
Chapter 20 

D E T E C T I N G H I D D E N DATA IN 
E X T 2 / E X T 3 FILE SYSTEMS 

S. Piper, M. Davis, G. Manes and S. Shenoi 

Abstract The use of digital forensic tools by law enforcement agencies has made 

it difficult for malicious individuals to hide potentially incriminating 

evidence. To combat this situation, the hacker community has devel­

oped anti-forensic tools that remove or hide electronic evidence for the 

specific purpose of undermining forensic investigations. This paper ex­

amines the latest techniques for hiding data in the popular Ext2 and 

Ext3 file systems. It also describes techniques for detecting hidden data 

in the reserved portions of these file systems. 

Keywords: Anti-forensics, data hiding, file systems, Ext2/Ext3 

1. Introduction 

Digital forensics focuses on the identification, preservation, discov­

ery and retrieval of electronic evidence [9]. The use of state-of-the-art 

forensic tools by law enforcement agencies has made it increasingly diffi­

cult for malicious individuals to hide potentially incriminating evidence. 

To combat this situation, the hacker community has experimented with 

anti-forensic techniques and tools [11]. Anti-forensics is defined as "the 

removal, or hiding, of evidence in an attempt to mitigate the effective­

ness of a forensic investigation" [6]. Based on the number of anti-forensic 

tools available on the Internet [5], it is clear that anti-forensic techniques 

are being used by malicious individuals who wish to evade detection. 

Recently, an individual known as the grugq unveiled the Data Mule 

FS software that conceals data within metadata structures of the Ext2 

and Ext3 file systems [7]. Data Mule FS is specifically designed to hide 

data from forensic tools and file system checking software. 



246 ADVANCES IN DIGITAL FORENSICS 

Partition Group 

fl 

Superbfock 

Group Descriptors 

Block Bilmap 

Inode Bilmap 

Inode Table 

-DalaBfodcs 

Figure 1. Ext2/Ext3 file system structure. 

This paper examines the latest techniques for hiding data in the pop­

ular Ext2 and Ext3 file systems. It also describes techniques, including 

a utility named rf inder, which ensure that data hidden by anti-forensic 

programs such as Data Mule FS can be identified and retrieved by foren­

sic investigators. 

2. Ext2/Ext3 File Systems 

A file system specifies how files, file metadata and other information 

are stored [4]. It allows the operating system to efficiently determine the 

locations of free space where new files can be stored. Also, it enables 

the operating system to quickly access and delete files. 

Ext2 is the default file system [3, 15] for several Linux distributions 

[1]. It was created in 1993 to address Umitations in earlier Linux file 

systems, such as Minix, which restricted file names to 14 characters and 

overall file system size to 64MB [3]. 

Ext2 has been upgraded to Ext3, which adds journaUng, i.e., a means 

for recording hard drive accesses to minimize error-checking in the event 

of unexpected shutdowns [8, 13, 14]. Since Ext2 and Ext3 have the same 

structure, forensic techniques, anti-forensic techniques, and techniques 

for countering anti-forensic techniques are the same for both file systems. 

Figure 1 shows the general layout of an Ext2/Ext3 file system, which 

comprises structures that are themselves segmented into smaller struc­

tures. The partitions are split into 8MB groups. Each group is divided 

into 1KB, 2KB or 4KB blocks, with the first few blocks containing meta­

data about the partition, group, and files within the group. The remain­

ing blocks contain file data. 



Piper, et al. 247 

Block Bitmap (binary dump) 
11111111 

00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 

11111111 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 

11111111 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 

11111111 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000001 

11111111 
11111111 
11111111 

11111111 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 
11111111 

11100000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 
11111111 

00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 
11111111 

00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

11111111 
11111111 
11111111 
11111111 

11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 

Inode Table (hex dump) 
Inode 0 (Bad Blocks 
00001400 00 00 00 
00001410 
00001420 
00001430 
00001440 
00001450 
00001460 
00001470 

6c 2c 17 
00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 

Inode 1 (Root Inode) 
00001480 ed 41 00 
00001490 
000014a0 
000014b0 
000014c0 
000014e0 
000014d0 
000014f0 

08 2e 17 
00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 
00 00 00 

Inode) 
00 00 00 00 00 
40 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 

00 00 04 00 00 
40 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 

6c 2c 17 40 6c 2c 17 40 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 

09 2e 17 40 
00 00 03 00 
Ic 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 

08 2e 17 40 
02 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 
00 00 00 00 

1 , . @ . 

