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When determining whether a particular transition is more characteristic of one group than of an­
other, two things are required: an index associated with the transition of interest and a statistical test
that can determine whether group membership systematically affects values for that index. Here the
familiar parametric t test is compared with a test based on sampled permutations. Indices consid­
ered are the odds and log odds ratio, Yule's Q, Wampold's (1989) transformed kappa, and phi. The
odds and log odds ratio are monotonically increasing functions of Yule'sQ and so give similar results.
Yule's Q and phi are essentially rank order invariant and usually give similar results. Transformed
kappa, however, rank orders subjects somewhat differently than the others; moreover, it appears
somewhat biased. With respect to the tests, when subjects are 20 or more it does not matter much
whether sampled permutation or parametric t tests are used; both yield essentially the same result.
However, when subjects are fewer than 20, or whenever there is any other reason to think that para­
metric assumptions may not be met, permutation tests are recommended. A computer program that
effects such tests is described.

In this article we review a number ofrelatively standard

indices of sequential association and consider whether

some might be better than others when testing for group

differences using permutation tests. Investigators who

study social interaction often define events ofinterest (e.g.,

partner complaining, daughter agreeing, toddler engag­

ing in parallel play, infant gazing, mother responding,

etc.) and ask coders to identify them in the stream ofbe­

havior (Bakeman & Gottman, 1986; Bakeman & Quera,

1992). Substantive questions usually involve sequences (or

sometimes co-occurrences) ofthe behavioral events iden­

tified. Commonly, two-dimensional contingency tables

are used to organize such data (Bakeman & Quera, 1995a;

Castellan, 1979). Rows represent given events, columns

represent target events, and occurrences ofthe joint events

defined by them are tallied. For example, rows might

represent the function of one person's behavior and col­

umns the function of the partner's next (lag I) behavior.

Then transitions from the first to the second person would
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be tallied, and the cells would contain counts for each of

the possible transitions (given questions of cross influ­

ence, autocorrelation should also be considered, as dis­

cussed later).

For present purposes, we assume that one transition is

ofprimary theoretical interest (although comments made

here generalize to other transitions in the table as well),

that the study includes several subjects or experimental

units (which might be individual persons, dyads, family,

or other groups, etc.) assigned to two groups (although

comments made here generalize to more complex de­

signs), and that the primary question concerns whether

the two groups differ with respect to the transition of in­

terest. For example, an investigator might want to deter­

mine whether complain-complain chains are more char­

acteristic ofclinic than ofnon-clinic couples, or whether

mothers who have received a particular intervention are

more likely to respond to their infants' behavior.

In order to answer questions like these, two things are

required: an index associated with the transition ofinter­

est and a statistical test that can determine whether group

membership systematically affects values for that index.

Some indices can be ruled inappropriate at the outset. For

example, to determine whether tallies for a particular tran­

sition exceed the expected, some sort ofz score is often

proposed (Allison & Liker, 1982; Bakeman & Quera,

1995b; Fagen & Mankovich, 1980). However, contrary to

advice offered earlier (Bakeman & Gottman, 1986), such

z scores should not be used when testing for group dif-
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ferences. The z score is affected by the number oftallies

(if the number of tallies doubled but the association re­

mained the same, the z score would increase), and so

is not comparable across experimental units (subjects,

dyads, families, etc.) unless the total number of tallies

remains the same for each. Some measure that is unaf­

fected by the number of tallies, such as a strength ofasso­

ciation or effect size measure, should be used instead

(Wampold, 1992).

Strength ofassociation or effect size measures are es­

pecially well developed for 2 X 2 tables (to give just two

examples from an extensive literature, see Conger &

Ward, 1984, and Reynolds, 1984). This is fortunate, be­

cause when interest centers on one cell in a larger two­

dimensional table, the larger table can be collapsed into

a 2 X 2, and statistics developed for 2 X 2 tables can be

used (as Morley, 1987, noted with respect to phi). Assume,

for example, that we want to know whether event B is

particularly likely after event A. In this case, we would

label rows A and -A and columns Band -B (where rows

represent lag 0, columns lag I, and - represents not).

Then the collapsed 2 X 2 table can be represented as

B -B

A~
-A~

where individual cells labeled a, b, C, and d, as shown,

represent cell frequencies.

Here we consider several indices appropriate for 2 X 2

tables like these and ask whether some might serve bet­

ter than others when testing for group differences using

sampled permutations. We prefer to base statistical sig­

nificance on permutation tests rather than the more fa­

miliar parametric t test (or other parametric tests) be­

cause, first, permutation tests do not require parametric

assumptions (so questions concerning their tenability do

not arise) and, second, comparisons among indices are

simplified when permutation instead of parametric tests

are at issue, as discussed shortly.

