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A method based on information-flow tracking uses gate-

level logic to detect hardware Trojans that violate the 

confidentiality and integrity properties of third-party IP 

cores. Experiments on trust-HUB benchmarks show that the 

method reveals Trojan behavior and unintentional design 

vulnerabilities that functional testing cannot pinpoint.

W     
ith globalization of the hardware design 

and supply chain, hardware trustworthi-

ness has become a major concern. Hard-

ware design can involve multiple interna-

tional teams with untrusted entities providing intellectual 

property (IP) cores. The resulting hardware often has 

unspeci.ed functionality, which can be a conduit for 

information leaks or a backdoor that attackers can exploit.

These hidden functions can mask hardware Trojans, 

lightweight components carefully designed to activate 

only under rarely occurring conditions. Because they 

lie dormant until some point, Trojans are extremely dif-

.cult to detect during hardware design. External ven-

dors might provide IP cores with built-in Trojans, and 

even internal IP cores could have Trojans—for example, 

inserted as a parting gift from a disgruntled employee. 

Although Trojans are intentionally created to be mali-

cious, designers and tools can unintentionally introduce 

design vulnerabilities that could do equal harm when 

exploited. With modern hardware design becoming a 

Detecting Hardware

Trojans with Gate-Level 

Information-Flow Tracking
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massive integration of in-house and 

external IP cores, it is easier for both 

Trojans and 0aws to pass through 

design undetected.

As the sidebar “Hardware Tro-

jan Detection Approaches” implies, 

detecting Trojans in IP cores is 

extremely di)cult. Although much 

work has focused on detecting Tro-

jans in fabricated hardware, the ideal 

strategy is to catch potential vulner-

abilities that could signal a Trojan 

during the design phase, when they 

are much easier to eliminate or miti-

gate. As a step toward that solution, 

we developed a method that uses 

information-0ow tracking (IFT) to 

detect Trojans in gate-level design. 

IFT has been widely deployed across 

the system stack—from programming 

languages and compilers to instruc-

tion-set architecture. It is an estab-

lished formal method that can be used 

to prove important security proper-

ties, such as those related to con.-

dentiality and integrity. We chose to 

use gate-level IFT (GLIFT) because, at 

this level, IFT precisely measures and 

controls all logical 0ows from Boolean 

gates.1 GLIFT is also an established 

method that has been used to craft 

secure hardware architectures2 and 

detect security violations from tim-

ing channels.3 In our method, GLIFT 

formally veri.es that an information 

0ow adheres to security properties 

related to con.dentiality and integ-

rity. Counterexamples found during 

formal veri.cation reveal harmful 

information 0ows that point to design 

0aws or malicious hardware Trojans 

that cause the system to leak sensitive 

information and violate data integ-

rity. The designer can then take the 

appropriate action to correct the vul-

nerability that led to the violation. An 

understanding of malicious Trojan 

behaviors is useful in backtracking 

analysis to identify the Trojan design.

Our method works directly on hard-

ware described in Verilog or the VHSIC 

Hardware Description Language 

(VHDL) and leverages o--the-shelf 

electronic design automation (EDA) 

tools for analysis. To assess its per-

formance and scalability, we ran it on 

several trust-HUB benchmarks (www

.trust-hub.org), which are designed 

for hardware Trojan classi.cation and 

detection research. Results show that 

our method can detect Trojans in sev-

eral trust-HUB benchmarks that cause 

the violation of information-0ow secu-

rity properties.

THREAT MODEL
The threat model on which our method 

is based rests on several assumptions:

› the third-party IP core might 

contain Trojans that are 

activated only under rare 

conditions;

› the Trojans are carefully 

designed and hard to activate 

through purely functional 

testing;

› when active, the Trojans leak 

sensitive information (such 

as the plaintext) to violate the 

integrity of critical data, for 

example, the secret key;

› when the Trojans are not 

active, the IP cores run nor-

mally and produce correct 

results; and

› the implementation details of 

the Trojan’s trigger condition or 

payload are not known.