. 1 , . @ 1 , . @ 

Figure 2. Block bitmap and inode blocks for a floppy disk. 

The first block of the first group in a partition is called the "su-

perblock." The superblock, which contains metadata about the par­

tition, is essential to the operation of the file system, and its data is 

duplicated in superblocks in other groups for redundancy. Following the 

superblock are group descriptors that contain metadata about the cur­

rent group and other groups in the partition (Figure 1). Specifically, 

group descriptors contain data about the number of free blocks in a 

group, and the locations of the block bitmap, inode bitmap and inode 

table. 

Figure 2 presents a block bitmap for a floppy disk. The block bitmap 

indicates which blocks in the group are allocated, i.e., where file data are 

actually stored. Each block has a single bit in the bitmap, which is set 



248 ADVANCES IN DIGITAL FORENSICS 

00007000 02 
00007010 Oc 
00007020 6c 
00007030 14 
00007040 Od 
00007050 78 
00007060 64 
00007070 00 

00 00 
00 02 
6f 73 
00 09 
00 00 
74 00 
2e 74 
00 00 

00 Oc 00 01 02 
02 2e 2e 00 00 
74 2b 66 6f 75 
01 66 69 72 73 
00 14 00 Oa 01 
00 Oe 00 00 00 
78 74 00 00 00 
00 00 00 00 00 

2e 00 
Ob 00 
6e 64 
74 2e 
73 65 
ac 03 
00 00 
00 00 

00 00 
00 00 
00 00 
74 78 
63 6f 
09 01 
00 00 
00 00 

02 00 
14 00 
Oc 00 
74 00 
6e 64 
74 68 
00 00 
00 00 

00 00 
Oa 02 
00 00 
00 00 
2e 74 
69 72 
00 00 
00 00 

Figure 3. Contents of a directory listing data block. 

to one if the block is allocated and zero if it is not. Note that the bits at 

the end of the bitmap in Figure 2 are set to one. This is because these 

locations do not exist on a floppy disk; setting the corresponding bits 

to one (i.e., marking them as allocated) prevents the operating system 

from writing data to these blocks. 

The inode is a smaller unit than a block that contains metadata about 

a particular file. Figure 2 shows a hex dump of the first two inodes of a 

file system. Each inode has a size of 128 bytes, and contains data about 

the file creation time, file size, and location of file data. 

Data blocks make up the majority of the blocks in each group (typ­

ically 97%) and contain the data portions of files and directory listings 

[10]. Figure 3 shows the contents of a root directory. The directory list­

ing stores the names of files/directories (., . ., lost+f ound, f i r s t . txt , 

second.txt, th ird . txt ) in the directory. Also, the directory listing 

stores data about the inodes corresponding to the files, and the types of 

the files (i.e., file or directory). 

3. Data Hiding Techniques 

Designed for fiexibility, file system components incorporate reserved 

locations to store additional metadata for future upgrades to the file sys­

tem. Currently, applications do not read or write to reserved locations, 

and data written to these locations neither overwrites any useful data 

nor affects system operation. Therefore, the reserved locations are ideal 

sites for hiding data. 

Figure 4 shows the source code for a group descriptor [2]. A total of 

14 bytes in the group descriptor can be used to hide data: 2 bytes for the 

pad (bg_pad) and 12 bytes for the reserved variable (bg_reserved[3] is 

an array of three 4-byte words). This may not appear to be very much 

space; however, such reserved locations exist throughout the file system. 

A large file can be hidden (e.g., by Data Mule FS) by dividing it into 

smaller portions that are inserted in each of the reserved locations. 