Specifically, we compare the odds ratio, the log odds

ratio, Yule's Q, Wampold's (1989) transformed kappa,

and the phi coefficient. At first we regarded the paramet­

ric t test as the most obvious way to test for group dif­

ferences, and so thought some indices might better meet

the required assumptions than others, or that attributes

such as efficiency (small standard errors of sampling

distributions) and consistency (smaller standard errors

as sample size increases)-attributes of estimators that

matter for parametric tests (e.g., see Hays, 1963)-might

distinguish among these statistics and so provide a rea­

son for preferring one over another. However, when an­

alyzing for group differences with permutation tests,

comparison is simplified; indices that rank order sub­

jects in the same way produce identical results, thus if

rank-order invariance across subjects is established for

any two indices, any additional differences need not be

of concern.

In the remainder ofthis article, first we provide a brief

introduction to permutation tests, primarily as applied to

testing differences between two independent groups.

Then we compare the indices just listed, paying particu­

lar attention to rank-order invariance. Finally, we explic­

itly compare the performance of permutation and para­

metric t tests, including cases with few subjects when

assumptions required for parametric tests become more

questionable than usual.

PERMUTATION TESTS

Permutation tests are not widely used, so some intro­

duction is required. When conducting a parametric t test,

users necessarily assume that the sampling distribution

for their computed t follows the theoretically expected

one, given that the null hypothesis is true, and on that basis

assign a p value. Yet suchp values become correct only

asymptotically, as real conditions approach ideal assump­

tions. In contrast, permutation tests construct the rele­

vant sampling distribution directly from the data at hand,

thereby rendering the usual assumptions moot (this can

be viewed as a Fisherian approach, as opposed to a classi­

calor Neyman-Pearsonianone; see Camilli, 1990).As noted

in Bakeman, Robinson, and Quera (1996), when discuss­

ing permutation tests applied to individual indices ofse­

quential association:

What are often called exact tests might better be called

tests that yield exact, as opposed to approximate, p val­
ues. They are also called randomization tests (e.g.,

Bradley, 1968), although at least some experts (e.g., Edg­
ington, 1987) reserve that term for tests involving data
that result from random assignment ofexperimental units
either to treatments or treatment times. Permutation test

seems the more descriptive and more general term (Edg­
ington, 1987), and is the term we use here. Like non­

parametric tests, and unlike the common parametric z, t,

and F tests, their derivation and application do not involve
explicit assumptions about population distributions and
parameters (Hays, 1963). And unlike the usual applica­
tions of non-parametric tests like those based on the chi­
square distribution, they do not rely on asymptotic theory

that is valid only if sample sizes are reasonably large and
well balanced (Mehta & Patel, 1992).

A permutation test can be constructed for any statistic.

For the case at hand, a log odds ratio or other statistic

could be computed for each experimental unit and a t sta­

tistic for independent groups computed as usual; this is

the observed value for t. However, instead of assuming

that the observed t is distributed like the theoretical one

tabled in statistics texts, its sampling distribution is con­

structed from the data at hand. Let N represent the num­

ber of scores and r the number in Group 1. Then the N

subjects are divided into all possible groups ofrand N ­
r subjects, and a t statistic is computed for each different

permutation. The exact probability ofa result as extreme

as the one observed is simply the proportion ofthese t sta­

tistics (absolute) greater than or equal to the magnitude of
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the observed one (two-tailed test; a one-tailed test is con­

fined to either the positive or negative direction).

This seems simple enough, and it may even seem sur­

prising that permutation tests are not the norm. Yet few

computer packages include them (although one package

that does perform the appropriate computations for most

common statistical tests is StatXact, Mehta & Patel, 1992;

see also Lynch, Landis, & Localio, 1991). Moreover, al­

though the appropriate permutations seem straight­

forward for a test involving two independent groups,

they can become complex for other tests, both conceptu­

ally and computationally. Furthermore, the number of

permutations can become huge. For two independent

groups, the number is

(
N) N!
r - r! (N - r)! '

which, with 20 subjects divided into two groups of 10, is

184,756 but, with just 40 subjects divided into two

groups of 20, becomes over 138 billion.

Fortunately, there is a simple solution to the comput­

ing dilemmas created by the size and complexity ofmany

problems. As noted by Edgington (1987) and Bakeman

et al. (1996), among others, the sampling distribution for

the test statistic can be based not on the complete set of

permutations (an exact permutation test), but on a sub­

sample instead (a sampled permutation test). For the pre­

sent two-group example, subjects are ordered 1 through

N, the first r subjects belong to Group 1, and the observed

t is computed on this basis. Then the order is repeatedly

shuffled (Castellan, 1992). After each shuffle (which

yields a new permutation), the first r subjects are arbi­

trarily assigned to Group 1 and a new t statistic computed.

After some large number of shuffles, the exact probabil­

ity is estimated as the proportion of t statistics (absolute)

greater than or equal to the magnitude of the observed t

(two-tailed). But rather than constructing a sampling dis­

tribution based on all possible permutations, which might

number in the billions, one based on a more reasonable

number is constructed instead (Edgington, 1987, sug­

gests that as few as 1,000 samples may be sufficient, but

we routinely use 10,000).