Our analysis requires access to the 

IP core’s code at the register-transfer 

level (RTL) or to its gate-level netlist.

As Figure 1 shows,4 the targeted 

Trojans are in the speci.cation and 

design phases at the RTL or gate level. 

The Trojans can be either always on or 

triggered under speci.c conditions, 

such as through a single input, input 

sequence, or counter, and can cause 

a violation of the critical data’s con.-

dentiality or integrity properties. We 

assume that the attacker’s primary 

Hardware Trojans

Insertion phase Abstraction level Activation mechanism Effects Location

Speci!cation

Design

Fabrication

Testing

Assembly and package

System level

Development environment

Register-transfer level

Gate level

Transistor level

Physical level

Always on

Triggered

Internally

Time-based

Physical condition–based

Externally

User input

Component output

Change functionality

Downgrade performance

Leak information

Deny service

Processor

Memory

I/O

Power supply

Clock grid

FIGURE 1. A taxonomy of hardware Trojans. Our method can detect Trojans at the register-transfer level and gate level inserted 

during specification or design as well as Trojans that have red boldface subcategories in the activation mechanism, effects, and loca-

tion categories. (Source: R. Karri et al., “Trustworthy Hardware: Identifying and Classifying Hardware Trojans,” Computer, vol. 43, 

no. 10, 2010, pp. 39–46.)
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goal is to learn sensitive informa-

tion, so Trojans that cause a denial of 

service or downgrade performance 

are omitted. Leaks are assumed to be 

through logical attacks, not through 

power, electromagnetic, and other 

side channels.

MODELING 
CONFIDENTIALITY AND 
INTEGRITY PROPERTIES
The con.dentiality property requires 

that secret information never leak 

to an unclassi.ed domain, while 

the integrity property requires that 

untrusted data never be written to a 

trusted location. Hardware descrip-

tion languages (HDLs) are inadequate 

for enforcing such security properties 

because they specify only functional-

ity. In contrast, information-0ow ana-

lysis is able to model data movement.

Security requires knowing what 

should be protected, so a .rst step in 

modeling is to associate additional 

sensitivity information with data 

objects. In practice, these objects can 

have security labels at multiple levels 

according to sensitivity. For example, 

in a military information system, data 

can be labeled as unclassi.ed, con.-

dential, secret, or top secret.

The partial order between di-erent 

security classi.cations can be de.ned 

using a security lattice. Let L (•) denote 

the function that returns the security 

label of a variable, which can be for-

malized as

A ↝ B L(A) ⊑ L(B) . (1)

Equation 1 models con.dentiality 

and integrity properties by specifying 

allowed information 0ows; in this case, 

information is allowed to 0ow from A

to B if and only if A’s security level is 

lower than or equal to B’s. Under such 

a notion, both the con.dentiality and 

HARDWARE TROJAN DETECTION APPROACHES

Much work has been done on hardware Trojan 

detection, with existing methods being 

either invasive or noninvasive. Invasive meth-

ods insert test points in the design to increase 

observability, or they use reverse-engineering 

techniques to check for malicious design modifi-

cations in the physical layout. These methods are 

relatively expensive because they require highly 

specialized tools to access the chip’s physical lay-

out. In contrast, noninvasive methods do not need 

to modify the design but rather look for clues that 

reveal a Trojan’s existence, such as faulty output, 

downgraded performance, and increased power 

consumption. Some methods try to capture these 

clues by functional testing; others reveal them 

through circuit-parameter characterization and 

the formal proof of properties related to informa-

tion flow.