Piper, et al. 249 

struct 

{ 

h 

ext2_group_desc 

_-u32 

-._u32 

__u32 

__ul6 

__ul6 

__ul6 

__ul6 

-_u32 

bg_block_bitmap; 

bg_inode_bitmap; 

bg_inode_table; 

bg_free_blocks_count; 

bg_free_inodes_count; 

bg_used_dirs_count; 

bg.pad; 

bg_reserved[3]; 

/* 
/* 
/* 
/* 
/* 
/* 

Blocks bitmap block */ 

Inodes bitmap block */ 

Inodes table block */ 

Free blocks count */ 

Free inodes count */ 

Directories count */ 

Figure 4- Source code for the group descriptor. 

Reserved locations may be discerned by reviewing the kernel source 

code located in . / include/ l inux/ext2_fs .h [2] or the source code for 

e2f sprogs, the project that maintains and updates the Ext2 file system 

[12]._ . . . 

Hiding data within a file system does not require the modification or 

addition of files. On the other hand, the use of encryption or steganog-

raphy to hide data is detectable by MD5 hashes and other schemes for 

identifying file alterations. Therefore, data concealed within file system 

structures is likely to go undetected. 

We experimented with the ability of digital forensic tools to find data 

concealed within file system structures. Data was written to various 

reserved locations, and the images of the file systems were analyzed using 

three popular forensic tools: EnCase v4.15, FTK vl.42 build 03.12.05, 

and iLook v7.0.35. The file system checking tool, e2f sck, which is 

standard on Linux, was used to test if the file systems behaved strangely 

or reported errors when data was hidden in their reserved locations. The 

tool was run with the -f argument to force checking. This bypassed 

any shortcuts that e2f sck might take when file systems are fiagged as 

healthy. 

In general, neither e2f sck nor any of the digital forensic tools pro­

duced specific alerts when data was hidden in reserved locations. These 

tools assume that the reserved locations are only used for file system 

data and that no other data are stored within their structures. How­

ever, as we show in Section 4, these tools can be used to locate hidden 

data, but one must know where to look. 

Data may be hidden in several reserved locations within a file sys­

tem. Procedures for hiding data in four of these reserved locations are 

described below. 



250 ADVANCES IN DIGITAL FORENSICS 

Hiding Data in the First 1KB of a Partition 

Ext2 does not use the first kilobyte of each partition because it assumes 

that this space might be used for a boot loader. This space is not used 

by the file systems on fioppy disks and many hard-drive partitions. 

Procedure: 

1 Create a file named secret_data.txt with size less than 1KB. 

2 Insert a floppy disk into the computer. 

3 Execute the command: # mke2fs -0 none /dev/fdO to format the disk as 

Ext2 with no extra features. 

4 Execute the command: # dd if=secret_data.txt of=/dev/fdO to hide the 

data. 

Alerts: None by e2f sck, EnCase, FTK and iLook. 

Hiding Data in Reserved Inodes 

Ext2 does not use inodes 7-10, opening up 512 bytes for hiding data. 

On an Ext2-formatted floppy disk, hidden data may start at byte 5888. 

The inode blocks start at 0x1400 and the first 6 inodes take up 6*128 

^ 0x300 bytes, so 0x1400 + 0x300 = 0x1700 = 5888. Note that Ext3 

uses inodes 7 and 8, providing 256 bytes for hidden data starting at byte 

6144. 

Procedure: 

1 Create a file named secret_data.txt with size less than 512 bytes. 

2 Insert a floppy disk into the computer. 

3 Execute the command: # inke2f s -0 none /dev/fdO to format the disk as 

Ext2 with no extra features. 

4 Execute the command: # dd if=secret_data.txt of=/dev/fdO seek=5888 

to hide the data. 

Alerts: "Bad mode" error reported by e2f sck. None by EnCase, FTK and iLook. 

Hiding Data in Redundant Superblocks 
Superblocks are repeated in groups on a disk. Depending on the spe­
cific Ext2/Ext3 implementation and distribution, there is a superblock 
in every group or a superblock in some groups (when the "sporadic su­
perblock" flag is set). It is possible to hide IK to 4K of data in each 
redundant superblock. Note that a floppy disk has only one superblock 
(i.e., it has no redundant superblocks); therefore, data cannot be hidden 
in a floppy disk using this procedure. 

Procedure: 

1 Create a file named secret_data.txt with size between IK to 4K (depending 

on the file system block size). 