One further simplification is possible. There is no need

to compute a t statistic; the difference between the groups'

means (i.e., the numerator used when computing t) can

be used instead. This is, after all, the descriptive statis­

tic of interest when testing for group differences. In

usual practice, we divide the difference by its assumed

standard error, thereby transforming it into a statistic

whose theoretical distribution is known. This step is ren­

dered unnecessary by permutation tests, which construct

the sampling distribution from the data at hand. In fact,

whenever test statistics are rank-order invariant over per­

mutations, as t and the mean difference are, they produce

equivalent permutation test results (Edgington, 1987), so,

as a matter of convenience, it makes sense to use which­

ever test statistic requires the least computation. But now

we return to a consideration of the indices of sequential

association listed earlier, and ask whether there is any

reason to prefer one over another when computing the

test statistic used to test for group differences using sam­

pled permutations.

INDICES OF ASSOCIATION

Odds Ratio and Log Odds Ratio
The central question posed here-which statistic and

which test should be used for questions concerning group

differences-was elegantly answered in a recent article

by Wickens (1993). After considering several alternatives

(including a partial chi-square derived from log-linear

analysis, a chi-square statistic based on the Mantel­

Haenszel estimate of the common log odds ratio, and an

ad hoc F based on likelihood-ratio chi-squares), he con­

cluded that for dichotomous classifications, a paramet­

ric t test on the log odds ratio was best. Wickens (1993)

was particularly interested in comparing wholly log­

linear (one dimension of a contingency table represents

subjects) with parametric (scores derived for individual

subjects subjected to subsequent t tests, etc.) approaches;

the present paper continues his line ofquestioning, com­

paring parametric with permutation tests and consider­

ing indices such as Yule's Qand Wampold's transformed

kappa in addition to the log odds ratio.

The log odds ratio is more familiar to epidemiologists

than to most psychologists, so a brief review, beginning

with the odds ratio, may be helpful. The odds ratio, as its

name implies, is estimated by the ratio of a to b divided

by the ratio ofe to d,

. d dd . al bestimate 0 s ratio = -- ,

eld

where a, b, e, and d refer to observed frequencies for the

cells of a 2 X 2 table as noted earlier. (Notation varies,

but for definitions in terms ofpopulation parameters, see

Bishop, Fienberg, & Holland, 1975, and Wickens, 1993.)

Multiplying numerator and divisor by die, this can also

be expressed as

. ddd . adestimate 0 s ratio = -.
be

Equation 2 is more common, although Equation 1 re­

flects the name and renders the concept more faithfully.

Consider the following example:

B -B

A 10 10 20

-A 20 60 80

30 70 100

The odds for B after A are 1:1, whereas the odds for B

after any other (non-A) event are 1:3; thus the odds ratio

is 3. In other words, the odds for B's occurring after A are

three times the odds for B's occurring after anything else.

When the odds ratio is greater than 1 (and it can always
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(Gart & Zweifel, 1967; cited in Wickens, 1993, Equa­

tion 8). As Wickens (1993) notes when recommending

that the log odds ratio computed per Equation 4 be ana­

lyzed with a parametric t test, this procedure not only pro­

vides protection for a variety of hypotheses against the

effects ofinter subject variability when categorical obser­

vations are collected from each member of a group (or

groups), it is also easy to describe, calculate, and present.

be made ~ 1 by swapping rows), it has the merit, lacking

in many indices, ofa simple and concrete interpretation.

The odds ratio varies from 0 to infinity and equals 1

when the odds are the same for both rows (indicating no

effect of the row classification). The natural logarithm

(In) of the odds ratio, which is estimated as

estimated log odds ratio = In ( :~) , (3)

(6)

(7)

(8)

/( _ x-m

- max(x)-m'

f xij-mij
/(.. =

IJ . ( )mm Xi+,X+} -m ij

Its upper bound occurs when xij is the minimum of XH

or x+}, in which case transformed kappa is +1. However,

when xij is less than mil' the lower bound for Equation 7

is not -1. Dividing it by an expression for its lower

bound, and simplifying the quotient, yields

Wampold's Transformed Kappa

A statistic similar to Yule's Q is Wampold's (1989,

1992) transformed kappa. Recognizing the need for a

cellwise effect size statistic (one unaffected by total

number of tallies), Wampold (1989) proposed a trans­

formed kappa (which is somewhat different from the

kappa often used to assess interobserver reliability, Cohen,

1960). Like all kappas, this one is based on the general

formula

eY -1
Yule's Q = --.

e Y + 1

Since Yule's Q can be expressed as a monotonically in­

creasing function of both the odds and log odds ratio,

these three indices are equivalent in the sense ofrank or­

dering subjects the same way. Thus, for present purposes,

comparisons with transformed kappa and phi need in­

clude only one of these three indices, and we selected

Yule's Qbecause it shares the same -1 to +1range with

transformed kappa and phi.

