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Abstract—The distribution of diversity can vary considerably from clade to clade. Attempts to understand these patterns
often employ state-dependent speciation and extinction models to determine whether the evolution of a particular novel
trait has increased speciation rates and/or decreased extinction rates. It is still unclear, however, whether these models are
uncovering important drivers of diversification, or whether they are simply pointing to more complex patterns involving
many unmeasured and co-distributed factors. Here we describe an extension to the popular state-dependent speciation and
extinction models that specifically accounts for the presence of unmeasured factors that could impact diversification rates
estimated for the states of any observed trait, addressing at least one major criticism of BiSSE (Binary State Speciation and
Extinction) methods. Specifically, our model, which we refer to as HiSSE (Hidden State Speciation and Extinction), assumes
that related to each observed state in the model are “hidden” states that exhibit potentially distinct diversification dynamics
and transition rates than the observed states in isolation. We also demonstrate how our model can be used as character-
independent diversification models that allow for a complex diversification process that is independent of the evolution of a
character. Under rigorous simulation tests and when applied to empirical data, we find that HiSSE performs reasonably well,
and can at least detect net diversification rate differences between observed and hidden states and detect when diversification
rate differences do not correlate with the observed states. We discuss the remaining issues with state-dependent speciation
and extinction models in general, and the important ways in which HiSSE provides a more nuanced understanding of

trait-dependent diversification. [Comparative methods; diversification; extinction; hidden states; speciation.]

A key question in biology is, why are some groups
much more diverse than others? Discussions of such
questions are often focused on whether there is
something unique about exceptionally diverse lineages,
such as the presence of some novel trait, which has
increased their speciation rate and/or decreased their
extinction rate. The BiSSE model (Binary State Speciation
and Extinction; Maddison et al. 2007) was derived
specifically as a means of examining the effect that
the presence or absence of a single character could
have on diversification rates, while also accounting
for possible transitions between states. In theory, this
model could be used not only for identifying differences
in diversification, but also detecting differences in
transitions between character states, or even some
interplay of the two. In practice, however, it has mainly
been used to focus on diversification rate differences
(e.g., Goldberg et al. 2010; Wilson et al. 2011; Price et al.
2012; Beaulieu and Donoghue 2013; Weber and Agrawal
2014).

It is somewhat surprising, perhaps, that studies that
employ BiSSE often find that the prediction of a trait
leading to higher diversification rates is supported by
the data. In fact, all sorts of traits have been implicated
as potential drivers of diversity patterns, ranging from
the evolution of herbivory in mammals (Price et al.
2012), to the evolution of extra-floral nectaries in
flowering plants (Weber and Agrawal 2014), to even the
evolution of particular body plans in fungi (i.e., gasteroid
vs. nongasteroid forms; Wilson et al. 2011). Some
crucial caveats have recently been identified, however.

First, Maddison and FitzJohn (2014) raise a statistical
concern regarding the inability of these methods to
properly account for independence. They argue that
the inheritance and pseudoreplication of a single event
becomes problematic. Consider, for instance, that the
carpel, which encloses the seeds of angiosperms, has
evolved only once. Even if BiSSE uncovers a significant
correlation between the carpel and diversification, it is
unclear whether the carpel is an important driver of
the immense diversity of flowering plants, or whether
this diversity is simply coincidental. It was also pointed
out by Beaulieu and Donoghue (2013) that even with
many origins of a trait, it could be that only one clade
actually has a higher diversification rate associated with
the focal trait, which is strong enough to return higher
diversification rates for that trait as a whole. In their
case, it appeared that plants with an achene (a fruit
resembling a bare seed, as in “sunflower seeds”) had
a higher diversification rate, but upon subdividing the
tree it appeared that this was from the inclusion of one
clade in particular, Asterales, which contain the highly
diverse Asteraceae, the sunflower family. They argue that
it is far more likely that some combination of the achene
and another unmeasured, co-distributed trait within
Asterales led to a higher diversification rate for achenes
as a whole (on this point, also see Maddison et al. 2007).
Finally, Rabosky and Goldberg (2015) recently showed
that for realistically complex data sets, BiSSE methods
almost always find that a neutral trait is correlated
with higher diversification. This is, however, largely a
consequence of using fairly “trivial” null models that
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assume equal rates of diversification between character
states, which cannot discern the possibility that a
complex diversification process is entirely independent
from the focal trait.