2 Execute the command: # mke2f s -0 none /dev/Zid to format a partition of 

hard drive hd (e.g., hdal or hdbl). The option -0 none ensures that the 

sporadic superblock flag is not set. 



Piper, et al. 251 

3 Locate a redundant superblock by comparing blocks to a known superblock, 

such as the first superblock located at offset 0x400. The redundant superblocks 

will also have signature values of 0x53ef offset by 0x38 bytes from the beginning 

of the block. 

4 Execute the command: # dd i f=secre t_da ta . tx t of-/de^/hd seek=/oc to 

hide the data. Note that loc is the starting byte of the redundant superblock. 

Aler t s : None by e2f sck, EnCase, FTK and iLook. 

Hiding Data in Reserved Portions of Superblocks 
Every superblock has at least 384 bytes reserved for updates to the file 
system specification. Since this group of bytes does not currently have 
a purpose, it can be used to hide data. Also, a superblock is supposed 
to fit in only IK of space, but it uses an entire block on the file system 
fup to 4K). Therefore, it is often possible to hide data in the extra 3K 
(max) of space. 

Procedure: 

1 Create a file named secre t_da ta . tx t with size less than 384 bytes. 

2 Insert a floppy disk into the computer. 

3 Execute the command: # mke2fs -0 none /dev/fdO to format the disk as 

Ext2 with no extra features. 

4 Execute the command: # dd i f=secre t_da ta . tx t of=/dev/fdO seek=1664 

to hide the data. 

Aler t s : None by e2f sck, EnCase, FTK and iLook. 

The versions of EnCase, FTK and iLook used in the experiments had 

the means to access and view the hidden data. However, none of the 

tools produced alerts that data was hidden in the reserved portions of 

the file systems. Forensic tools are designed to prevent investigators 

from having to examine data manually with a hex editor. As Figure 5 

demonstrates for the EnCase tool, an investigator must use the built-in 

hex editor of the tool to discover the hidden data. 

4. Data Detection Techniques 

This section describes how data hidden in the reserved portions of 

the Ext2/Ext3 file systems may be detected. First, the appHcation of 

digital forensic tools is discussed. Next, the use of our data detection 

utility (rf inder) is explained. Finally, the use of a file system checker 

is discussed. 

4.1 Digital Forensic Tools 

The digital forensic tools considered in this work (EnCase v4.15, FTK 

vl.42 build 03.12.05, and iLook v7.0.35) are not designed to discover hid­

den data in the reserved portions of the Ext2/Ext3 file systems. How-



252 ADVANCES IN DIGITAL FORENSICS 

Figure 5. EnCase view of data in a redundant superblock showing hidden data. 

ever, they can be used to identify hidden data if one knows where to 

look. 

Detecting Hidden Data in the First 1KB of a Partition 

Hidden data in the first 1KB of a partition can be found by looking 

under "Block Descriptors" for EnCase, "Boot Record" for FTK, and 

"Disk View" for iLook. The presence of non-zero values potentially 

indicates the existence of hidden data. 

Detecting Hidden Data in Reserved Inodes 

Hidden data in reserved inodes can be found by looking under "Inode 

Table" for EnCase, "Inode Table" for FTK, and "Disk View" for iLook. 

Detecting Hidden Data in Redundant Superblocks 

Hidden data in redundant superblocks can be found by looking under 

"Block Descriptors" for EnCase (see Figure 5), "Superblocks" for FTK, 

and "Disk View" for iLook. 



Piper, et al. 253 

Detecting Hidden Data in Reserved Portions of Superblocks 

Hidden data in the reserved portions of superblocks can be found by 

looking under "Block Descriptors" for EnCase, "Superblocks" for FTK, 

and "Disk View" for iLook. 

4.2 Data Detection Utility 

It is possible to capitalize on the normal operation of a file system to 

discover hidden data. When a partition is formatted as Ext2 or Ext3, 

many of the reserved locations are zero wiped. This means that non­

zero values that appear in the reserved locations are likely to be hidden 

data. We have created the rf inder utility that automatically searches 

through the reserved locations of Ext2/Ext3 file systems for non-zero 

values. If any non-zero values are found, rf inder displays a hex dump 

of the corresponding data. 