where x is an observed and m an expected score. How­

ever, one value is computed for each cell, whereas for

Cohen's (1960) kappa a single value characterizes the

entire table. Applied to transitional probabilities, or two­

dimensional tables generally, and modifying Wampold's

(1989) formulas to use tabular notation (x ij represents a

cell, xH' represents a row sum, etc.)-and reasoning that

the maximum joint cell frequency, xij' can be no larger

than whichever marginal total is smaller, row or column­

kappa, when x ij is greater than mij' is

(5)

(4)

ad - be

ad + be

ad - be

bd

be + ad

bd

d

a e
- --

e a
-+-
d b

b
Yule's Q = -=----=-

extends from minus to plus infinity, equals 0 when there

is no effect, and is more useful for inference (Wickens,

1993). However, Equation 3 estimates are biased. An es­

timate with less bias, which is also well defined when

one of the cells is zero (recall that the log of zero is un­

defined), is obtained by adding Y2 to each count:

(a+t)(d +t)
y = In---;---:...--;----,--,

(e+t)(b+t)

Yule's Q
Yule's Q is a transformation of the odds ratio designed

to vary, not from zero to infinity with 1 indicating no ef­

fect, but from - 1 to +1 with zero indicating no effect,

just like the Pearson correlation. For that reason, many

investigators find it more descriptively useful than the

odds ratio. First, c/d is subtracted from the numerator so

that Yule's Q is zero when alb equals c/d. Then alb

is added to the denominator so that Yule's Q is +1 when

band/or e is zero and -1 when a and/or d is zero, as fol­

lows:

Yule's Qcan also be expressed in terms of both the odds

and log odds ratio. From Equation 1, and letting x repre­

sent the estimated odds ratio, ad = x X be. Substituting

this expression for ad in Equation 5, dividing numerator

and denominator by be, and simplifying,

x-I
Yule's Q = --.

x + 1

Similarly, from Equation 3, and letting y represent the

estimated log odds ratio, ad = eY X be. Again substitut­

ing this expression for ad in Equation 5, dividing nu­

merator and denominator by be, and simplifying,

which ensures that the lower bound for transformed

kappa is -1 (see Wampold, 1989, 1992, for details and

derivations). The prime added to kappa indicates trans­

formed kappa as defined by Equation 7 when Xi} is

greater than mij and by Equation 8 when xij is less than

mi}' Thus transformed kappa, like Yule's Q, ranges from

- 1 to +1, with zero indicating no association.

Transformed kappa was designed for two-dimensional

tables of any size. Reformulated for a 2 X 2 table for

comparability with the other statistics discussed here,

the formula, when the observed is greater than the ex­

pected (Equation 7) and a + b is less than a + e, is
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,_ ad-be _ ad-be
/( - - ,

ab+b2 +ad +bd (a+b)(b+d)
(9) Yl ' Q ad-beu es = ,

~(ad +be)(ad +be)
(15)

and when a + e is less than a + b, is

x' = ad - be = ad - be

ae+e2 +ad +ed (a+e)(e+d)

the value of Yule's Q is not changed, but similarities and

differences between phi and Yule's Q (Equations 14 and

(10) 15) are clarified, as we now discuss.

Similarly, the formula for transformed kappa when the

observed is less than the expected (Equation 8), refor­

mulated for a 2 X 2 table, is

Ifwe now rewrite the expression for Yule's Q, first squar­

ing the denominator of Equation 5 and then taking its

square root,

Multiplying and rearranging terms, this becomes

4> = ad -be (14)

~(ae+bd +ad +be)(ab+ed +ad +be)

Squaring the denominator and enclosing it with a radi­

cal sign for the various expressions just given (Equations

9-11) emphasizes similarities with equations for phi

and Yule's Q given in the next section (Equations 13­

15). Derivations for Equations 9-11 are given in Appen­

dixA.

INDICES OF ASSOCIATION COMPARED

Multiplier and multiplicand in the denominator for

Yule's Q (Equation 15) consist only ofthe sum ofad and

be, whereas multiplier and multiplicand in the phi de­

nominator (Equation 14) add additional terms. Conse­

quently, values for phi are always less than values for

Yule's Q (unless band e, or a and d, are both zero, in

which case both Yule's Q and phi would be +1 and - 1,

respectively). In contrast, because the ad, be sum is not

contained in the denominator multipliers and multipli­

cands for transformed kappa (Equations 9-11), relations

between values of Yule's Q and transformed kappa are

more complex. However, Yule's Q and transformed kappa

share a property that distinguishes them from phi. Both

Yule's Q and transformed kappa are +1 when either b or

e is zero and -1 when either a or d is zero (this is called

weak perfect association; Reynolds, 1984), whereas phi

is +1 only when both band e are zero and - 1 only when

both a and d are zero (this is called strict perfect associ­

ation). Thus, phi achieves its maximum value (absolute)

only when row and column marginals are equal (Reynolds,

1984).

