found in only two locations, 

namely the Pailin District in western Cambodia and 

northern Bu Gia Map National Park in Vietnam. All five 

genomic clusters were found in Pailin District, whereas 

only one genomic cluster (red) was found in eastern 

Cambodia in the area where Ratanakiri Province bor-

ders Mondulkiri Province (Fig. 3b).

Generating an optimized grid for the study area

�e shortest distance between cluster centers com-

puted using the topological skeletons of the clusters 

was 32.6  km, representing the maximum edge length 

for each triangle in the EEMS grid. �e corresponding 

number of demes was calculated by setting the longest 

edge length to this value and using the inverse function 

as described above. Using our workflow, the optimized 

grid contained 350 demes (Additional file 1: Figure S1). 

�e MCMC iteration using this grid resolution was 30 

million; burn-in was 29 million; and thinning iteration 

was 9999. �e running time was approximately 13  h 

using 64 CPUs on a Linux high-performance network.

Evaluating the optimized grid

We investigated migration model accuracy for the opti-

mized grid by examining scatterplots of the observed 

genetic dissimilarity between demes versus the fitted 

genetic dissimilarity between demes. �e fitted genetic 

dissimilarly was calculated based on the computed 

migration between pairs of deme locations. �e scatter 

plots showed a strong linear relationship  (R2 value was 

0.757) between observed and fitted dissimilarity (Fig. 4).

Fig. 3 Density-based clustering of genomic data where a five 

genomic clusters that were detected using the decision graph 

corresponded geographically to b six geographic locations (five 

locations in Cambodia and one in Vietnam)
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To evaluate our optimization strategy, we used EEMS 

to generate migration surfaces for a range of grid resolu-

tions from 200 to 750 demes, and compared the model 

accuracy and computing times for these grids with the 

optimized grid (Fig.  5). Using a grid of 200 demes had 

the poorest performance with  R2 = 0.38 (Fig. 5a). A grid 

of 400 demes also had a slightly lower  R2 value of 0.748 

compared to the optimized grid (R2 = 0.757). And while 

 R2 values appeared to increase for grids with more than 

550 demes, these cases were associated with excessive 

computing times (Fig.  5b). �e computing time for the 

350-demes case (approximately 13 h) was much less than 

for 400 demes (28 h), 500 demes (39 h), 600 demes (73 h) 

and 700 demes (112 h). Running the analyses with differ-

ent grid resolutions indicated that optimizing the num-

ber of demes offered the best performance for migration 

estimates with a significantly reduced computing time.

E�ective migration surfaces using the optimized grid

�e optimized triangular grid was used to generate 

an estimated effective migration surface using para-

site genomic data generated from isolates collected 

in Cambodia and surrounding locations. �e migra-

tion contours in the resulting migration map (where 

blue indicates relative high migration and brown indi-

cates lower migration) showed the lowest migration 

index value was near Tonle Sap Lake, which is the 

largest inland lake in Cambodia with an area of over 

12,876 sq.km, while Koh Kong Province in the south-

west showed the highest migration (Fig.  6). Southwest 

Cambodia (southern Koh Kong, southern Kampong 

Speu, Sihanoukville, Kampot, and Takeo Provinces) in 

general showed high migration relative to other loca-

tions, and the border area between eastern Cambodia 

and Vietnam was also associated with higher migration 

while locations in the border area of northwest Cam-

bodia and �ailand showed lower parasite migration 

estimates.

Comparison between estimated e�ective migration 

surfaces and P. falciparum endemicity and annual parasite 

incidence in Cambodia

We compared the migration surface results generated 

using the spatially optimized grid (Fig. 6) with a P. falci-

parum endemicity map based on P. falciparum parasite 

rate (PfPR) data from 2010 made available through the 

Malaria Atlas Project [37] (Fig.  7), and also compared 

migration estimates with estimates of annual parasite 

incidence (API) per 1000 for 2013 [38]. �e area of low 

migration near Tonle Sap Lake coincided with low P. 

falciparum endemicity. Areas with high P. falciparum 

migration in both southwestern and northeastern Cam-

bodia were found to match regions with a relatively 

high prevalence of P. falciparum. �is close relation-

ship between P. falciparum migration and endemicity 

may imply the conditions in these locations are suitable 

for transmission of P. falciparum within these regions in 

Cambodia. High P. falciparum migration in northeastern 

Cambodia was consistent with high API values greater 

than 20% in the Steung Treng and Ratanakiri Provinces.

We also compared P. falciparum migration contours 

with data available from OpenDevelopment Cambo-

dia on natural protected areas [39] and found that our 

results using EEMS corresponded to landcover features 

in a way we might expect, i.e., contours of high migra-

tion coincided with areas having mostly forest landcover 

(Additional file 1: Figure S1). For example, high P. falci-

parum migration in the northeastern and eastern regions 

of Cambodia (Fig.  7), corresponded to heavily forested 

areas, including a large National Park in Ratanakiri Prov-

ince as well as four large wildlife sanctuaries in Mon-

dulkiri and Ratanakiri provinces that could have served 

as habitats for Anopheles mosquitoes. Another area of 

high P. falciparum migration was located along the bor-

der between northwestern Cambodia and �ailand, and 

within northeastern Kampong �om and south of Preah 

Vihear Province (Fig. 7) that were also forested with wild-

life sanctuaries and protected natural habitats (Addi-

tional file 2: Figure S2). Another area of higher migration 

was observed in Battambang and Pursat provinces, just 

west of Tonle Sap Lake. Low migration patterns were 

more notable in western Cambodia, and a region of low 

P. falciparum migration extended from southern Laos, 

across the center of Cambodia, to southern Vietnam.

