
44 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

COVER FEATURE SUPPLY-CHAIN SECURITY FOR CYBERINFRASTRUCTURECOVER FEATURE SUPPLY-CHAIN SECURITY FOR CYBERINFRASTRUCTURE

Wei Hu, University of California, San Diego

Baolei Mao, Northwestern Polytechnical University

Jason Oberg, Tortuga Logic

Ryan Kastner, University of California, San Diego

A method based on information-flow tracking uses gate-

level logic to detect hardware Trojans that violate the

confidentiality and integrity properties of third-party IP

cores. Experiments on trust-HUB benchmarks show that the

method reveals Trojan behavior and unintentional design

vulnerabilities that functional testing cannot pinpoint.

W
ith globalization of the hardware design

and supply chain, hardware trustworthi-

ness has become a major concern. Hard-

ware design can involve multiple interna-

tional teams with untrusted entities providing intellectual

property (IP) cores. The resulting hardware often has

unspeci.ed functionality, which can be a conduit for

information leaks or a backdoor that attackers can exploit.

These hidden functions can mask hardware Trojans,

lightweight components carefully designed to activate

only under rarely occurring conditions. Because they

lie dormant until some point, Trojans are extremely dif-

.cult to detect during hardware design. External ven-

dors might provide IP cores with built-in Trojans, and

even internal IP cores could have Trojans—for example,

inserted as a parting gift from a disgruntled employee.

Although Trojans are intentionally created to be mali-

cious, designers and tools can unintentionally introduce

design vulnerabilities that could do equal harm when

exploited. With modern hardware design becoming a

Detecting Hardware

Trojans with Gate-Level

Information-Flow Tracking

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

A U G U S T 2 0 1 6 45

massive integration of in-house and

external IP cores, it is easier for both

Trojans and 0aws to pass through

design undetected.

As the sidebar “Hardware Tro-

jan Detection Approaches” implies,

detecting Trojans in IP cores is

extremely di)cult. Although much

work has focused on detecting Tro-

jans in fabricated hardware, the ideal

strategy is to catch potential vulner-

abilities that could signal a Trojan

during the design phase, when they

are much easier to eliminate or miti-

gate. As a step toward that solution,

we developed a method that uses

information-0ow tracking (IFT) to

detect Trojans in gate-level design.

IFT has been widely deployed across

the system stack—from programming

languages and compilers to instruc-

tion-set architecture. It is an estab-

lished formal method that can be used

to prove important security proper-

ties, such as those related to con.-

dentiality and integrity. We chose to

use gate-level IFT (GLIFT) because, at

this level, IFT precisely measures and

controls all logical 0ows from Boolean

gates.1 GLIFT is also an established

method that has been used to craft

secure hardware architectures2 and

detect security violations from tim-

ing channels.3 In our method, GLIFT

formally veri.es that an information

0ow adheres to security properties

related to con.dentiality and integ-

rity. Counterexamples found during

formal veri.cation reveal harmful

information 0ows that point to design

0aws or malicious hardware Trojans

that cause the system to leak sensitive

information and violate data integ-

rity. The designer can then take the

appropriate action to correct the vul-

nerability that led to the violation. An

understanding of malicious Trojan

behaviors is useful in backtracking

analysis to identify the Trojan design.

Our method works directly on hard-

ware described in Verilog or the VHSIC

Hardware Description Language

(VHDL) and leverages o--the-shelf

electronic design automation (EDA)

tools for analysis. To assess its per-

formance and scalability, we ran it on

several trust-HUB benchmarks (www

.trust-hub.org), which are designed

for hardware Trojan classi.cation and

detection research. Results show that

our method can detect Trojans in sev-

eral trust-HUB benchmarks that cause

the violation of information-0ow secu-

rity properties.

THREAT MODEL
The threat model on which our method

is based rests on several assumptions:

› the third-party IP core might

contain Trojans that are

activated only under rare

conditions;

› the Trojans are carefully

designed and hard to activate

through purely functional

testing;

› when active, the Trojans leak

sensitive information (such

as the plaintext) to violate the

integrity of critical data, for

example, the secret key;

› when the Trojans are not

active, the IP cores run nor-

mally and produce correct

results; and

› the implementation details of

the Trojan’s trigger condition or

payload are not known.

Our analysis requires access to the

IP core’s code at the register-transfer

level (RTL) or to its gate-level netlist.