FUNCTIONAL TESTING
Testing or verification methods to detect Trojans 

identify suspicious signals in the circuit, typi-

cally those with an extremely low probability of 

switching to another logical state. Some meth-

ods use IC test methods to increase the Trojan’s 

transition probability. For example, one research 

group used a procedure to insert a dummy scan 

flip-flop to help generate circuit transitions and 

reduce Trojan activation time.1 Another group 

used functional testing to identify redundant 

circuits with low transition probability.2

Although these methods work for some 

Trojans, they might miss Trojans without a trigger 

signal. In general, methods that use testing to 

detect the existence of Trojans face many obsta-

cles; IC testing poses difficult problems regardless 

of whether it considers logic that is intentionally 

difficult to activate.

CIRCUIT-PARAMETER
CHARACTERIZATION
Several methods attempt to capture Trojan 

behaviors using side-channel signal analysis, the 

goal of which is to detect transient power and 

spurious delays arising from the Trojan’s insertion 

in the design. For example, one research group 

proposed a current-integration methodology to 

reveal Trojan activity and used localized current 

analysis to identify the Trojan.3 Others used 

circuit-parameter characterization to generate 

fingerprints or watermarks for the hardware de-

sign and compared them with those of a Trojan-

free reference chip4 or a small trusted region of 

the design. In the latter case, the trusted region 

was derived from running a trusted simulation 

model, measuring fabrication process parame-

ters, and applying advanced statistical analysis.5

Yet another group proposed a side-channel 

___________________
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integrity properties can be modeled in 

a uni.ed manner.

Our method uses a two-level secu-

rity lattice LOW ⊑ HIGH. In a con.-

dentiality analysis, sensitive data is 

labeled HIGH and unclassi.ed data 

is LOW, but in an integrity analysis, 

critical data is labeled LOW and nor-

mal data is HIGH. For example, we 

label the secret key as HIGH in a con-

.dentiality analysis but LOW in an 

integrity analysis.

METHODOLOGY
Our method has three main parts: 

GLIFT, detection of hardware Trojans, 

and the derivation of security theo-

rems to formally prove properties.

GLIFT

GLIFT assigns a label (also known as a 

taint bit) to each bit of hardware design 

data. These assignments provide the 

basis for a model that designers can 

use to better understand how that 

data propagates through the design. 

Designers can then de.ne security 

properties and use GLIFT to test or ver-

ify if the design adheres to them.

Suppose, for example, that the 

goal is to understand where infor-

mation about the cryptographic key 

could 0ow. GLIFT assigns the label 

“con.dential” to bits of the key, and 

the designer or test engineer can 

then write a property that precludes 

some part of the design from access-

ing those bits. The property might be, 

“Untrusted memory location X should 

never be able to ascertain any con.-

dential information.” This is the same 

as saying that the untrusted memory 

location can never be assigned a con-

.dential label.

Because it associates each data 

bit with a security label, not a byte or 

word-level label, GLIFT can precisely 

account for information 0ow. In this 

analysis method6 that uses multiple parameters 

and leverages the relationship between dynamic 

current and maximum operating frequency to 

minimize the effect of process noise. Unfortu-

nately, the increasing variation in the hardware 

manufacturing process and decreasing size of the 

Trojan payload work against these techniques.

FORMAL PROOF OF PROPERTIES
Some methods detect Trojans by formally proving 

security-related properties. A violation of a particu-

lar property indicates the existence of a Trojan. One 

method detects Trojan in cryptography hardware 

by formally proving security properties related to 

information flow.7 Although it is a promising way 

to detect Trojans in third-party IP cores, it requires 

careful reasoning about where information can be 

declassified to reveal the Trojan payload’s security 

label. This task can be challenging for hardware 

designers who lack security expertise.

In general, these methods require rewriting 

the hardware design in a formal language, which 

can increase design cost significantly, and most 

methods do not provide clues that reveal Trojan be-

havior, so they are not suitable for finding Trojans in 

the entire design. Our work addresses this problem 

by leveraging a precise gate-level information-flow 

model that can be described with a standard 

hardware description language and verified with 

off-the-shelf electronic design automation tools, 

which minimizes additional design cost.
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case it knows that information 0ows 

from bit A to bit B if and only if A’s 

value in0uences B. Also, unlike other 

IFT methods, GLIFT accounts for the 

input data values when calculating the 

output label. Other IFT methods mark 

the output as HIGH if there is at least 

one HIGH input regardless of the input 

data values. With these characteris-

tics, GLIFT can determine the output’s 

security label more precisely than other 

IFT methods and thus more accurately 

measure actual information 0ows.