Figure 6 shows the output obtained by running the rf inder utility 

on a 1GB partition. The partition has no hidden data in it, but if it 

did, a hex dump of the data would have been displayed. The hex dump 

of the first redundant superblock is displayed by rf inder because this 

superblock is different from the original superblock. This is common 

because only the first superblock is updated, for example, when the 

partition was last mounted. The last fine of rf inder's output advises 

the user to run the file system checker, f sck, on the partition to continue 

the search for hidden data. 

4.3 File System Checkers 

When the f sck file system checker is run on an Ext2/Ext3 partition, 

a utility called e2f sck is invoked to specifically check the Ext2/Ext3 

file system. This utility can help discover whether or not other methods 

have been used to hide data. 

The command: e2f sck -f <image_f i l e > forces e2f sck to perform 

all of its checking. The image is modified slightly when e2f sck attempts 

to repair the file system. Therefore, a copy of the image must be made 

before executing the command. The modifications made by e2f sck can 

then be resolved using the dif f command to compare the original and 

modified images. Note that e2f sck will fiag everything that may be 

wrong with the file system, and not just hidden data. 

Although e2f sck was originally created to locate faults in file systems, 

it is very effective for finding hidden data. For example, if certain blocks 

are marked as being in use even when no file uses them, e2f sck will 

identify and remedy this situation by de-allocating the blocks. This does 

not necessarily imply that data is hidden there. However, allocating and 



254 ADVANCES IN DIGITAL FORENSICS 

—rfinder v0.92.2~ Author: Scott Piper 

Checking /dev/hdbl... 
Found aoi Ext2FS disk with a 4KB block size aind 12 groups on the disk. 

Checking the first IK... 
Nothing found (all zeroes) 

Checking the superblock s_paddingl var... 
Nothing found (all zeroes) 

Checking the reserved portions of the first superblock (sometimes contains 

data, and will raise a false positive)... 
Nothing found (all zeroes) 

Checking the reserved inodes... 
Nothing found (all zeroes) 

Checking reserved portions of the inodes... 
Nothing found (all zeroes) 

Checking redundant superblock in group: 1 
••This block is different the previous++ (this 

block though, so this is normal) 
0x8000000: 20 07 03 00 60 OD 06 00 78 4D 00 00 

15 07 03 00 00 00 00 00 02 00 00 00 
00 80 00 00 00 80 00 00 AO 3B 00 00 
9D IC FO 41 00 00 27 00 53 EF 00 00 
9D IC FO 41 00 4E ED 00 00 00 00 00 
00 00 00 00 OB 00 00 00 80 00 01 00 
02 00 00 00 01 00 00 00 96 9E 7C 2F 
BF BA OF 8D 9A 35 D6 Dl 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 

is the first redundant super 

0x8000010: 
0x8000020: 
0x8000030: 
0x8000040: 
0x8000050: 
0x8000060: 
0x8000070: 
0x8000080: 
0x8000090: 
0x80000E0: 
0x80000F0: 
0x8000100: 
0x8000110: 
0x8000120: 
0x8000FF0: 

FC F4 
02 00 
00 00 
01 00 
01 00 
00 00 
D9 EA 
00 00 
00 00 

05 00 
00 00 
00 00 
00 00 
00 00 
00 00 
4D A9 
00 00 
00 00 

00 00 00 00 00 00 00 00 00 00 00 00 
C5 AO 44 42 85 2E 9B 9F DC 61 C6 13 
00 00 00 00 00 00 00 00 9D IC FO 41 
00 00 00 00 00 00 00 00 00 00 00 00 

AB 8B C3 27 
02 00 00 00 
00 00 00 00 
00 00 00 00 

..'...xM 

.A..'.S. 

.A.N 

I/..M. 
...5 

.DB.. 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00] I . 

Checking reserved group descriptor space in group: 1 

Checking redundaoit superblock in group: 3 
Checking reserved group descriptor space in group: 3 
Checking redundamt superblock in group: 5 
Checking reserved group descriptor space in group: 5 
Checking redundant superblock in group: 7 
Checking reserved group descriptor space in group: 7 
Checking redundant superblock in group: 9 

(seune as previous) 

(same as previous) 

(same as previous) 

Checking reserved group descriptor space in group: 9 
(saune as previous) 

Program completed successfully. 
To continue looking for errors, run •fsck -f /dev/hdbl" 

Figure 6. Output of the rfinder utility for a 1GB partition. 