As Figure 1 shows,4 the targeted

Trojans are in the speci.cation and

design phases at the RTL or gate level.

The Trojans can be either always on or

triggered under speci.c conditions,

such as through a single input, input

sequence, or counter, and can cause

a violation of the critical data’s con.-

dentiality or integrity properties. We

assume that the attacker’s primary

Hardware Trojans

Insertion phase Abstraction level Activation mechanism Effects Location

Speci!cation

Design

Fabrication

Testing

Assembly and package

System level

Development environment

Register-transfer level

Gate level

Transistor level

Physical level

Always on

Triggered

Internally

Time-based

Physical condition–based

Externally

User input

Component output

Change functionality

Downgrade performance

Leak information

Deny service

Processor

Memory

I/O

Power supply

Clock grid

FIGURE 1. A taxonomy of hardware Trojans. Our method can detect Trojans at the register-transfer level and gate level inserted

during specification or design as well as Trojans that have red boldface subcategories in the activation mechanism, effects, and loca-

tion categories. (Source: R. Karri et al., “Trustworthy Hardware: Identifying and Classifying Hardware Trojans,” Computer, vol. 43,

no. 10, 2010, pp. 39–46.)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

46 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

 SUPPLY-CHAIN SECURITY FOR CYBERINFRASTRUCTURE

goal is to learn sensitive informa-

tion, so Trojans that cause a denial of

service or downgrade performance

are omitted. Leaks are assumed to be

through logical attacks, not through

power, electromagnetic, and other

side channels.

MODELING
CONFIDENTIALITY AND
INTEGRITY PROPERTIES
The con.dentiality property requires

that secret information never leak

to an unclassi.ed domain, while

the integrity property requires that

untrusted data never be written to a

trusted location. Hardware descrip-

tion languages (HDLs) are inadequate

for enforcing such security properties

because they specify only functional-

ity. In contrast, information-0ow ana-

lysis is able to model data movement.

Security requires knowing what

should be protected, so a .rst step in

modeling is to associate additional

sensitivity information with data

objects. In practice, these objects can

have security labels at multiple levels

according to sensitivity. For example,

in a military information system, data

can be labeled as unclassi.ed, con.-

dential, secret, or top secret.

The partial order between di-erent

security classi.cations can be de.ned

using a security lattice. Let L (•) denote

the function that returns the security

label of a variable, which can be for-

malized as

A ↝ B L(A) ⊑ L(B) . (1)

Equation 1 models con.dentiality

and integrity properties by specifying

allowed information 0ows; in this case,

information is allowed to 0ow from A

to B if and only if A’s security level is

lower than or equal to B’s. Under such

a notion, both the con.dentiality and

HARDWARE TROJAN DETECTION APPROACHES

Much work has been done on hardware Trojan

detection, with existing methods being

either invasive or noninvasive. Invasive meth-

ods insert test points in the design to increase

observability, or they use reverse-engineering

techniques to check for malicious design modifi-

cations in the physical layout. These methods are

relatively expensive because they require highly

specialized tools to access the chip’s physical lay-

out. In contrast, noninvasive methods do not need

to modify the design but rather look for clues that

reveal a Trojan’s existence, such as faulty output,

downgraded performance, and increased power

consumption. Some methods try to capture these

clues by functional testing; others reveal them

through circuit-parameter characterization and

the formal proof of properties related to informa-

tion flow.

FUNCTIONAL TESTING
Testing or verification methods to detect Trojans

identify suspicious signals in the circuit, typi-

cally those with an extremely low probability of

switching to another logical state. Some meth-

ods use IC test methods to increase the Trojan’s

transition probability. For example, one research

group used a procedure to insert a dummy scan

flip-flop to help generate circuit transitions and

reduce Trojan activation time.1 Another group

used functional testing to identify redundant

circuits with low transition probability.2

Although these methods work for some

Trojans, they might miss Trojans without a trigger

signal. In general, methods that use testing to

detect the existence of Trojans face many obsta-

cles; IC testing poses difficult problems regardless

of whether it considers logic that is intentionally

difficult to activate.