To better understand GLIFT, con-

sider AND-2, a two-input AND gate 

whose Boolean function can be 

described as O = A • B. Let At, Bt, and Ot

denote the taints of A, B, and O, where 

A, B  {0, 1}, and At, Bt, Ot  {LOW, 

HIGH} under some encoding scheme 

(for example, LOW = 0 and HIGH = 1) 

where

LOW ⋅ HIGH = LOW and  

LOW + HIGH = HIGH . (2)

Table 1 shows the label-propagation 

policy of conservative IFT methods 

and GLIFT for AND-2. 

Conservative IFT methods typi-

cally set Ot to HIGH when either A or 

B is labeled HIGH. This policy is safe, 

in that it accounts for all possible 

0ows of HIGH information, but it can 

cause many false positives (nonexis-

tent 0ows) in information-0ow mea-

surement. To illustrate, let Secret be a 

32-bit HIGH value. After performing

Public = Secret ⋅ 0x01 , (3)

conservative methods will mark the 

entire Public as HIGH, indicating that 

32 bits of information are 0owing from 

Secret to Public.

However, GLIFT uses a more precise 

label-propagation method for AND-2. 

The output will be LOW (or HIGH) when 

both inputs are LOW (or HIGH). When 

there is only one LOW input and it is 

(LOW, 0), the output will be dominated 

by this input and will be LOW (the 

other HIGH input does not 0ow to the 

output). When the input is (LOW, 1), 

the output will be determined by the 

other HIGH input and thus will take a 

HIGH label.

In the Equation 3 example, the con-

stant (LOW, 0) bits in the second oper-

and will dominate the corresponding 

label bits of Public as LOW. Only the 

constant (LOW, 1) bit allows the least 

signi.cant bit of Secret to 0ow to the 

output. Thus, there is only 1 bit of 

information 0ow.

These examples show that GLIFT 

considers both the security label and 

the actual value in its propagation, 

thus accounting for how an input 

value can in0uence output and more 

precisely measuring the actual infor-

mation 0ows.

Hardware Trojan detection

Figure 2 shows the process of Trojan 

detection with our method.

Because both the gate-level netlist 

and GLIFT library can be described 

with a standard HDL, o--the-shelf 

EDA tools can be used to verify or test 

GLIFT logic. This feature contrasts 

sharply with other hardware Trojan 

detection methods, which require 

the designer to construct a formal 

hardware design model before speci-

fying and proving properties. GLIFT 

TABLE 1. Label propagation policy of conservative information-flow 

tracking (IFT) methods versus gate-level IFT (GLIFT) for AND-2.

Input labels Conservative IFT GLIFT

A B O A B O

Both LOW LOW LOW LOW (LOW, −)* (LOW, −) (LOW, −)

A is LOW

B is HIGH
LOW HIGH HIGH

(LOW, 0)

(LOW, 1)

(HIGH, −)

(HIGH, −)

(LOW, 0)

(HIGH, −)

A is HIGH

B is LOW
HIGH LOW HIGH

(HIGH, −)

(HIGH, −)

(LOW, 0)

(LOW, 1)

(LOW, 0)

(HIGH, −)

Both HIGH HIGH HIGH HIGH (HIGH, −) (HIGH, −) (HIGH, −)

*− : value can be either logical 0 or 1.

