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ABSTRACT
We propose a novel method for detecting changes in the
harmonic content of musical audio signals.

Our method uses a new model for Equal Tempered Pitch
Class Space. This model maps 12-bin chroma vectors to the
interior space of a 6-D polytope; pitch classes are mapped
onto the vertices of this polytope. Close harmonic relations
such as fifths and thirds appear as small Euclidian distances.

We calculate the Euclidian distance between analysis frames
n + 1 and n − 1 to develop a harmonic change measure for
frame n. A peak in the detection function denotes a transi-
tion from one harmonically stable region to another. Initial
experiments show that the algorithm can successfully detect
harmonic changes such as chord boundaries in polyphonic
audio recordings.

Categories and Subject Descriptors
J.0 [Computer Applications]: General

General Terms
Algorithms, Theory
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1. INTRODUCTION
In this paper we introduce a novel process for detect-

ing changes in the harmonic content of audio signals. The
Harmonic Change Detection Function (HCDF) combines a
new theoretical model for equal tempered pitch space with
a DSP front end to extract this information from digital au-
dio recordings. The pitch space model projects collections
of pitches as Tonal Centroid points in a 6-D space(section 2.

Event-driven feature analysis has been shown to give more
accurate musical feature extraction than more traditional
approaches based on frames of equal length [2]. The HCDF
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Figure 1: Flow Diagram of HCDF System.

has many potential applications in the segmentation of au-
dio signals, particularly as a preprocessing stage for further
harmonic recognition and classification algorithms. The pri-
mary motivation for this work is for use in chord recogni-
tion from audio. Used as a segmentation algorithm, this
approach provides a good foundation for solving the general
chord recognition problem of needing to know the positions
of chord boundaries in the audio data before being able to
successfully identify possible chord symbols as discussed in
[16].

The HCDF system comprises several distinct elements
(Figure 1). At the lowest level there is a Constant-Q spectral
analysis followed by a 12-semitone Chromagram decomposi-
tion. A harmonic Centroid transform is then applied to the
Chroma vectors which is then smoothed with a Gaussian
filter before the distance measure is calculated (sections 3.1
and 3.2).

The results of our preliminary experiments are very promis-
ing with an f-measure value for overall chord change detec-
tion of 64.9% (section 4).

2. MODELS FOR TONAL SPACE
The Harmonic Network or Tonnetz shown in figure 2 is a

well known planar representation of pitch relations first at-
tributed to Euler [7], later used extensively by 19th century
music theorists such as Riemann and Oettingen and in re-



Figure 2: The Harmonic Network or Tonnetz. Ar-
rows show the three circularities inherent in the net-
work if enharmonic and octave equivalence are as-
sumed.
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Figure 3: A projection showing how the Tonnetz
wraps around the surface of a Hypertorus with the
pitch classes following the spiral of fifths when en-
harmonic and octave equivalence are assumed.

cent years by Neo-Riemanninan Music Theorists [10, 7, 12].
Close harmonic relations are modelled by small distances on
the plane. Lines of fifths travel from left to right, lines of
major thirds travel from bottom left to top right and lines
of minor thirds travel from top left to bottom right.

In Just Intonation, the Tonnetz is an infinite plane [13].
If it is assumed that a particular note spelling on one row is
equivalent to the same note spelling on the next row (i.e. F!1
≡ F!2 etc. in fig. 2), the plane wraps up and forms a tube
with the line of fifths becoming a helix on its surface. In the
case where the helix is wrapped so that major third intervals
are directly above each other on the surface of the tube this
is Chew’s Spiral Array [5]. Chew’s model allows chords and
keys to be projected as objects in a 3-D space on the interior
of the tube and has been applied successfully to problems
such as key finding and pitch spelling from symbolic data
[6].

In the case of data derived from audio, it is very difficult to
directly extract the correct spelling of pitches. This is partly
due to the fact that high resolution frequency analysis would
be needed to resolve the small differences between them.
Equally, on a more practical level, it is because the majority
of keyboard instruments are now tuned to twelve-tone equal

temperament so the differences would not be present.
If enharmonic equivalence is assumed then instead of deal-

ing with a theoretically infinite number of pitch names, there
are now just the twelve different pitch classes (here we ref-
erence C as pitch class 0). In the Spiral Array model, this
has the effect of joining the two ends of the tube together
and the result is a hypertorus with the circle of fifths wrap-
ping around its surface three times (see Figure 3). A form
of this Hypertorus appears in many different areas of music
research [10, 7, 11, 14].