In addition to algebraic analysis of their formulas,

these and other differences among the indices of associ­

ation discussed here can be clarified further by examin­

ing selected numerical examples. We assumed that 100

transitions were tallied and that 20 began with A. For the

first three examples, A was always followed by B (perfect

positive association), and for the second three, A was

never followed by B (perfect negative association), but

the number of transitions ending in B varied from 20, to

30, to 40 for each set of three. The resulting 2 X 2 tables

and associated statistics are shown in Figure 1. The left­

most table in Figure 1 represents strict perfect positive

association (thus 4> = 1), the next two tables, weak per­

fect positive association, and the last three, weak perfect

negative association. Accordingly, values for Yule's Q

and transformed kappa are either plus or minus 1, whereas

(11)

(12)

ad-be

(a+b)(a+e)

4>=_Z_,
-IN

x' = ad -be

a
2

+ae+ab+be

(where z is computed for the 2 X 2 table and hence equals

\IX2. Thus, phi can be viewed as a z score corrected for

sample size. Like Yule's Q and transformed kappa it

varies from -1 to +1, with zero indicating no associa­

tion. In terms of the four cells, phi is defined as

4>= ad-be (13)

~(a +b)(e +d)(a +e)(b +d)

The Phi Coefficient
One of the most common measures of association for

2 X 2 tables is the phi coefficient. This is simply the fa­

miliar Pearson correlation coefficient computed using

coded data (Cohen & Cohen, 1983; Hays,1963). One

definition for phi is

-I

-I

-.41

-I

-I

-.33

-(

-(

-.25

I

I

.61

I

I

.76

B -B B -BB -B

A

-A

Q I
K' I

~ 1.00

Figure 1. Six 2 x 2 tables and associated values for Yule's Q, transformed
kappa, and phi; the first three tables indicate perfect positive association and
the last three, perfect negative association.
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A

-A

Q .58 .27 0 0 -.32 -.53

K' .25 .14 0 0 -.33 -.50

~ .25 .11 0 0 -.11 -.20

Figure 2. Six 2 x 2 tables and associated values for Yule's Q, transformed
kappa, and phi; the first two indicate moderate positive association, the sec­
ond two, no association, and the last two, moderate negative association.

values for phi vary, depending on the number of transi­

tions that end in B. Thus, in the extreme, ifB always fol­

lowed A for all subjects, but frequencies ofA and B were
nearly equal for subjects in one group, whereas frequen­

cies of B were double those of A for subjects in another
group, analyzing phi would suggest group differences,
whereas analyzing Yule's Qor transformed kappa would

not.
One might conclude from the foregoing that Yule's Q

or transformed kappa should be used in preference to
phi. After all, if all As are followed by Bs, does it matter
how many not-As are also followed by Bs? But this ar­

gument applies primarily when all cases are extreme
(i.e., tables for most experimental units contain at least

one zero or near-zero tally). Usually, few cells are zero
and, quite properly, the index of association is affected

by frequencies for both A and B. A second set of six ta­
bles, which have the same marginal totals as those in Fig­
ure 1 but represent moderate to no effects, are given in

Figure 2. The first three tables on the left in Figure 2 are
alike in that for each, 8 of 20 As are followed by Bs. But
it matters whether there are 20 (first table), or 30 (second

table), or 40 (third table) transitions that end in B, as re-

fleeted by the quite different values these tables generate
for Yule's Q, transformed kappa, and phi.

The examples just presented consisted oftables whose
total number of tallies was identical. Yet, when examin­

ing for group differences, often the number of tallies for
the experimental units varies. Accordingly, we next gen­
erated 200 tables for which the number oftransitions be­

ginning with A was held constant at 20, but the number
of As followed by B was allowed to vary randomly be­

tween 0 and 20, the number ending with B between 20
and 40, and the total number of tallies between 60 and
100; thus, effects could vary from a perfect negative to a

perfect positive association. Statistics were computed for
each table, and values for phi and transformed kappa

were plotted against Yule's Q (see Figure 3).
If values for phi and transformed kappa were rank­

order invariant with respect to Yule's Q (which, as noted

earlier, renders them equivalent for permutation tests),
then the graphs in Figure 3 would show a smooth upward

trajectory, whereas a jagged appearance indicates statis­
tics that rank order cases differently. In this respect, phi
performed considerably better than transformed kappa.

Some small reversals in rank, especially for large nega-

-phi -kappa

-1

-1 1
Yule's Q

1 1

L:­

a..

Figure 3. Yule's Q and associated phi (thin line) and transformed kappa (thick line) for
200 AI-A by BI-B tables generated as described in the text for which the observed value of
p(BIA) varied from 0 to 1; tables associated with the points marked with x s are given in
Figure 4.
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100lag 1 transitions were tallied) and consisted offive dif­
ferent codes (including A and B). In line with the exam­

ples used earlier, the generating program set parameters
representing probabilities for codes A and B to .2 and .3,
respectively; probabilities for the remaining three codes

were .2, .2, and .1. The degree oflag 0, lag 1 association
was set to zero (i.e., each event in the sequence was se­
lected randomly). Then transitions were tallied in A/-A

by B/-B tables like those shown earlier, and phi, trans­
formed kappa, and Yule's Q computed.