IP core
Gate-level

netlist

Logic
synthesis

GLIFT
logic

GLIFT logic 
generation

Formal
veri!cation

Functional
testing

Trojan
behavior

Trojan
free

Fail

Pass Security
property

Counter
example

FIGURE 2. How our method detects hardware Trojans. The goal is to detect Trojans that 

violate information-flow security properties. A logic synthesis tool compiles the IP core’s 

design to a gate-level netlist and then gate-level information-flow tracking (GLIFT) logic 

is automatically generated. Each gate is mapped to a GLIFT logic library, which can be 

completed in linear time. The GLIFT logic is formally verified against a security property 

that the designer has written. If it passes verification, there is no Trojan. If it does not, a 

counterexample is generated, which is used to functionally test the GLIFT logic to derive 

Trojan behavior.

___________________
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automatically provides that formal 

model, which makes security veri.ca-

tion much easier.

The designer writes security prop-

erties, which are translated into stan-

dard HDL assertion statements and 

veri.cation constraints and input 

along with the GLIFT logic to a stan-

dard hardware-veri.cation tool. If the 

design satis.es all the properties, it is 

free of Trojans that violate those prop-

erties. Otherwise, formal veri.cation 

will fail and provide a counterexample 

that causes the security violation. The 

counterexample enables functional 

testing on GLIFT logic, which deter-

mines the exact Trojan behavior. It is 

then possible to identify Trojan behav-

ior across the design.

GLIFT is essential in broadening 

the properties that formal tools can 

check. Without GLIFT, formal tools 

can check only functional properties 

on netlists, such as the possibility that 

signal X can take value Y. It is di)cult 

to express security properties solely 

for the functional design because val-

ues do not reveal how information 

0ows. With GLIFT, data is associated 

with additional security labels, which 

enables reasoning about the design’s 

security. GLIFT can precisely capture 

when information-0ow security prop-

erties related to con.dentiality and 

integrity are violated, such as whether 

sensitive data is multiplexed to a pub-

licly observable output.

Deriving security theorems

Designers derive security theorems in 

two steps.

The .rst step is classifying the sig-

nals in the hardware design into dif-

ferent security levels. For example, 

they might use the classi.cation and 

labeling in Table 2.

The next step is to use the labels to 

specify allowable (or forbidden) infor-

mation 0ows. In this case, the designer 

would write a property to enforce the 

requirement that HIGH data should 

never 0ow to LOW data. The proper-

ties mark the input signals and spec-

ify which signals must be checked 

against their labels. As an example, 

the .rst property to check for crypto-

graphic cores, is that the key always 

0ows to the ciphertext. To derive a 

security theorem for this property, 

we mark the key as HIGH and all the 

remaining inputs as LOW and check 

that the ciphertext is always HIGH. 

Figure 3a describes the security theo-

rem for this property.

Figure 3b describes a security theo-

rem for a case in which the key should 

never be altered. The key is labeled 

LOW and all remaining inputs are 

HIGH because this property is related 

to integrity. To ascertain if the prop-

erty holds, the designer checks that 

the key register’s security label is 

always LOW.

Other theorems to enforce security 

properties can be similarly derived, 

easily converted to assertion lan-

guage statements, and proved using 

standard hardware-veri.cation tools. 

Again, this ease of use contrasts 

sharply with hardware Trojan detec-

tion methods that require each design 

to be described in new semantics. 

Our method has the dual advantage 

of eliminating these semantic di-er-

ences and minimizing the burden on 

designers to write descriptions.

TROJAN DETECTION
USING BENCHMARKS
Table 3 summarizes the trust-HUB 

benchmarks we tested, showing the 

time for GLIFT logic generation and 

Trojan detection. From speci.ed test 

and security constraints, we observed 

the security labels of primary outputs 

but did not manipulate the bench-

marks’ internal registers. For the 

AES-T100, T1000, T1100, and T1200 

benchmarks, our method success-

fully bypassed the trigger conditions 

because the leakage points were XOR 

gates, which always allow security 

labels to propagate regardless of input 

values. As the table shows, for the AES-

T400, AES-T1600, AES-T1700, RSA-

T100, and RSA-T200 benchmarks, our 

method detected Trojans and identi.ed 

leakage points in less than 10 minutes.