We now propose a 6-dimensional interior space contained
by the surface of the Hypertorus. This allows us to apply
the same technique that Chew uses to develop the Centre of
Effect in the Spiral Array to this equal tempered model for
pitch space.

Since it is not possible to directly visualise 6-D space, it is
helpful to imagine it as a projection onto the three circular-
ities in the equal tempered Tonnetz: the circle of fifths, the
circle of minor thirds and the circle of major thirds (figure 4).
Here, the six dimensions are viewed as three co-ordinate
pairs x1, y1, x2, y2 and x3, y3. A collection of pitches (i.e.
a chord) can be described as a single centroid point in the
space. Chords with a tonal centre (such as the A major
shown as point A in figure 4) can be clearly assigned to
a point in the circle of fifths. However, there are chords
without defined tonal centres (e.g. diminished 7th and aug-
mented chords). The centroid of each of these chords lies
in the centre of the circle of fifths. On the circle of minor
thirds, however, augmented chords can be unambiguously
identified, while the circle of major thirds can uniquely de-
pict diminished 7th chords.

3. ALGORITHM
The first stage of the system is the Constant-Q spectral

analysis. This is a logarithmic frequency analysis based
on the efficient algorithm described in [3]. We calculate
a 36 bins-per-octave transform across five octaves between
fmin = 110Hz (A2) and fmax = 3520Hz (A7) from a 11025Hz
mono audio signal. To obtain this resolution at the lowest
analysed frequencies requires a 743ms window length. This
is a long analysis window in terms of musical signals so to
improve time resolution we overlap analysis frames by 1

8 th
of a window length giving an effective frame length of 93ms.
A 12-bin tuned Chromagram is then calculated from the
Constant-Q spectra using the method described in [9] giv-
ing a 12-dimensional chroma vector c for every frame.

3.1 Tonal Centroid Calculation
The six dimensional tonal centroid vector, ζ, for time

frame n is given by the multiplication of the chroma vector,
c, and a transformation matrix Φ. Dividing by the L1 norm
of c prevents numerical instability and ensures that the tonal
centroid always lies within the 6-D polytope (equation 1).

ζn(d) =
1

||cn||1

11X

l=0

Φ(d, l)cn(l)
0 ≤ d ≤ 5
0 ≤ l ≤ 11

(1)

where l is the chroma vector pitch class index and d de-
notes which of the six dimensions of ζn is being evaluated.
The transformation matrix Φ represents the basis of the 6-D
space described in section 2 and is given as:

Φ = [φ0, φ1 . . . φ11] (2)



Figure 4: Visualising the the 6-D Tonal Space as three circles. Circles left to right: Fifths, Minor Thirds and
Major Thirds. The Tonal Centroid for chord A Major (pitch classes 9,1 and 4) is shown at point A

Figure 5: Harmonic Change Detection.
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2
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The values r1, r2 and r3 are the radii of the three circles
in Figure 4. To ensure that the distances between pitch
classes in the 6-D space correspond to our perception of
harmonic relations between pitches (i.e. that the fifth is the
closest relation followed by the major third then the minor
third and so on) we set the r1, r2 and r3 to 1, 1 and 0.5
respectively. These values have been derived using the same
approach that Chew uses to define the ratio of height to
diameter for the Spiral Array [5].

3.2 Harmonic Change Detection Function
To reduce the effects of transient frames, the sequence of

tonal centroid vectors is convolved with a Gaussian with σ
value of 8 in a row-by-row fashion (i.e., the individual di-
mensions are smoothed over time). We define the HCDF,
ξ, as the overall rate of change of the smoothed tonal cen-
troid signal. ξn is the euclidian distance between the tonal
centroid vectors ζn−1 and ζn+1 (equation 4). Peaks in this
signal indicate transitions between regions that are harmon-
ically stable (see figure 5); an approach inspired by Chew’s
key modulation finding algorithm described in [6].

ξn =

vuut
5X

d=0

ˆ
ζn+1(d) − ζn−1(d)

˜2
(4)

4. RESULTS
The HCDF was implemented in Matlab for experiments

and also in C++ as a visualisation plugin for Sonic Visu-
aliser [4]. To test how the HCDF performed as a chord
segmentation algorithm we analysed a set of sixteen Beat-
les songs (two from each of the first eight albums picked)
for which we have chord transcription files. We apply peak
picking to the HCDF in order to identify harmonic transi-
tion times and these are compared against the times of chord
changes in the transcriptions.