Distributions are shown in Figure 5. The mean for phi
and Yule's Q was essentially zero (- .008 and .004, re­

spectively), whereas the mean for transformed kappa was
- .062, suggesting bias. Phi appears well formed and
symmetric. As expected under these circumstances (i.e.,

unequal marginals for the 2 X 2 tables), the standard
error (SE) for phi (.100) was less than the SEs for Yule's

Q and transformed kappa (.272 and .226). Although
not as well formed as phi, the distribution for Yule's Q
appears reasonably symmetric, whereas transformed

kappa evidences a markedly negative skew, with a neg­
ative mean and positive mode. On the basis of the evi­

dence presented here, we would not recommend trans­
formed kappa as an index of association for 2 X 2 ta­
bles, but recognize that it may have other uses (see Wam­
pold, 1992). Again, on the basis of the evidence pre­

sented here, and other things being equal, when testing
for group differences using permutation tests, we might

have a slight preference for phi but suspect that it would
yield essentially the same answers as Yule's Q (or the log
odds ratio).

A final comment concerns cross influence. Sometimes
sequential questions involve two interactants whose inter­

action is represented by two coded behavioral streams,
not just one as in the examples presented here (see, e.g.,

8 -8 8 -8 8 -8

A ..~.Q.l.!.Q.
-A 1O!50

Q .66 .66 .66 .66 .67

K' .49 .42 .55 .51 .33

ljl .32 .33 .33 .34 .33

Figure 4. Five 2 x 2 tables and associated values for Yule's Q,
transformed kappa, and phi corresponding to points marked
with x s in Figure 3.

tive values, were seen with phi, whereas transformed

kappa rank ordered far more cases differently. Often ta­
bles that gave similar values for Yule's Qand similar val­
ues for phi yielded divergent values for kappa. Five such

tables, representing the five data points marked with X s
in the upper-right corner of Figure 3, are shown in Fig­

ure 4. An examination of Equations 9-11 for the 2 X 2
version of transformed kappa suggests why transformed
kappa might yield such variable results: c is excluded

from the denominator for Equation 9, b from the de­
nominator for Equation 10, and d from the denominator
for Equation II. Thus, compared with phi and Yule's Q,
transformed kappa may be viewed as less sufficient,
where sufficient implies use ofall the information avail­
able in the data and, along with efficiency and consis­

tency, is usually listed as one of the attributes good esti­
mators should possess.

A fourth desirable attribute is lack of bias, and here

again transformed kappa may not perform as well as the
other statistics discussed here. To investigate bias, we
generated empirical sampling distributions for phi,

transformed kappa, and Yule's Q. The distributions were
based on 10,000 sequences, each 101 events long (so that

~
:c
CO
.c
e
o,

o
-1

-phi

~
- kappa ---- Yule's Q

1
Yule's Q, Phi, & Kappa

Figure 5. Sampling distributions for phi (thin line), transformed kappa (thick line), and
Yule's Q (dashed line) based on 10,000 A/-A by B/-B tables for which the expected value
of p(B IA) was zero. The means for phi and Yule's Q were essentiaUy zero; the mean for
transformed kappa, represented by the vertical dotted line, was -0.062.
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Allison & Liker,1982, and Faraone & Dorfman, 1987;
for additional examples of situations more complex than

those considered here, also see Budescu, 1984, and Iaco­
bucci & Wasserman, 1988). In such cases, Dumas (1986),

citing Tavare and Altham (1983), argues that estimates
of cross influence need to be corrected for autocorrelation

within each stream, yet not all experts apply such correc­
tions (e.g., Wickens, 1993), and in any event, the proposed
correction is nil if autocorrelation is absent. Still, inves­

tigators who represent their data as two streams ofcoded
data, and whose questions involve cross influence, should

consult Dumas (1986).

PERMUTATION AND PARAMETRIC
t TESTS COMPARED

Permutation tests seem attractive for reasons given
earlier, but results might not differ dramatically from

those produced by conventional parametric t tests. To
compare these tests directly, several simulations were

performed. For each simulation, the total number ofsub­
jects (N) and the number in the first group (r) were set.