Two examples, the AES-T1700 and 

RSA-T400 benchmarks, demonstrate 

how our method can detect Trojans 

and reveal potentially malicious 

behaviors that functional testing and 

veri.cation might fail to capture.

AES-T1700 benchmark

As shown in Figure 4, the AES-T1700 

benchmark contains a Trojan that 

leaks the key bits through a modulated 

RF channel. The Trojan activates after 

TABLE 2. Signal classification and labeling examples.

Confidentiality analysis Integrity analysis

Data type Example Label Data type Example Label

Secret Plaintext and key HIGH Critical Program counter LOW

Not secret
Clock, reset, and start 

of encryption signal
LOW Noncritical

Input from open 

network or keyboard
HIGH

set key_t HIGH

set DEFAULT_LABEL LOW

assert cipher_t HIGH

(a)

set key_t LOW

set DEFAULT_LABEL HIGH

assert key_reg_t LOW

(b)

FIGURE 3. Sample security theorems 

for (a) a property that requires the key to 

always flow to the ciphertext and (b) a 

property that requires the key register to 

never be overwritten.
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(2129 – 1) successive encryption oper-

ations. Once activated, it loads the 

secret key into a shift register, whose 

least signi.cant bit is modulated to 

leak through the RF channel. The 

probability of activating such a Trojan 

in functional testing is quite low.

Property checking. To check the con-

.dentiality property against key leak-

age, we marked the key as HIGH and all 

the remaining inputs as LOW. We then 

wrote an assertion statement that an 

output can be HIGH so that we could 

determine if the key 0ows to that out-

put. In an initial analysis, we identi.ed 

that both outputs, the ciphertext and 

Antena signal, can have HIGH labels. 

The subsequent analysis focused on 

the Antena output, as it is normal for 

the key to 0ow to the ciphertext in a 

cryptographic function. We then used 

a Boolean satis.ability (SAT) solver to 

prove that Antena_t (Antena’s label) is 

always LOW. The proof failed, indicat-

ing that Antena_t could be HIGH and 

thus that Antena output could leak 

information about the key.

Next, we used Mentor Graphics’ 

Questa Formal to check if the inter-

nal registers in the model found by 

the SAT solver could meet the required 

conditions. (SAT tools typically per-

form only combinatorial checks.) We 

focused on the SHIFTReg_t register 

because it was the only register that 

could carry HIGH information, accord-

ing to the SAT solver’s model. We used 

Questa Formal to formally prove that 

the SHIFTReg_t register was always 

LOW. The proof failed when the con-

trol point signal Tj_Trig was asserted.

Logic simulation. To better under-

stand these .ndings, we simulated the 

GLIFT logic under the control-point 

condition to capture how the key leaks 

to the Antena output. Figure 5 shows 

the simulation results. GLIFT indicated 

that the key can leak to the Antena out-

put. As the .gure shows, when Baud-

GenACC[25:23] = 010, Antena_t is 1, 

which was equivalent to HIGH. There 

are also transitions in the Antena sig-

nal when BaudGenACC[25:23] = 000. 

However, these behaviors do not leak 

any information about the key because 

Antena_t is 0, indicating LOW.

The simulation results prove that 

GLIFT precisely captures when and 

where key leakage happened, which 

functional testing and veri.cation 

could not do. A designer could use 

these results to identify the location 

TABLE 3. Designs from trust-HUB tested using our GLIFT method.