All these caveats relate to the broader issue of
whether the proximate drivers of diversification are
really ever just the focal traits themselves. At greater
phylogenetic scales this issue seems the most relevant,
where the context of a shared trait is unlikely to be
consistent across many taxonomically distinct clades.
In other words, a character’s effect on diversification
will often be contingent on other factors, such as the
assembly of particular combinations of characters (e.g., a
“synnovation” as defined by Donoghue and Sanderson
2015) and/or movements into new geographic regions
(e.g., de Querioz 2002; Moore and Donoghue 2007).
Recent generalizations of the BiSSE model (i.e., MuSSE:
Multistate Speciation and Extinction; FitzJohn 2012) do
allow for additional binary characters to be accounted
for when examining the correlation between a binary
trait and net diversification. However, it may not always
be clear what the exact characters might be, and in the
absence of such information, it should be difficult to
ever confidently view any one character state as the true
underlying cause of increased diversification rates.

Here we describe a potential way forward for
trait-dependent models of diversification by extending
the BiSSE framework to account for the presence of
unmeasured factors that could impact diversification
rates estimated for the states of any observed trait.
Our model, which we refer to as HiSSE (Hidden State
Speciation and Extinction), assumes that related to each
observed state in the model are “hidden” states that
exhibit potentially distinct diversification dynamics and
transition rates than the observed states in isolation.
In this way, HiSSE is a state-dependent speciation and
extinction form of a hidden Markov model. As we will
show, HiSSE can distinguish higher net diversification
rates nested within clades exhibiting a particular
character state, can provide more meaningful tests of
character-independent diversification (CID) through its
use as a different kind of null model, and thus can
provide a much more refined understanding of how
particular observed character states may influence the
diversification process.

THe HISSE MODEL

Despite the important methodological advancement
and power afforded by the BiSSE model, it can provide
a rather coarse-grained view of trait-based patterns
of diversification. Specifically, what may appear like
a connection when examining particular characters in
isolation may actually be due to other unmeasured
factors, or because the analysis included a nested clade
that exhibits both the focal character plus “something”
else (Maddison et al. 2007; Beaulieu and Donoghue 2013;
Beaulieu and O’Meara 2014). This particular point is
illustrated in Figure 1. Here the true underlying model is

one in which state 0 and 1 have identical diversification
rates. However, there is some other trait with states A
and B, and state B has twice the diversification rate of
A. We call this trait a “hidden” trait, because it is not
observed in the tip data (though it could be observable
if we knew what it was). If state 1 happens to be a
prerequisite for evolving state B (or even by chance),
all the state 0 branches will have state A, but some
branches in state 1 will have state A and some will have
state B. Thus, state 1 actually takes on two states, 1A
when the hidden state with higher diversification rate
is absent, and 1B when the hidden state with higher
diversification rate is present. As indicated by the model,
transitions to this unmeasured variable produce nested
shifts toward higher rates of diversification within clades
comprising species in state 1. Necessarily, BiSSE can only
infer parameters for characters that we can observe, and
because all origins of state 1 are lumped together, the
model infers state 1 as being associated with significantly
higher diversification rates. It is associated with higher
diversification, but only due toits association with trait B.

We attempt to solve this problem by deriving an
expansion of the BiSSE model that allows for the
inference of these hidden states. For the example in
Figure 1, we can assume that all observations of state
1 are actually ambiguous for being in each of the
possible hidden states, 1A (i.e., hidden state absent) or
state 1B (i.e., hidden state present). We then include
transition rates and parameters for the diversification
process associated with this hidden state. Our model,
which we refer to hereafter as the HiSSE model,
is actually a modified form of the MuSSE model
(Multistate Speciation and Extinction; FitzJohn 2012) that
extends BiSSE-type analyses to allow for multiple binary
characters or characters with more than two states. Thus,
the HiSSE model can, in theory, have a number of
observed states and any number of hidden states (i.e.,
observed states 0, 1, 2, and hidden states A, B, C, resulting
in nine possible state combinations).