Values investigated for N were 10 (rs = 4 and 5), 15
(rs = 6 and 7), 20 (rs = 8 and 10), 40 (rs = 16 and 20),
and 60 (rs = 24 and 30). Values for N were chosen to

represent values that fall below as well as above usual
guidelines regarding minimum sample size for paramet­

ric tests; thus 20 (10 subjects per cell) can be viewed as
just satisfying a common rule of thumb. Values for r
were chosen to represent the ideal (i.e., N/2) and slight

deviations from that ideal. Consistent with tables pre­
sented earlier, we assumed, for each subject, that 20 tran-

sitions began with A and let the number ofA to B transi­

tions vary randomly between 0 and 20, the number end­
ing with B between 20 and 40, and the total number be­

tween 60 and 100. For each subject, Yule's Q was
computed for the A/-A by B/-B table. Then, for each set

ofN subjects-recall that each set was divided into two
groups, one with r and one with N - r subjects-a t sta­

tistic was computed and an exact probability based on
10,000 sampled permutations was estimated (as ex­
pected, probes showed identical results when phi instead

of Yule's Q was used as an individual measure).
For each simulation, 100 sets of N subjects whose

group means were somewhat different, as indicated by a
t score between 1 and 3, were selected for further study.
We wanted to compare asymptotic and permutation

methods when the significance of mean differences
would be most ambiguous, and this range contains one­

tailed and two-tailed critical values for the values of N
investigated here. Detailed results for two simulations

are presented: the first, when N was 20 and r was 8, rep­
resents a case that just meets usual guidelines (Figure 6),

and the second, when N was 10 and r was 4, represents
a case that fails to meet usual guidelines (Figure 7).

With values ofN as small as 20, and even with an r of

8 and not 10, the exact probabilities (technically, esti­
mated exact probabilities since sampled permutation was
used; see Bakeman et aI., 1996) matched quite closely

those expected for the parametric t (see Figure 6). The
thick curved line represents asymptotic probabilities for
the t scores listed on the abscissa, and most exact prob­

abilities fall on or very near it. As a result, had we used
an asymptotic instead of the more accurate permutation

0.15
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t statistic (df=18)
3

Figure 6. Estimated exact probabilities based on 10,000 sampled permutations and
associated t scores for 100 sets of20 subjects (8 in one group, 12 in the other) generated
as described in the text. The thick curved line represents asymptoticp values for the as­
sociated t scores (df = 18). The thin and dotted horizontal lines represent exact proba­
bilities of .05 and .025 (.05, two-tailed), respectively. The thin and dotted vertical lines
represent t values of 1.734 (parametric t = .05, one-tailed) and 2.101 (parametric t =
.05, two-tailed), respectively.
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Figure 7. Exact probabilities based on 10,000 sampled permutations and associated
tscores for 100 sets oflO subjects (4 in one group, 6 in the other) generated as described
in the text. The thick curved line represents asymptotic p values for the associated t
scores (df = 8). The thin and dotted horizontal lines represent exact probabilities of .05
and .025 (.05, two-tailed), respectively. The thin and dotted vertical lines represent t val­
ues of 1.860 (parametric t = .05, one-tailed) and 2.306 (parametric t = .05, two-tailed),
respectively.

test, one time we would have called a result significant
when the exact test indicated no (two-tailed; parametric

t > 2.1 yet exact probability> .025) and one other time
we would not have called a result significant when the
exact test indicated yes (parametric t < 2.1 yet exact prob­

ability < .025). But, in each case, the difference between
asymptotic and exact probabilities was slight, as indi­
catedby the small vertical distance between the asymp­

totic curve and the markers indicating exact probability
(see Figure 6).

When N was 10, the exact probabilities fell further
away from the asymptotic curve (see Figure 7). As a re­

sult, had we used an asymptotic instead ofa permutation
test, five times we would have called a result significant
when the permutation test indicated no (two-tailed, para­

metric t> 2.3 yet exact probability> .025), and again five
times we would not have called a result significant when
the permutation test indicated yes (parametric t < 2.3 yet

exact probability < .025). Differences between asymp­
totic and permutation probabilities were greater when N

was 10 instead of 20. For example, one triangle in Fig­

ure 7 indicates an exact probability of .015, but its asso­
ciated asymptotic probability is .036 (t = 2.07).

Given Figures 6 and 7, results of other simulations
are easily described. When N was 10 and 20, probabili­
ties derived from sampled permutation were somewhat

closer to those for the parametric t when r was N12; the
results when N was 15 were more similar to those for 20
than 10; and when N was 20 or greater, even when r de­
viated from N12, probabilities derived from sampled per­

mutation were almost exactly the same as those for the
parametric t.

SUMMARY AND RECOMMENDATIONS

When testing for group differences using sampled

permutations, it does not much matter whether Yult\s Q

or phi is used, since both rank order cases essentially the
same. Moreover, two monotonically increasing transfor­
mations ofYule's Q-the odds and log odds ratios-like­

wise give identical results. For a variety ofreasons detailed
here, these statistics are preferred over transformed kappa.