CIRCUIT-PARAMETER
CHARACTERIZATION
Several methods attempt to capture Trojan

behaviors using side-channel signal analysis, the

goal of which is to detect transient power and

spurious delays arising from the Trojan’s insertion

in the design. For example, one research group

proposed a current-integration methodology to

reveal Trojan activity and used localized current

analysis to identify the Trojan.3 Others used

circuit-parameter characterization to generate

fingerprints or watermarks for the hardware de-

sign and compared them with those of a Trojan-

free reference chip4 or a small trusted region of

the design. In the latter case, the trusted region

was derived from running a trusted simulation

model, measuring fabrication process parame-

ters, and applying advanced statistical analysis.5

Yet another group proposed a side-channel

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

http://www.qmags.com/clickthrough.asp?url=www.computer.org/computer&id=19949&adid=P46E1

A U G U S T 2 0 1 6 47

integrity properties can be modeled in

a uni.ed manner.

Our method uses a two-level secu-

rity lattice LOW ⊑ HIGH. In a con.-

dentiality analysis, sensitive data is

labeled HIGH and unclassi.ed data

is LOW, but in an integrity analysis,

critical data is labeled LOW and nor-

mal data is HIGH. For example, we

label the secret key as HIGH in a con-

.dentiality analysis but LOW in an

integrity analysis.

METHODOLOGY
Our method has three main parts:

GLIFT, detection of hardware Trojans,

and the derivation of security theo-

rems to formally prove properties.

GLIFT

GLIFT assigns a label (also known as a

taint bit) to each bit of hardware design

data. These assignments provide the

basis for a model that designers can

use to better understand how that

data propagates through the design.

Designers can then de.ne security

properties and use GLIFT to test or ver-

ify if the design adheres to them.

Suppose, for example, that the

goal is to understand where infor-

mation about the cryptographic key

could 0ow. GLIFT assigns the label

“con.dential” to bits of the key, and

the designer or test engineer can

then write a property that precludes

some part of the design from access-

ing those bits. The property might be,

“Untrusted memory location X should

never be able to ascertain any con.-

dential information.” This is the same

as saying that the untrusted memory

location can never be assigned a con-

.dential label.

Because it associates each data

bit with a security label, not a byte or

word-level label, GLIFT can precisely

account for information 0ow. In this

analysis method6 that uses multiple parameters

and leverages the relationship between dynamic

current and maximum operating frequency to

minimize the effect of process noise. Unfortu-

nately, the increasing variation in the hardware

manufacturing process and decreasing size of the

Trojan payload work against these techniques.

FORMAL PROOF OF PROPERTIES
Some methods detect Trojans by formally proving

security-related properties. A violation of a particu-

lar property indicates the existence of a Trojan. One

method detects Trojan in cryptography hardware

by formally proving security properties related to

information flow.7 Although it is a promising way

to detect Trojans in third-party IP cores, it requires

careful reasoning about where information can be

declassified to reveal the Trojan payload’s security

label. This task can be challenging for hardware

designers who lack security expertise.

In general, these methods require rewriting

the hardware design in a formal language, which

can increase design cost significantly, and most

methods do not provide clues that reveal Trojan be-

havior, so they are not suitable for finding Trojans in

the entire design. Our work addresses this problem

by leveraging a precise gate-level information-flow

model that can be described with a standard

hardware description language and verified with

off-the-shelf electronic design automation tools,

which minimizes additional design cost.

References

1. H. Salmani, M. Tehranipoor, and J. Plusquellic, “A Novel

Technique for Improving Hardware Trojan Detection and

Reducing Trojan Activation Time,” IEEE Trans. VLSI Systems,

vol. 20, no. 1, 2012, pp. 112–125.

2. J. Zhang et al., “Veritrust: Verification for Hardware Trust,”

Proc. ACM/IEEE 50th Design Automation Conf. (DAC 13),

2013, article no. 61; doi: 10.1145/2463209.2488808.

3. X. Wang et al., “Hardware Trojan Detection and Isolation

Using Current Integration and Localized Current Analysis,”

Proc. IEEE Int’l Symp. Defect and Fault Tolerance of VLSI

Systems (DFVS 09), 2008, pp. 87–95.

4. K. Hu et al., “High-Sensitivity Hardware Trojan Detection

Using Multimodal Characterization,” Proc. Design Automa-

tion Test in Europe Conf. (DATE 13), 2013, pp. 1271–1276.

5. Y. Liu, K. Huang, and Y. Makris, “Hardware Trojan

Detection through Golden Chip-Free Statistical Side-

Channel Fingerprinting,” Proc. ACM/IEEE 51st Design

Automation Conf. (DAC 14), 2014, article no. 155, doi:

10.1145/2593069.259314.