Formally, the state space in our model is defined
as o being the index of the observed state, 0€0,1,...q,
and & as the index of the hidden state, h€A,B,...,p.
A lineage at time t evolves under diversification rates
i =Nop and p; =pp,. Thus, the model has, in general, af
different diversification rate categories. The likelihood
Dy i(t) is proportional to the probability that a lineage
in state i at time t before the present (t=0) evolved
the exact branching structure and character states as
observed. Changes in Dy ; over time along a branch
are thus described by the following ordinary differential
equation:

dDy (¢
—i\ljil():_ ni+it ) g | Dnit)
j#i
+2)\1'E1'(t)DN’l‘(t)+qu'jDN’]'(t) (1a)
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FIGURE 1. The conceptual problem with the presence of hidden states in the application of state-dependent models of speciation and

extinction. Here related to state 0 and 1 is an unmeasured third variable with states A and B, and state B has twice the diversification rate of A.
This trait is “hidden” because it is not observed in the tip data. If state 1 happens to be a prerequisite for evolving state B, all the state 0 branches
will have state A, but some branches in state 1 will have state A and some will have state B. Thus, state 1 actually takes on two states, 1A when
the hidden state with higher diversification rate is absent, and 1B when the hidden state with higher diversification rate is present. As shown
in the example tree from a simulated tree and trait data, transitions to this unmeasured variable naturally produces nested shifts toward higher
rates of diversification within clades comprised of species observed in state 1. When we run 100 simulations of this particular model and fit the
resulting data sets in BiSSE, the model infers state 1 as being associated with a significantly higher diversification rates.

where E;(t) is the probability that a lineage in state i at
time, ¢, goes extinct by the present, and is described by:

dE;(t
%Zui_ ¥ +Mz+zqz] Ez +>¥ E
j# J#i

(1b)
These series of equations are modified from Maddison
etal. (2007); they are solved numerically along each edge
starting at the tips and moving rootward. The initial
conditions for Dy ;;(0) are set to 1 when the trait is
consistent with the observed data, and 0 otherwise. For
example, we would set the probability to 1 for both state
1A and 1B for all species exhibiting state 1—in other
words, the probability of observing a tip demonstrating
state 1 is 1 if the true underlying state is 1A or 1B.
The initial conditions for E;(0) are all set to zero (i.e.,
we observe the tip at the present). Incomplete sampling
can be allowed by incorporating a state-specific or even
clade-specific sampling frequency, f, and setting the
initial conditions for Dy ;(0) as f; if the corresponding
tip, n, is in state i, and 0 otherwise, and for 1 - f; for E;(0)
(see FitzJohn et al. 2009, though note that in their case

(B +D_aiE; ).

they also provide a scheme for dealing with unresolved
clades in addition to sampling frequency, which we
have not implemented or explored yet for HiSSE). We
assume the sampling frequency of the hidden state to
be identical to the state with which it is associated (e.g.,
fia=f1B foa=fop)-

At each internal node, A, that joins descendant
lineages N and M, we multiply the probabilities of both
daughter lineages together with the rate of speciation:

Dpy,i(t)=Dn.i(t)Day,i(E)N; (2)

and the resulting values become the initial conditions
for the subtending branch. The overall likelihood is the
product of Dg ;(t) calculated at the root. We condition
this likelihood by (1 — E;(1))?, which is the probability
that the two descendant lineages of the root, evolving
under the same estimates of speciation and extinction
rates, survived to the present and were sampled (Nee et
al. 1994). Finally, we follow the procedure described by
FitzJohn et al. (2009) and weight the overall likelihood
by the probability that each possible state gave rise
to the observed data, although other weights, such as
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assuming equal probabilities or even “known” fixed
probabilities, can also be used. Note that in the absence of
a hidden state, our likelihood calculation reduces exactly
to the BiSSE model.