Piper, et aL 255 

writing data to unused blocks is a technique that may be used to hide 

data, and e2f sck can help identify this situation. 

5, Conclusions 

Data hiding techniques have advanced from hiding secret files in fold­

ers that begin with a period (e.g., . / .hidden) to secreting file fragments 

in obscure locations within file systems. Unlike other techniques, e.g., 

cryptography and steganography, hiding data within a file system does 

not involve the modification or creation of files, and is, therefore, not 

detectible by comparing hash values. Meanwhile, hacker tools like Data 

Mule FS are being used by maUcious individuals to hide data from foren­

sic tools and file system checking software. 

The data hiding methods described in this paper are intended to ex­

pose the digital forensics community to anti-forensic techniques. Several 

methods for detecting hidden data are proposed, along with the rf inder 

utility, for countering anti-forensic tools such as Data Mule FS. While 

the strategies for combating anti-forensic techniques are discussed in 

the context of the Ext2 and Ext3 file systems, the underlying ideas are 

appHcable to other file systems, including FAT and NTFS. 

References 

[1] D. Bovet and M. Cesati, Understanding the Linux Kernel^ O'Reilly, 

Sebastopol, California, 2002. 

[2] R. Card, Cross-referencing Linux (lxr.linux.no/source/include 

/linux/ext2_fs.h?v-2.6.10). 

[3] R. Card, T. Ts'o and S. Tweedie, Design and implementation of 

the Second Extended File System, Proceedings of the First Dutch 

International Symposium on Linux, 1994. 

[4] B. Carrier, File System Forensic Analysis, Addison-Wesley, Craw-

fordsville, Indiana, 2005. 

[5] A. Cuff, Anti-forensic tools. Computer Network Defence Ltd., 

Corsham, Wiltshire, United Kingdom (www.networkintrusion. 
co.uk/foranti.htm), 2004. 

[6] The grugq. Defeating forensic analysis on Unix, Phrack 59 (www. 

phrack.org/show.php?p=59&a=6), July 28, 2002. 

[7] The grugq, The art of defiling, presented at the 2004 Hack in the 

Box Conference (packetstormsecurity.nl/hitb04/hitb04-grugq.pdf), 

October 8, 2004. 

[8] M. Johnson, Red Hat's new journahng file system: Ext3 (www. 

redhat.com/support/wpapers/redhat/ext3/index.html), 2001. 

http://lxr.linux.no/source/include
http://www.networkintrusion
http://co.uk/foranti.htm
http://packetstormsecurity.nl/hitb04/hitb04-grugq.pdf
http://redhat.com/support/wpapers/redhat/ext3/index.html


256 ADVANCES IN DIGITAL FORENSICS 

[9] W. Kruse and J. Heiser, Computer Forensics: Incident Response 

Essentials^ Addison-Wesley, Boston, Massachusetts, 2002. 

[10] D. Phillips, A directory index for Ext2, Proceedings of the Fifth 

Annual Linux Showcase and Conference, 2001. 

[11] A. Saita, Antiforensics: The looming arms race, Information Secu­

rity Magazine, May 2003. 

[12] T. Ts'o, E2fsprogs: Ext2 file system utilities (e2fsprogs.source 

forge.net). 

[13] S. Tweedie, Journahng the Linux Ext2fs filesystem, presented at 

the Fourth Annual Linux Expo (jamesthornton.com/hotlist/linux-

filesystems/ext3-journal-design.pdf), 1998. 

[14] S. Tweedie, Ext3: Journaling filesystem (olstrans.sourceforge.net 

/release/OLS2000-ext3/OLS2000-ext3.html), July 20, 2000. 

[15] M. Wilcox, The Second Extended File System (mail.nl.hnux. 

org/kernel-doc/1999-03/msg00001.html), March 1, 1999. 

http://forge.net
http://jamesthornton.com/hotlist/linux-
http://olstrans.sourceforge.net