Similarly, when subjects are 20 or more, and split reason­
ably evenly between two groups, it does not matter much
whether sampled permutation or parametric t tests are

used; both yield essentially the same result. However,
when subjects are fewer than 20, or whenever there is
any other reason to think that parametric assumptions

may not be met, permutation tests are recommended. In
any event, they are always the safer choice. Such tests are
feasible, and a computer program that performs a two­

independent-groups test is described in Appendix B.
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APPENDIX A

Transformed Kappa Reformulated for 2 X 2 Tables

The formula for transformed kappa when the observed is greater than the expected (Equation 7), refor­

mulated for a 2 X 2 table, is

a -(a +b)(a +e)/ N

min[(a + b),(a + e)] - (a + b)(a + e)/ N

The a represents the observed and its expected value is (a + b)(a + e)/N. Replacing Nwith a + b + e + d

and simplifying, this becomes

, a(a + b + e + d) - (a + b)(a + e)
/( = -----=-------'-------=---'------'---'--'----'----

min[(a + b),(a +e)](a + b + e + d)- (a + b)(a +e)

Assume that a + b is the minimum of a + b and a + e. Then

a(a + b + e + d) -(a + b)(a +e)

(a + b)(a + b +e + d) -(a + b)(a + e)

a
2

+ ab + ae + ad - (a
2

+ ae + ab + be)

a(a + b) + b(a + b) + e(a + b) + d(a + b) - (a
2

+ ae + ab + be)

a2 + ab + ae + ad - a2
- ae - ab - be

a
2

+ ab + ab + b 2 + ae + be + ad + bd - a
2

- ae - ab - be

ad-be

ab+b
2

+ad +bd

ad-be

(a+b)(b+d)'

which is Equation 9 given earlier. Or, if a + e is the minimum of a + b and a + e, then
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APPENDIX A (Continued)

, a(a+b+e+d)-(a +b)(a+e)
K: =-----'----------'-----'-'----------''-'------'--

(a +e)(a +b+e+d)-(a + b)(a +e)

a
2

+ ab + ae + ad - (a
2

+ ae + ab + be)

a(a + c) + b(a + c) + e(a + c) + d(a + c) - (a
2

+ ae + ab + be)

a2
+ ab + ae + ad - a

2
- ae - ab - be

a
2

+ ae + ab + be + ae + e
2

+ ad + cd - a
2

- ae - ab - be

ad - be

ae + e
2

+ ad + cd

ad - be

(a + e)(e + d)

which is Equation 10 given earlier.
The formula for transformed kappa when observed is less than expected (Equation 8), reformulated for a

2 X 2 table, is

It= a-(a+b)(a+e)/N

(a + b)(a + e)/N

Again replacing N with a + b + e + d and simplifying, this becomes

, a(a+b+e+d)-(a+b)(a+e)
K: = ----'------'----------'------'--'-

(a+b)(a+e)

a2 +ab+ae+ad _a2 -ae-ab -be

a
2

+ae+ab+be

which is Equation 11 given earlier.

ad-be

a
2

+ae+ab+be

ad-be

(a+b)(a+e)

APPENDIXB
PGD, a Permutation Program for Testing Group Differences

A computer program for testing differences among groups using permutation tests has been developed.
This program reads data from an ASCII file containing scores for individuals, or units of analysis, in dif­
ferent groups, and provides an estimate of the exact p value of the one-way analysis of variance Snedecor's
F test. If requested, it also computes estimates of two-tailed exact p values for all possible independent Stu­
dent's t tests among groups (if there are only two groups,p values for F and t tests are identical). PGD com­

putes p values by permuting the observed data repeatedly and computing the proportion of permutations that
yield statistics (F and t) that are greater than or equal to the observed ones. All the data are shuffled in order
to compute p values for F tests, whereas data for groups being compared are shuffled independently from
the other groups when multiple comparisons among groups are performed. Confidence intervals for the p

values are also computed on the basis of blocks of permutations. Defaults used by PGD are: (1) Observed
data are permuted or shuffled 1,000 times, using Castellan's (1992) shuffling algorithm. (2) The procedure
is repeated 10 times (i.e., a total of 10,000 times, 10 blocks of 1,000 permutations each) in order to compute
mean p values and 95% confidence intervals. (3) Multiple-comparison tests are not performed.

Defaults can be changed by users in several ways by invoking PGD with some optional arguments in the
DOS command line: (1) Number of permutations, up to a maximum of 5,000 per block. (2) Number of
blocks, up to a maximum of 50 (i.e., total maximum number of permutations can be 250,000). (3) 99% con­
fidence intervals can be requested. (4) Multiple-comparisons procedure among groups can be requested.
(5) Printout of first shuffled data can be requested, up to a maximum of 50.
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APPENDIX B (Continued)

When multiple comparisons are specified, PGD reports both the p values and the corresponding adjusted

values resulting from using Fisher's modified least significant difference procedure, which takes into ac­
count the fact that multiple t tests are being performed. This procedure consists of multiplying each p value
by the number of comparisons in order to get the final adjusted significance values (Edgington, 1987,
pp.85-88).

PGD is written in Borland C and runs in an MS-DOS environment. It is available from the authors. To re­
ceive a copy of the executable file, mail a formatted 3.5-in. floppy disk with a self-addressed return mailer
to either author (stamped if within USA or Spain). Enclose a note stating that you will use the program only
for noncommercial purposes, that you will not give copies to others, and that you understand that it is not

guaranteed to be free of error.
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