We also note that it is rather straightforward to use
this framework to implement a SSE version of the
“precursor” model described by Marazzi et al. (2012)
or the “hidden rates” model described by Beaulieu et
al. (2013). In the latter case, consider a HiSSE model
with “two rate classes,” A and B. We can define
speciation and extinction parameters for states 0A, 1A,
0B, and 1B, and then define a set of transitions to
account for transitioning between all character state
combinations:

0A - JoA-1A  90A—0B 0
1A | f1a-04 - 0 J1A—>1B
Q: 0B - - (3)
J0B—0A 0 - qoB—1B
1B
0 q1B->1A  91B—0B -

Thus, HiSSE can be used to account for differences in the
diversification process while simultaneously identifying
different classes of transition rates within a binary
character. Our implementation allows for this and more
complex models, including those that allow for dual
transitions between both the observed trait and the
hidden trait (e.g., 04 <> 71B)-

MULTIMODEL INFERENCE AND THE ISSUE OF APPROPRIATE
MODELS

An important issue was recently raised by Rabosky
and Goldberg (2015), who demonstrated that on
empirical trees even traits evolving under a neutral,
diversification-independent model will still tend to be
best fit by a BiSSE model. FitzJohn (2012) discussed a
similar issue of MuSSE falsely assigning diversification
rate effects to a character with no such effect. While
this behavior is seemingly troubling, it is important to
bear in mind that BiSSE, MuSSE, HiSSE, and any other
model of state-dependent speciation and extinction are
not models of trait evolution, but rather joint models for
the underlying tree and the traits. A trait evolution model
like those in Pagel (1994) or Hansen (1997) maximizes the
probability of the observed states at the tips, given the
tree and model—the tree certainly affects the likelihood
of the tip data, but that is the only way it enters the
calculation. A trait-based diversification model, on the
other hand, maximizes the probability of the observed
states at the tips and the observed tree, given the model.
If a tree violates a single regime birth-death model due to
any number of causes (e.g., mass extinction events, trait-
dependent speciation or extinction, maximum carrying
capacity, climate change affecting speciation rates, etc.),
then even if the tip data are perfectly consistent with a
simple transition model, the tip data plus the tree are
not. In such a case, it should not be surprising that a
more complex model will tend to be chosen over a nested

simpler model, particularly if the underlying tree is large
enough.

Furthermore, as is well known in statistics, rejecting
the null model does not imply that the alternative model
is true. It simply means that the alternative model fits
better. This will often be the case when looking at models
in any complex system where the true model may not
be one of the included models. For example, Rabosky
and Goldberg (2015) showed, among several other
empirical examples, that binary characters simulated
under a model with each character having no effect on
diversification rate on an empirical tree of cetaceans (i.e.,
whales, dolphins, and relatives) almost always rejected
the supposed null model. Though presented as a Type I
error (i.e., incorrectly rejecting a true null), it is not. While
the chosen character model is wrong, the cetacean tree
is almost certainly not evolving with a single speciation
and extinction rate for the entire clade (Slater et al. 2010;
Morlon et al. 2011). In other words, BiSSE is correct in
saying that the simple model is not correct, but it is
very wrong in assigning rate differences to the simulated
traits. Nonetheless, even when presented with two bad
models, where one assumes constant rates and the other
assumes rates are changing rate exactly with character
states, BiSSE must still select which model fits the data
better than the other.

A simple example may further illustrate this point.
Imagine simulating data under a hypothetical model,
called “A,” and then comparing the fit of this model
against another hypothetical model, called “B.” If model
A is a “null model,” but we end up choosing model B,
then this would be an instance of a “Typel” error—we are
incorrectly rejecting the null. Now, imagine simulating
data under another distinct model, “C,” but, like before,
we only evaluate the fit of model A and model B. Would
choosing model B be considered a Type I error? Of course
not, because neither model is correct. So clearly the term
Type I error (or even Type Il error) is outside the region
of having any valid meaning in this context.

The reality is that it will always be a problem
comparing any two models and taking the accepted
one as the “truth” given a complex underlying reality.
Regardless of whether the behavior they observe is
properly called Type I error or not, this is the key
point of Rabosky and Goldberg (2015). When comparing
a simpler model to a more complex model, merely
rejecting the simple one does not mean we should accept
all the assumptions and interpretations of the alternate
one. It is a simple exercise, for example, to simulate
a tree using the model of Rabosky (2010) and then fit
alternate models such as age-dependent diversification
(Alexander et al. 2015) or logistic growth (Rabosky and
Lovette 2008) and compare them to a constant rate model;
in most simulated trees, the alternate model is chosen
(results not shown), even though the processes each
assumes were not used to generate the tree.