6. S. Narasimhan et al., “Hardware Trojan Detection by

Multiple-Parameter Side-Channel Analysis,” IEEE Trans.

Computers, vol. 62, no. 11, 2013, pp. 2183–2195.

7. Y. Jin and Y. Makris, “Proof Carrying-Based Information Flow

Tracking for Data Secrecy Protection and Hardware Trust,”

Proc. IEEE 30th VLSI Test Symp. (VTS 12), 2012, pp. 252–257.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

48 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

 SUPPLY-CHAIN SECURITY FOR CYBERINFRASTRUCTURE

case it knows that information 0ows

from bit A to bit B if and only if A’s

value in0uences B. Also, unlike other

IFT methods, GLIFT accounts for the

input data values when calculating the

output label. Other IFT methods mark

the output as HIGH if there is at least

one HIGH input regardless of the input

data values. With these characteris-

tics, GLIFT can determine the output’s

security label more precisely than other

IFT methods and thus more accurately

measure actual information 0ows.

To better understand GLIFT, con-

sider AND-2, a two-input AND gate

whose Boolean function can be

described as O = A • B. Let At, Bt, and Ot

denote the taints of A, B, and O, where

A, B {0, 1}, and At, Bt, Ot {LOW,

HIGH} under some encoding scheme

(for example, LOW = 0 and HIGH = 1)

where

LOW ⋅ HIGH = LOW and

LOW + HIGH = HIGH . (2)

Table 1 shows the label-propagation

policy of conservative IFT methods

and GLIFT for AND-2.

Conservative IFT methods typi-

cally set Ot to HIGH when either A or

B is labeled HIGH. This policy is safe,

in that it accounts for all possible

0ows of HIGH information, but it can

cause many false positives (nonexis-

tent 0ows) in information-0ow mea-

surement. To illustrate, let Secret be a

32-bit HIGH value. After performing

Public = Secret ⋅ 0x01 , (3)

conservative methods will mark the

entire Public as HIGH, indicating that

32 bits of information are 0owing from

Secret to Public.

However, GLIFT uses a more precise

label-propagation method for AND-2.

The output will be LOW (or HIGH) when

both inputs are LOW (or HIGH). When

there is only one LOW input and it is

(LOW, 0), the output will be dominated

by this input and will be LOW (the

other HIGH input does not 0ow to the

output). When the input is (LOW, 1),

the output will be determined by the

other HIGH input and thus will take a

HIGH label.

In the Equation 3 example, the con-

stant (LOW, 0) bits in the second oper-

and will dominate the corresponding

label bits of Public as LOW. Only the

constant (LOW, 1) bit allows the least

signi.cant bit of Secret to 0ow to the

output. Thus, there is only 1 bit of

information 0ow.

These examples show that GLIFT

considers both the security label and

the actual value in its propagation,

thus accounting for how an input

value can in0uence output and more

precisely measuring the actual infor-

mation 0ows.

Hardware Trojan detection

Figure 2 shows the process of Trojan

detection with our method.

Because both the gate-level netlist

and GLIFT library can be described

with a standard HDL, o--the-shelf

EDA tools can be used to verify or test

GLIFT logic. This feature contrasts

sharply with other hardware Trojan

detection methods, which require

the designer to construct a formal

hardware design model before speci-

fying and proving properties. GLIFT

TABLE 1. Label propagation policy of conservative information-flow

tracking (IFT) methods versus gate-level IFT (GLIFT) for AND-2.

Input labels Conservative IFT GLIFT

A B O A B O

Both LOW LOW LOW LOW (LOW, −)* (LOW, −) (LOW, −)

A is LOW

B is HIGH
LOW HIGH HIGH

(LOW, 0)

(LOW, 1)

(HIGH, −)

(HIGH, −)

(LOW, 0)

(HIGH, −)

A is HIGH

B is LOW
HIGH LOW HIGH

(HIGH, −)

(HIGH, −)

(LOW, 0)

(LOW, 1)

(LOW, 0)

(HIGH, −)

Both HIGH HIGH HIGH HIGH (HIGH, −) (HIGH, −) (HIGH, −)

*− : value can be either logical 0 or 1.