The results of this experiment are shown in Table 1. We
also give results for a harmonic onset detection algorithm
by Hainsworth and Macleod [8] for comparison. We defined
a hit as a match within ±3 frames (278ms). The three per-
formance measures used here are Precision (P ), the ratio of
Hits to Detected Changes and Recall (R), the ratio of hits to
transcribed changes and the f-measure (F ) which combines
the two (see equation 5) [1].

F =
2RP

R + P
(5)

The f-measure scores show the HCDF to have the better
overall performance of the two algorithms for chord bound-
ary detection with a score of 64.9% compared to 45.8% for
the Hainsworth algorithm. The Recall scores for both algo-
rithms are fairly high with an average of 88% for Hainsworth’s
approach and 84% for the HCDF. However, the Precision
scores for the two algorithms were much lower with av-
erages of 31% for the Hainsworth algorithm and 53% for
the HCDF. The significantly better Precision scores for the
HCDF suggest that the new algorithm is better at discrim-
inating important harmonic changes in the signal. This can
be seen from the number of detection function peaks for
each algorithm where the Hainsworth algorithm has an av-
erage of almost twice as many detections for each song as the
HCDF. The low Precision scores for both algorithms can be
explained by the fact that the transcription files only label
chord changes. Both the detection functions here, however,
pick up not only chord changes but also changes in harmonic
content caused by strong melody or bass lines that include
non-chord tones. Because of this a high number of false
positives is to be expected for this experiment. Most misses
in the HCDF are caused by transient signals introducing
false peaks that mask the smaller peaks associated with the



Table 1: Experimental results for HCDF peaks compared with hand labelled chord changes for 16 Beatles
Songs (Songs arranged in chronological order of release date).

Song Title TC Mn Mp Mr Mf Hn Hp Hr Hf
Please Please Me 78 267 27% 92% 41% 128 53% 87% 65.9%
Do You Want To Know A Secret 113 214 51% 97% 66.9% 126 72% 80% 75.8%
All My Loving 74 230 26% 81% 39.4% 129 50% 86% 63.2%
Till There Was You 93 265 33% 88% 48% 142 59% 90% 71.3%
A Hard Day’s Night 101 343 28% 94% 43.1% 158 45% 70% 54.8%
If I Fell 81 237 32% 95% 47.8% 133 53% 87% 65.8%
Eight Days A Week 101 316 25% 80% 38% 169 49% 82% 61.3%
Every Little Thing 96 247 34% 84% 48.4% 133 49% 67% 56.6%
Help! 59 269 20% 84% 32.3% 152 29% 74% 41.7%
Yesterday 97 186 47% 83% 60% 132 64% 86% 73.4%
Drive My Car 84 328 24% 94% 38.2% 148 49% 86% 62.4%
Michelle 94 272 31% 90% 46.1% 160 53% 90% 66.7%
Eleanor Rigby 54 234 22% 96% 35.8% 128 34% 81% 47.9%
Here There And Everywhere 98 240 32% 73% 44.5% 127 65% 83% 72.9%
Lucy In The Sky With Diamonds 120 411 28% 97% 43.5% 213 50% 88% 63.8%
Being For The Benefit Of Mr Kite 113 255 38% 80% 51.5% 160 68% 95% 79.5%
Average over sixteen songs 91 270 31% 88% 45.8% 146 53% 84% 64.9%

Key to abbreviations
M Denotes result for Hainsworth & Macleod’s algorithm p Precision
H Denotes result for HCDF algorithm r Recall
TC Number of hand transcribed chord changes f f-measure
n Number of detection function peaks

desired harmonic changes.
The songs that the HCDF algorithm performed best on

were ones with fast harmonic rhythm such as For The Bene-
fit Of Mr Kite!. The fast chord changes reduce the number of
false positives and a strong organ part outlining the chords
makes boundary detection easier. In contrast, songs such as
Every Little Thing and Help! with slow harmonic rhythm
and strong bass and melody lines that produce false chord
boundary detections score less highly.

5. CONCLUSIONS AND FURTHER WORK
We have presented a novel feature detection function for

audio data. A new model for equal tempered tonal space
has been introduced on which the algorithm is based and
the results of our preliminary experiments are encouraging.
The tests show that the algorithm can successfully detect
chord changes. Other changes in harmonic content such
as strong melody or bass line movement will also be de-
tected. Applying adaptive thresholding may improve the
detection of more important harmonic changes. Strong tran-
sient signals can cause true peaks to be masked. Applying a
Transient/Steady-State separation to the audio may rectify
this problem.

The HCDF has many potential applications in the seg-
mentation of audio signals. It will be particularly useful as
a preprocessing stage for many chord recognition and har-
monic classification algorithms, especially those based on
Hidden Markov Model techniques such as [2] and [15].
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