One potential way forward, at least in regards to the
issues Rabosky and Goldberg (2015) pointed out for
SSE models, is to provide equally complex models that
fit different biological explanations. Take, for instance,

220z ¥snBny |z uo 3senb Ad 919€G/ |L/£8G/7/S9/BI0IE/0IqSAS W00 dNO"dIWapEoR)/:SAY WO} POPEOJUMOQ



2016

BEAULIEU AND O'MEARA—HIDDEN STATE SPECIATION AND EXTINCTION 587

the likely complex diversification history of cetaceans.
As Rabosky and Goldberg (2015) demonstrate, when
evaluating neutral data simulated on the cetacean tree
using a simple, equal diversification rates model and
a complex one with trait-dependent diversification, the
data choose the more complex one. However, what if
there was a complex model that also allowed different
diversification rates on the tree, but was completely
independent from the evolution of a given trait? Then,
if the true model were trait-correlated diversification,
a model of trait-dependent diversification would be
chosen, but if the tree contained some additional
complexity, this new trait-independent model might
also be chosen some proportion of the time. Again,
it bears repeating: SSE models are not models of trait
evolution, but rather, a joint modeling framework for the
underlying tree and the trait. In the case of cetaceans,
or really any empirical tree, we do not know the true
underlying model that generated the tree, so picking
between models of equal rates, trait-dependent, or trait-
independent diversification some percentage of the
time in no way represents a kind of Type I error.
Furthermore, if statistics are done with a focus on
parameter estimates rather than model rejection, even if
there were some weight for trait-dependent rates, there
would also be substantial weight for trait-independent
rates as well, and so the average rates across these models
should tend to be similar across the possible character
states.

Here we propose two character-independent (CID)
models that are devised to equal the complexity
with respect to the number of parameters for the
diversification process [i.e., same number of free
speciation and extinction rates under the Maddison
et al. (2007) parameterization] as a general BiSSE
or HiSSE model, but without actually linking them
to the observed traits. Thus, these models explicitly
assume that the evolution of a binary character is
independent of the diversification process without
forcing the diversification process to be constant across
the entire tree, which is the normal CID used in
these types of analyses. The first kind of model, which
we refer to as “CID-2,” contains four diversification
process parameters that account for trait-dependent
diversification solely on the two states of an unobserved,
hidden trait (e.g., for speciation rates, hoq4 =X14, hop=
\1p). In this way, CID-2 contains the same amount
of complexity in terms of diversification as a BiSSE
model. As with BiSSE or HiSSE, these models include
the possibility of a variety of constraints for transition
rates. These transition rates can be general by allowing
them all to be freely estimated, or simplified in
various ways such as assuming they are all equal.
The second kind of model, which we refer to as
“CID-4” contains the same number of diversification
parameters as in the general HiSSE model that are
linked across four hidden states (e.g., for speciation
rates, Mg =Ma, hoB=MB, Moc=Mc, Mop=n1D). The
transition rates under this model are set up to
account for transitions between the four different rate

categories, as well as between the states of the binary
character and, in matrix form, they are set up as
follows:

0A - J0A—0B 0A—0C G0A—0D HOA—1A 0 0 0
0B | qo>0a  —  qoB-oc qoB—op O  qop»1z O 0
0C | goc—0a 4oc—08B - qoc—oD 0 0 qocsic 0
0D | gop—04 qoD—0B qoD—0C  — 0 0 0 gqop-1D
1404 0 0 0 - Q1A-1B f1A-»1C f1A->1D
1B 0 qiB-oB 0 0 fqB»14 —  fB>1C f1B>1D
1c 0 0  qiceoc 0 qice1a fic-1B —  iC»1D
1D 0 0 0 fD—-0D q1D—-1A q1D—-1B 41D—-1C -
@
To simplify the number of transitions in the model
there are two natural assumptions: assume either all
transition rates are equal, or assume there are three
distinct transition rates: one rate describing transitions
among the different hidden states (i.e., the rates in
columns and rows 1-4, and columns and rows 5-8), and
two rates for transitions between the observed character
states (i.e., one rate for columns 5-8, rows 1-4, and one
rate for columns 1-4 and rows 5-8). These or other
constraints can be used as part of the CID family of
models.