IP core
Gate-level

netlist

Logic
synthesis

GLIFT
logic

GLIFT logic
generation

Formal
veri!cation

Functional
testing

Trojan
behavior

Trojan
free

Fail

Pass Security
property

Counter
example

FIGURE 2. How our method detects hardware Trojans. The goal is to detect Trojans that

violate information-flow security properties. A logic synthesis tool compiles the IP core’s

design to a gate-level netlist and then gate-level information-flow tracking (GLIFT) logic

is automatically generated. Each gate is mapped to a GLIFT logic library, which can be

completed in linear time. The GLIFT logic is formally verified against a security property

that the designer has written. If it passes verification, there is no Trojan. If it does not, a

counterexample is generated, which is used to functionally test the GLIFT logic to derive

Trojan behavior.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

http://www.qmags.com/clickthrough.asp?url=www.computer.org/computer&id=19949&adid=P48E1

A U G U S T 2 0 1 6 49

automatically provides that formal

model, which makes security veri.ca-

tion much easier.

The designer writes security prop-

erties, which are translated into stan-

dard HDL assertion statements and

veri.cation constraints and input

along with the GLIFT logic to a stan-

dard hardware-veri.cation tool. If the

design satis.es all the properties, it is

free of Trojans that violate those prop-

erties. Otherwise, formal veri.cation

will fail and provide a counterexample

that causes the security violation. The

counterexample enables functional

testing on GLIFT logic, which deter-

mines the exact Trojan behavior. It is

then possible to identify Trojan behav-

ior across the design.

GLIFT is essential in broadening

the properties that formal tools can

check. Without GLIFT, formal tools

can check only functional properties

on netlists, such as the possibility that

signal X can take value Y. It is di)cult

to express security properties solely

for the functional design because val-

ues do not reveal how information

0ows. With GLIFT, data is associated

with additional security labels, which

enables reasoning about the design’s

security. GLIFT can precisely capture

when information-0ow security prop-

erties related to con.dentiality and

integrity are violated, such as whether

sensitive data is multiplexed to a pub-

licly observable output.

Deriving security theorems

Designers derive security theorems in

two steps.

The .rst step is classifying the sig-

nals in the hardware design into dif-

ferent security levels. For example,

they might use the classi.cation and

labeling in Table 2.

The next step is to use the labels to

specify allowable (or forbidden) infor-

mation 0ows. In this case, the designer

would write a property to enforce the

requirement that HIGH data should

never 0ow to LOW data. The proper-

ties mark the input signals and spec-

ify which signals must be checked

against their labels. As an example,

the .rst property to check for crypto-

graphic cores, is that the key always

0ows to the ciphertext. To derive a

security theorem for this property,

we mark the key as HIGH and all the

remaining inputs as LOW and check

that the ciphertext is always HIGH.

Figure 3a describes the security theo-

rem for this property.

Figure 3b describes a security theo-

rem for a case in which the key should

never be altered. The key is labeled

LOW and all remaining inputs are

HIGH because this property is related

to integrity. To ascertain if the prop-

erty holds, the designer checks that

the key register’s security label is

always LOW.

Other theorems to enforce security

properties can be similarly derived,

easily converted to assertion lan-

guage statements, and proved using

standard hardware-veri.cation tools.

Again, this ease of use contrasts

sharply with hardware Trojan detec-

tion methods that require each design

to be described in new semantics.

Our method has the dual advantage

of eliminating these semantic di-er-

ences and minimizing the burden on

designers to write descriptions.

TROJAN DETECTION
USING BENCHMARKS
Table 3 summarizes the trust-HUB

benchmarks we tested, showing the

time for GLIFT logic generation and

Trojan detection. From speci.ed test

and security constraints, we observed

the security labels of primary outputs

but did not manipulate the bench-

marks’ internal registers. For the

AES-T100, T1000, T1100, and T1200

benchmarks, our method success-

fully bypassed the trigger conditions

because the leakage points were XOR

gates, which always allow security

labels to propagate regardless of input

values. As the table shows, for the AES-

T400, AES-T1600, AES-T1700, RSA-

T100, and RSA-T200 benchmarks, our

method detected Trojans and identi.ed

leakage points in less than 10 minutes.

Two examples, the AES-T1700 and

RSA-T400 benchmarks, demonstrate

how our method can detect Trojans

and reveal potentially malicious

behaviors that functional testing and

veri.cation might fail to capture.