Benchmarks Trojan behavior Trigger GLIFT logic-generation time (s) Proof time (s)

AES-T100 Leaks the key through code division multiple 

access (CDMA) covert channel

Always on 2 408

AES-T1000 Leaks the key through CDMA covert channel Single input 2 409

AES-T1100 Leaks the key through CDMA covert channel Input sequence 2 406

AES-T1200 Leaks the key through CDMA covert channel Counter 2 410

AES-T400 Leaks the key through modulated RF signal Single input 2 404

AES-T1600 Leaks the key through modulated RF signal Input sequence 3 397

AES-T1700 Leaks the key through modulated RF signal Counter 3 411

RSA-T100 Leaks the key through ciphertext Single input < 1 319

RSA-T200 Replaces the key to disable encryption Single input < 1 336

RSA-T300 Leaks the key through ciphertext Counter < 1 991

RSA-T400 Replaces the key to leak plaintext Counter < 1 841

128-bit counter Baud generator

Trigger

Message

Ciphertext

Antena

Key
Normal 128-bit AES core

Key shift register Modulator

FIGURE 4. The AES-T1700 benchmark used to evaluate our method’s performance. 

The benchmark contains a Trojan that leaks the key.

___________________
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of Trojans throughout the design by 

using formal proofs on the GLIFT logic 

to backtrack from Antena to the key.

RSA-T400 benchmark

The BasicRSA-T400 benchmark con-

tains a Trojan that replaces the key, 

after which time only the attacker can 

decrypt the ciphertext. For this test we 

wrote an information-0ow property to 

check the violation of the key’s integ-

rity. To check the integrity property 

against key replacement, we marked 

the key LOW and all the remaining 

inputs HIGH.

By formally proving that the key reg-

ister is always LOW, we could ensure that 

no key replacement is possible. How-

ever, we would need knowledge about 

the core’s implementation details, such 

as where the key registers are, which we 

did not have. Instead, we marked dis-

crete key bits as HIGH and the remain-

ing inputs as LOW. By formally proving 

that the ciphertext is always HIGH, we 

could also guarantee that the key could 

never be replaced because each single 

key bit should always 0ow to all digits of 

the ciphertext.

We again used Questa Formal to 

prove that the ciphertext security label 

is always HIGH when it is valid. For-

mal proof results showed that the label 

could be LOW, indicating that the key 

had been replaced. The veri.cation 

results also showed that the RSA core’s 

ciphertext-ready output can be HIGH. 

After examining the design more closely, 

we deduced that the key leaked to the 

ready output through a timing channel. 

Although this is not a malicious Trojan, 

the results revealed a security 0aw that 

designers would have to address.

T
o our knowledge, our method is 

the .rst use of GLIFT for hard-

ware Trojan detection and the 

.rst to provide a formal mechanism for 

detecting hardware Trojans that cause 

violations in information-0ow secu-

rity properties as well as a means of 

capturing Trojan behavior. Relative to 

other Trojan detection approaches, our 

method is much easier to use because 

there is no requirement to rewrite the 

design in a formal language. 

The results in Table 3 show that our 

method e)ciently detected Trojans 

that can cause undesirable information 

0ow either through a maliciously mod-

i.ed datapath or covert side channel. It 

cannot capture all types of Trojans and 

accounts only for logical information 

0ows, not those that leak information 

through physical side channels. How-

ever, our method holds a unique place in 

the spectrum of methods to detect hard-

ware Trojans—namely, the identi.ca-

tion of Trojans that can cause violation 

of information-0ow security properties 

related to con.dentiality and integrity.

We have already identi.ed areas 

for future work. The security design 

process would bene.t from a formal 

language that the security assessment 

team can use to specify important 

security properties and then map them 

to information-0ow properties. Also, 

many designs have security properties 

in common. A library of shared prop-

erties could be easily leveraged across 

designs. Finally, although Trojans rep-

resent a signi.cant cause of concern 

for hardware security, unintentional 

design 0aws can be equally harmful. 

Broadening design techniques beyond 

Trojan detection to the identi.cation 

and mitigation of nonmalicious design 

0aws is an important research area.
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FIGURE 5. GLIFT logic simulation results. The simulation’s goal was to reveal how the key leaks to the Antena output. The key flows 

to the Antena signal, when Antena_t is HIGH, denoted by the black rectangles within the boxes with dashed red lines, which denote the 

times when Antena_t is HIGH. To have no leakage, Antena_t must always be LOW.
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