IMPLEMENTATION

We implemented the above models in the R package
“hisse” available through CRAN. As input all that hisse
requires is a phylogeny with branch lengths and a data
file that contains the observed states of abinary character.
Currently, it only allows a binary observed character
with four or fewer total hidden state combinations. We
also note that hisse is an entirely new implementation,
not a fork of the existing diversitree package, as we
employ modified optimization procedures and model
configurations (see Supplemental Materials available on
Dryad at http:/ /dx.doi.org/10.5061/dryad.52hp1).

SIMULATIONS

We evaluated the performance of the HiSSE model
by simulating trees and character states under various
scenarios and then estimating the fit and bias of the
inferred rates from these trees. Our initial simulations
first tested scenarios of the single hidden state situation
described in Figure 1; the known parameters for each
scenario are described in detail in Table 1. We included
BiSSE scenarios to test whether we could correctly
conclude that there was no support for a HiSSE model
in the absence of a hidden state in the generating model.
For each of these scenarios, trees and trait data were
simulated using diversitree (FitzJohn 2012) to contain 50,
100, 200, or 400 species, with 100 replicates for each taxon
set. When the generating model included a hidden state,
we simulated trees that could transition between three
possible states: 0, 1, or 2. After each simulation replicate
was completed, we created the hidden state by simply
switching the state of all tips observed in state 2 to be in
state 1.
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TABLE 1.
(w;) for all models assessed the fit

Summary of model support for simulated scenarios with and without a hidden trait, where calculating the average Akaike weight