AES-T1700 benchmark

As shown in Figure 4, the AES-T1700

benchmark contains a Trojan that

leaks the key bits through a modulated

RF channel. The Trojan activates after

TABLE 2. Signal classification and labeling examples.

Confidentiality analysis Integrity analysis

Data type Example Label Data type Example Label

Secret Plaintext and key HIGH Critical Program counter LOW

Not secret
Clock, reset, and start

of encryption signal
LOW Noncritical

Input from open

network or keyboard
HIGH

set key_t HIGH

set DEFAULT_LABEL LOW

assert cipher_t HIGH

(a)

set key_t LOW

set DEFAULT_LABEL HIGH

assert key_reg_t LOW

(b)

FIGURE 3. Sample security theorems

for (a) a property that requires the key to

always flow to the ciphertext and (b) a

property that requires the key register to

never be overwritten.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

50 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

 SUPPLY-CHAIN SECURITY FOR CYBERINFRASTRUCTURE

(2129 – 1) successive encryption oper-

ations. Once activated, it loads the

secret key into a shift register, whose

least signi.cant bit is modulated to

leak through the RF channel. The

probability of activating such a Trojan

in functional testing is quite low.

Property checking. To check the con-

.dentiality property against key leak-

age, we marked the key as HIGH and all

the remaining inputs as LOW. We then

wrote an assertion statement that an

output can be HIGH so that we could

determine if the key 0ows to that out-

put. In an initial analysis, we identi.ed

that both outputs, the ciphertext and

Antena signal, can have HIGH labels.

The subsequent analysis focused on

the Antena output, as it is normal for

the key to 0ow to the ciphertext in a

cryptographic function. We then used

a Boolean satis.ability (SAT) solver to

prove that Antena_t (Antena’s label) is

always LOW. The proof failed, indicat-

ing that Antena_t could be HIGH and

thus that Antena output could leak

information about the key.

Next, we used Mentor Graphics’

Questa Formal to check if the inter-

nal registers in the model found by

the SAT solver could meet the required

conditions. (SAT tools typically per-

form only combinatorial checks.) We

focused on the SHIFTReg_t register

because it was the only register that

could carry HIGH information, accord-

ing to the SAT solver’s model. We used

Questa Formal to formally prove that

the SHIFTReg_t register was always

LOW. The proof failed when the con-

trol point signal Tj_Trig was asserted.

Logic simulation. To better under-

stand these .ndings, we simulated the

GLIFT logic under the control-point

condition to capture how the key leaks

to the Antena output. Figure 5 shows

the simulation results. GLIFT indicated

that the key can leak to the Antena out-

put. As the .gure shows, when Baud-

GenACC[25:23] = 010, Antena_t is 1,

which was equivalent to HIGH. There

are also transitions in the Antena sig-

nal when BaudGenACC[25:23] = 000.

However, these behaviors do not leak

any information about the key because

Antena_t is 0, indicating LOW.

The simulation results prove that

GLIFT precisely captures when and

where key leakage happened, which

functional testing and veri.cation

could not do. A designer could use

these results to identify the location

TABLE 3. Designs from trust-HUB tested using our GLIFT method.

Benchmarks Trojan behavior Trigger GLIFT logic-generation time (s) Proof time (s)

AES-T100 Leaks the key through code division multiple

access (CDMA) covert channel

Always on 2 408

AES-T1000 Leaks the key through CDMA covert channel Single input 2 409

AES-T1100 Leaks the key through CDMA covert channel Input sequence 2 406

AES-T1200 Leaks the key through CDMA covert channel Counter 2 410

AES-T400 Leaks the key through modulated RF signal Single input 2 404

AES-T1600 Leaks the key through modulated RF signal Input sequence 3 397

AES-T1700 Leaks the key through modulated RF signal Counter 3 411

RSA-T100 Leaks the key through ciphertext Single input < 1 319

RSA-T200 Replaces the key to disable encryption Single input < 1 336

RSA-T300 Leaks the key through ciphertext Counter < 1 991

RSA-T400 Replaces the key to leak plaintext Counter < 1 841

128-bit counter Baud generator

Trigger

Message

Ciphertext

Antena

Key
Normal 128-bit AES core

Key shift register Modulator

FIGURE 4. The AES-T1700 benchmark used to evaluate our method’s performance.