Fig. 4 EEMS model accuracy for between-demes using the 

optimized grid
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Fig. 5 Model performance for 200 to 700 demes for a model accuracy  (R2 value for migration model accuracy) and b computation time
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Discussion
In this study, we developed a framework based on both 

genomic and spatial clustering to select the optimal 

number of demes to reduce spatial uncertainty in EEMS 

migration maps, in the presence of irregular sampling. 

EEMS migration contours can vary–sometimes substan-

tially–based on the selected number of demes. �erefore, 

having a systematic, rational approach to determine grid 

density will likely be helpful to EEMS users. We were able 

to test and show that optimized grids displayed both high 

model accuracy and reduced processing time compared 

to grid densities selected in an unguided manner. In addi-

tion, when we utilized an optimized grid to generate 

EEMS migration maps for P. falciparum, we found that 

migration contours reflecting the parasite population 

structure corresponded to estimates of malaria endemic-

ity and geographic properties of the study region (e.g., 

landcover and large waterbodies) that might be expected 

to impact malaria parasite migration.

�e results of our genomic clustering approach indi-

cated the presence of multiple genomic clusters based 

on malaria parasite genomic data generated from iso-

lates collected in provinces in western, northwestern, and 

southwestern Cambodia. �is finding is consistent with 

previous analyses of subsets of these data that found mul-

tiple sympatric genetic subpopulations of parasites that 

were hypothesized to have originated as founder popula-

tions resulting from the emergence of artemisinin resist-

ance [40–42]. �e congruence of these findings suggests 

that the density clustering approach applied in our opti-

mization framework is accurately capturing known pat-

terns of parasite genetic diversity in the study area.

Our results indicated overlap between areas of high P. 

falciparum migration and hotspots of malaria incidence 

in eastern Cambodia [43] [44–46], as well as other areas of 

high malaria endemicity [37, 47]. In Battambang and Pur-

sat Provinces, high P. falciparum migration could result 

from flooding of the forests around Tonle Sap Lake during 

the wet season [48], providing habitats for malaria vectors 

[49]. In Pursat and Preah Vihear Provinces, high P. falcipa-

rum migration areas coincided with a high prevalence of 

multidrug resistance that is known to have emerged and 

spread in the area during this time frame [50].

Migration maps generated in this study corroborated 

major migration barriers for P. falciparum identified in 

our previous study [20]. However, use of the optimized 

grid allowed detection of a migration barrier in Pailin 

Province that was not identified in our previous analysis 

that is consistent with malaria elimination efforts in this 

area that have contributed to a dramatic decline in clinical 

malaria incidence [51–53]. P. falciparum migration bar-

riers in northern Cambodia may have been due to higher 

urbanization (lower vegetation coverage) north of Tonle 

Sap Lake as well as Tonle Sap Lake itself, which is a large 

enough waterbody that it may have served as a barrier to P. 

falciparum migration. Deforestation of cardamom forests 

and large-scale land acquisitions in the area corresponded 

to the southern part of the ring-like contour of low migra-

tion and may also have been a contributor to this migra-

tion barrier [54, 55]. �e Mekong River running through 

southeastern Cambodia as well as the urbanized area 

of Phnom Penh, may both have contributed to reduced 

parasite migration in this part of Cambodia. �e fact that 

detected migration hotspots and barriers were geographi-

cally related with landcover and hydrologic features under-

scores the role that geography plays in shaping parasite 

population structure, which is consistent with findings 

from other studies, for example, a major migration barrier 

was detected around the Andes Mountains in Peru [56].

Limitations and future work
Cambodia may be unique with respect to its patterns of 

parasite genetics due to multiple selection events of antima-

larial drug resistance in the GMS region. �is phenomenon 

is apparent through the overlapping genomic clusters, and 

ongoing work is addressing how selection of drug resist-

ance may impact migration patterns observed in this area.

Future research will investigate how the spatial granu-

larity of sampling may contribute to uncertainty in EEMS 

migration maps. For example, data from parasite isolates 

in this study were geolocated at the district level, which 

could lead to spatial uncertainty based on aggregation 

Fig. 6 Estimated migration surface of P. falciparum parasites in 

Cambodia using the optimized grid
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of multiple locations into a single location. Improving 

local geographical granularity may aid in detecting more 

detailed migration patterns. Further investigation is also 

required to improve our understanding of any bound-

ary effects in EEMS analyses, as well as the impact of 

the assumption of geographic uniformity across a study 

area implied by use of a uniform grid, since geographic 

uniformity is not assumed for all studies [57], and is an 

assumption that is likely violated in many settings, includ-

ing in studies of the malaria parasite as presented here.

Conclusions
We have developed a semi-automatic workflow that used 

both genomic and spatial clustering to guide the optimi-

zation of triangle sizes and the density of demes, i.e., grid 

resolution, to generate effective migration surfaces for 

P. falciparum migration. Computing the analyses using 

different grid resolutions indicated that optimizing the 

number of demes offered the best performance for pro-

ducing migration estimates with a significantly reduced 

computing time, an important consideration if maps are 

to be used to guide intervention strategies. We tested the 

optimized EEMS workflow on data generated from para-

site isolates collected in Cambodia and bordering regions 

of �ailand and Vietnam, and found that migration con-

tours corresponded to estimates of malaria endemicity and 

geographic features in the region that might be expected 

to impact malaria parasite migration (e.g., landcover, large 

waterbodies), supporting the validity of EEMS migration 

estimates. While in this study, our optimization framework 

was applied to malaria parasites, we believe this workflow 

is generalizable for other study areas and pathogens and 

can be used to guide the generation of migration maps 

based on available genomic sample distributions.

Fig. 7 P. falciparum endemicity patterns within Cambodia from the Malaria Atlas Project (Data downloaded from https ://map.ox.ac.uk/) (2010)

https://map.ox.ac.uk/
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