BiSSE HiSSE
e0=¢l W0=r1l W0=1l e0=c1A=¢lB WA=11A=11B WA=11A=11B

Generating model Ntaxa Free q’sequal q'sequal 10=11 q'sequal e0=¢1 e0=¢l Free q'sequal q'sequal twWA=11A=11B q'sequal e0A=clA=¢lB e0A=elA=¢lB
Null w; expectation 0.0260 0.0708 01923 0.0708 0.1923 0.0707 0.1923 0.0004 0.0096 0.0708 0.0035 0.0708 0.0035 0.0260
BiSSE, transition rates vary 50 0.0416 0.0821 0.1504 0.0864 0.1639 0.0925 0.1737 0.0022 0.0179 0.0739 0.0076 0.0725 0.0010 0.0257
20=r1=0.1 100 0.0464 0.0837 01322 0.0791 01319 0.0930 0.1641 0.0046 0.0289 0.0944 0.0123 0.0811 0.0185 0.0298
n0=p.1=0.03 200 0.0499 0.0623  0.0927 0.0969 0.0982 0.0989 0.1812 0.0069 0.0374 0.0919 0.0198 0.0874 0.0313 0.0450
q01=0.015, q10=0.005 400 0.0662 0.0635 0.0578 0.1147 0.0668 0.1119 0.2116 0.0070 0.0320 0.0771 0.0227 0.0801 0.0284 0.0599
BiSSE, state 1 2x speciation 50 0.0370 0.0848 0.1896 0.0803 0.1681 0.0930 0.1339 0.0117 0.0160 0.0781 0.0075 0.0685 0.0113 0.0203
10=0.1,A1=0.2 100 0.0450 0.0918 0.1920 0.0783 0.1545 0.1066 0.0997 0.0030 0.0218 0.0933 0.0089 0.0706 0.0182 0.0163
w0=p1=0.03 200 0.0508 0.1006 0.2129 0.0820 0.1544 0.1194 0.0508 0.0069 0.0226 0.0837 0.0113 0.0643 0.0314 0.0086
q01=q10=0.01 400 0.0690 0.1172  0.2028 0.0911 0.1503 0.1324 0.0186 0.0091 0.0268 0.0637 0.0161 0.0615 0.0356 0.0057
BiSSE, state 1 .5x extinction 50 0.0480 0.0866 0.1465 0.0866 0.1451 0.0958 0.1714 0.0040 0.0219 0.0769 0.0092 0.0684 0.0132 0.0264
20=r1=0.1 100 0.0502 0.0934 0.1332 0.0879 0.1545 0.0874 0.1576 0.0039 0.0214 0.0784 0.0128 0.0779 0.0147 0.0267
10=0.06, 11=0.03 200 0.0596 0.1015 0.1219 0.0904 0.1652 0.0826 0.1324 0.0048 0.0286 0.0717 0.0101 0.0824 0.0144 0.0344
q01=q10=0.01 400 0.0710 01145 01008 0.0996 0.1605 0.0825 0.1113 0.0082 0.0325 0.0618 0.0156 0.0983 0.0163 0.0270
HiSSE, state 1B 2x speciation 50 0.0486 0.0808 0.1573 0.0936 0.1488 0.1069 0.1520 0.0030 0.0200 0.0768 0.0089 0.0621 0.0128 0.0285
M0A=211A=0.01,A1B=0.2 100 0.0533 0.0786 0.1264 0.0777 0.1147 0.0931 0.1074 0.0095 0.0386 0.1438 0.0146 0.0957 0.0248 0.0216
WOA=p1A=p1B=0.03 200 0.0666 0.0553 0.0719 0.0726 0.0742 0.0791 0.0743 0.0134 0.0611 0.2158 0.0225 0.1263 0.0469 0.0202
qOA1A=qlA0A=qlA1B=q1B1A=0.01 400 0.0321 0.0275 0.0359 0.0254 0.0283 0.0370 0.0236 0.0315 0.1094 0.3119 0.0420 0.1876 0.1024 0.0053
HiSSE, state 1B 3 x speciation 50 0.0524 0.0796 0.1594 0.0821 0.1218 0.1124 0.1003 0.0091 0.0364 0.1295 0.0156 0.0544 0.0317 0.0153
MA=%1A=0.01,x1B=0.3 100 0.0504 0.0604 0.0998 0.0629 0.0817 0.0893 0.0686 0.0112 0.0660 0.2250 0.0156 0.1048 0.0464 0.0177
WOARIA=p1B=0.03 200 0.0414 0.0316 0.0405 0.0304 0.0397 0.0556 0.0146 0.0241 0.1101 0.4102 0.0215 0.0906 0.0871 0.0026
q0A1A=ql1A0A=ql1A1B=q1B1A=0.01 400 0.0220 0.0140 0.0112 0.0140 0.0090 0.0437 0.0078 0.0347 0.1654 0.4646 0.0175 0.0703 0.1244 0.0015
HiSSE, state 1B .5x extinction 50 0.0487 0.0911 0.1453 0.0918 0.1472 0.1019 0.1711 0.0023 0.0230 0.0694 0.0074 0.0667 0.0096 0.0246
MA=r1A=211B=0.1 100 0.0518 0.0745 01251 0.0939 0.1236 0.0968 0.1743 0.0068 0.0286 0.0697 0.0147 0.0728 0.0223 0.0450
WOA=p1A=0.06,11B=0.03 200 0.0538 0.0648 0.1002 0.0951 0.1128 0.0918 0.1402 0.0083 0.0435 0.0877 0.0207 0.1032 0.0347 0.0433
q0A1A=qlA0A=ql1A1B=q1B1A=0.01 400 0.0591 0.0461 0.0464 0.0986 0.0660 0.1018 0.1200 0.0235 0.0604 0.0920 0.0441 0.1523 0.0352 0.0546
HiSSE, state 1B 2x speciation,