The benchmark contains a Trojan that leaks the key.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

http://www.qmags.com/clickthrough.asp?url=www.computer.org/computer&id=19949&adid=P50E1

A U G U S T 2 0 1 6 51

of Trojans throughout the design by

using formal proofs on the GLIFT logic

to backtrack from Antena to the key.

RSA-T400 benchmark

The BasicRSA-T400 benchmark con-

tains a Trojan that replaces the key,

after which time only the attacker can

decrypt the ciphertext. For this test we

wrote an information-0ow property to

check the violation of the key’s integ-

rity. To check the integrity property

against key replacement, we marked

the key LOW and all the remaining

inputs HIGH.

By formally proving that the key reg-

ister is always LOW, we could ensure that

no key replacement is possible. How-

ever, we would need knowledge about

the core’s implementation details, such

as where the key registers are, which we

did not have. Instead, we marked dis-

crete key bits as HIGH and the remain-

ing inputs as LOW. By formally proving

that the ciphertext is always HIGH, we

could also guarantee that the key could

never be replaced because each single

key bit should always 0ow to all digits of

the ciphertext.

We again used Questa Formal to

prove that the ciphertext security label

is always HIGH when it is valid. For-

mal proof results showed that the label

could be LOW, indicating that the key

had been replaced. The veri.cation

results also showed that the RSA core’s

ciphertext-ready output can be HIGH.

After examining the design more closely,

we deduced that the key leaked to the

ready output through a timing channel.

Although this is not a malicious Trojan,

the results revealed a security 0aw that

designers would have to address.

T
o our knowledge, our method is

the .rst use of GLIFT for hard-

ware Trojan detection and the

.rst to provide a formal mechanism for

detecting hardware Trojans that cause

violations in information-0ow secu-

rity properties as well as a means of

capturing Trojan behavior. Relative to

other Trojan detection approaches, our

method is much easier to use because

there is no requirement to rewrite the

design in a formal language.

The results in Table 3 show that our

method e)ciently detected Trojans

that can cause undesirable information

0ow either through a maliciously mod-

i.ed datapath or covert side channel. It

cannot capture all types of Trojans and

accounts only for logical information

0ows, not those that leak information

through physical side channels. How-

ever, our method holds a unique place in

the spectrum of methods to detect hard-

ware Trojans—namely, the identi.ca-

tion of Trojans that can cause violation

of information-0ow security properties

related to con.dentiality and integrity.

We have already identi.ed areas

for future work. The security design

process would bene.t from a formal

language that the security assessment

team can use to specify important

security properties and then map them

to information-0ow properties. Also,

many designs have security properties

in common. A library of shared prop-

erties could be easily leveraged across

designs. Finally, although Trojans rep-

resent a signi.cant cause of concern

for hardware security, unintentional

design 0aws can be equally harmful.

Broadening design techniques beyond

Trojan detection to the identi.cation

and mitigation of nonmalicious design

0aws is an important research area.

ACKNOWLEDGMENTS

This work was supported by the National

Science Foundation under grant NSF

CNS-1527631.

REFERENCES

1. M. Tiwari et al., “Complete Informa-

tion Flow Tracking from the Gates

Up,” Proc. ACM 14th Int’l Conf. Archi-

tectural Support for Programming

Languages and Operating Systems,

(ASPLOS 09), 2009, pp. 109–120.

2. M. Tiwari et al., “Crafting a Usable

Microkernel, Processor, and I/O

System with Strict and Provable

Information Flow Security,” Proc.

ACM 38th Int’l Symp. Computer

TJ_trig

key_t

key

SHIFTReg

SHIFTReg_t

BaudGenAACC25to23

Antena

Antena_t

FIGURE 5. GLIFT logic simulation results. The simulation’s goal was to reveal how the key leaks to the Antena output. The key flows

to the Antena signal, when Antena_t is HIGH, denoted by the black rectangles within the boxes with dashed red lines, which denote the

times when Antena_t is HIGH. To have no leakage, Antena_t must always be LOW.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

52 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

 SUPPLY-CHAIN SECURITY FOR CYBERINFRASTRUCTURE

Architecture (ISCA 11), 2011,

pp. 189–200.

3. J. Oberg et al., “Leveraging Gate-

Level Properties to Identify Hard-

ware Timing Channels,” IEEE Trans.

Computer-Aided Design of Integrated

Circuits and Systems, vol. 33, no. 9,

2014, pp. 1288–1301.

4. R. Karri et al., “Trustworthy Hard-

ware: Identifying and Classifying

Hardware Trojans,” Computer, vol. 43,

no. 10, 2010, pp. 39–46.

ABOUT THE AUTHORS

WEI HU is a postdoctoral scholar in the Department of Computer Science and

Engineering at the University of California, San Diego (UCSD). His research

interests include hardware security, logic synthesis, and formal methods. Hu

received a PhD in control science and engineering from Northwestern Poly-

technical University (NPU). Contact him at weh040@ucsd.edu.

BAOLEI MAO is a doctoral student in the School of Automation at NPU. His

research interests include hardware security and side-channel analysis. Mao

received an MS in control theory and engineering from NPU. Contact him at

maobaolei524@gmail.com.

JASON OBERG is a cofounder and chief executive o! cer of Tortuga Logic.

His research interests include enhancing the industry approach to addressing

security vulnerabilities during IC design. Oberg received a PhD in computer

science from UCSD. Contact him at jason@tortugalogic.com.

RYAN KASTNER is a professor in the Department of Computer Science and

Engineering at UCSD. His research interests include security, heterogeneous

computing, and embedded systems. Kastner received a PhD in computer sci-

ence from the University of California, Los Angeles. He is a member of IEEE.

Contact him at kastner@ucsd.edu.

IEEE TALE 2016
7-8 December 2016, Dusit Thani Bangkok Hotel, Bangkok, Thailand

Special Track on Computing Education

 “Innovations for Computing Education”

Co-Chairs SPONSORED BY

Prof. Sorel Reisman, California State University

Dr. Henry Chan, The Hong Kong Polytechnic University

Computing is undergoing big changes. Nowadays, computers are not only desktop machines but also lightweight notebooks

inside your bags and smart devices inside your pockets. With the popularity of cloud technologies, computing can now be

delivered as utility services. Furthermore, computing knowledge is changing so fast that what students learn today will likely

become obsolete tomorrow. There are also many emerging technologies and methodologies for computing education. In view

of such trends and developments, there is a need to study how computing education should change and innovate, from both

curricular and technology perspectives. Under the theme “Innovations for Computing Education”, this special track is spon-

sored by the IEEE Computer Society. It provides an interactive forum for educators and researchers to exchange views, ideas

and experiences on computing education. There will also be a panel on Open Education Resources (OER) for computing educa-

tion. You are invited to submit papers for this special track.

Important Dates: 20 Aug 2016 - Paper Submission Deadline

 20 Sept 2016 - Review Outcomes

 20 Oct 2016 - Final Paper Due

Further Information: Please visit http://www.tale-conference.org/tale2016/cfp_SSCE.php

Selected CS articles and

columns are also available for

free at http://ComputingNow

.computer.org.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

http://www.qmags.com/clickthrough.asp?url=http://www.tale-conference.org/tale2016/cfp_SSCE.php&id=19949&adid=P52A1
http://www.qmags.com/clickthrough.asp?url=http://ComputingNow.computer.org&id=19949&adid=P52E1
http://www.qmags.com/clickthrough.asp?url=www.computer.org/computer&id=19949&adid=P52E1
mailto:weh040@ucsd.edu
mailto:jason@tortugalogic.com
mailto:kastner@ucsd.edu

Drew Hintz

Vulnerability Analyst

Google

Bruce Snell

Cybersecurity and

Privacy Director,

Intel Security

Hui Wang

Sr. Director of Global

Risk Sciences

Paypal

Learn How You Can Develop Real-World Security

Solutions That Work For Your Organization

Rock Star Speakers
What Do You Need to Know About

Cybersecurity?

Lots!

The attackers have gotten more sophisticated.

No company or person is safe. At Rock Stars of

Cybersecurity, we’ve brought together the real

leaders in this critical technology – Google, Adobe,

PayPal, Intel Health and Life Sciences, and others

– to talk about the trends, cybersecurity programs

and advice on how you can develop real-world

security solutions that work for your organization –

and that don’t disrupt your operations.

www.computer.org/CyberSeattle

13 September 2016 | Seattle, Washington

OF CYBERSECURITY

THREATS AND

COUNTER MEASURES

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next PageComputerComputer

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

q
q
M

M
q

q
M

M
qM

Qmags
®THE WORLD’S NEWSSTAND