transition rates vary 50 0.0432 0.0743 0.1452 0.0834 0.1338 0.0981 0.1403 0.0070 0.0391 0.1095 0.0156 0.0682 0.0212 0.0209
MA=11A=0.01,A1B=0.3 100 0.0379 0.0518 0.0737 0.0594 0.0672 0.0778 0.0835 0.0181 0.0701 0.2457 0.0222 0.0823 0.0886 0.0216
WOA=p1Ap1B=0.03 200 0.0399 0.0184 0.0190 0.0399 0.0202 0.0500 0.0535 0.0310 0.1267 0.3259 0.0229 0.1090 01323 0.0111
q0A1A=0.015,q1A0A=q1A1B=0.005, 400 0.0098 0.0027 0.0048 0.0108 0.0067 0.0233 0.0118 0.0883 0.1706 0.3261 0.0291 0.0596 0.2545 0.0019
q1B1A=0.01 800 0.0020 0.0002 0.0004 0.0022 0.0004 0.0021 0.0038 0.1040 0.1647 0.3156 0.0230 0.0638 0.3172 0.0005

Note: Bold italics indicate significance based on 95% confidence intervals that bracket the mean Akaike weight. We also calculated a null expectation of the Akaike weight as the average Akaike weight if
we assumed an equal likelihood across all models. Thus, the null expectation is based solely on the penalty term in the AIC calculation.

Each simulated data set was evaluated under the
generating model, as well as 13 additional models
that variously added, removed, or constrained certain
parameters (Table 1). For all models under a given
scenario, model fit was assessed by calculating the
average Akaike weight (w;), which represents the relative
likelihood that model i is the best model given a set
of models (Burnham and Anderson 2002). We also
calculated a null expectation of the Akaike weight across
our model set, as the average Akaike weight assuming
an equal likelihood across all models. Thus, our null
expectation is based solely on the penalty term in the
AIC calculation—in the absence of information from the
model, we would expect to see these weights returned,
rather than equal weights for all models. Moreover, since
BiSSE is nested within HiSSE, they could return the
same likelihood, so even with infinite amounts of data
the weight of the HiSSE model should drop to this null
expectation, but, counterintuitively, not to zero.

We also conducted a second set of simulations that
specifically evaluated the performance of the general
HiSSE model and our two CID models (Table 2). Our
goal was to test how much model weight the trait-
independent models exhibited under scenarios of trait-
dependent diversification. We were concerned at the
outset that our CID models would always fit at least as
well, if not better, than a trait-dependent BiSSE or HiSSE
model. That is to say, these models were constructed
such that they are not constrained by character states

and can assign rates wherever they want in order to
maximize the likelihood. Again we relied on diversitree to
simulate trees and trait data that contained 400 species,
repeated 100 times, with transitions allowed between
four possible states, 0, 1, 2, or 3. After each simulation
replicate was completed, we created the hidden state by
simply switching the state of all tips observed in state 2
to be in state 0, and all tips in state 3 to be in state 1.

We also included a scenario that was designed to
test whether the general HiSSE model is immune to
empirical issues of spurious assignment of importance
to state combinations that have no actual effect on
diversification (Table 2). In other words, is HiSSE still
favored in situations where the trees and traits evolved
under a very different model than the one used for
inference? Here we generated trees containing 400
taxa using code from Rabosky (2010). A symmetric
Markov model for trait evolution alone (no influence
by diversification) was used to simulate binary traits
on this tree (using the R package geiger; Harmon
et al. 2008; Pennell et al. 2014). The Rabosky (2010)
model was used, as it is very different from the
model assumed by BiSSE /HiSSE; speciation rates evolve
gradually on branches, rather than moving discretely
between distinct levels based on a trait (hidden or not).
Though the rate change is gradual under the Rabosky
(2010) model, the speciation rate does not evolve under
a Brownian, Ornstein-Uhlenbeck, or similar processes,
but in a heterogeneous way that depends on the
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TABLE 2.
models (CID-2, CID-2; see text)

Summary of the model support for simulated scenarios that tested the performance of the general HiSSE model and two CID

Equal rates BiSSE CID-2 CID-4 HiSSE
10=11 TA, 1B 1A,1B tA,1B,1C,tD tA,tB,tC,iD 10A=11A=10B 10A=11A=10B

Generating model e0=¢l Free e0=c1 eA,B sA=e¢B ¢AeB,cC,eD e¢A=¢B=e¢C=¢D Free e0A=clA=:0B=¢1B ¢0A=c¢1A=c0B c0A=c1A=c0B=¢1B
Null w; expectation 0.1776 ~ 0.0653 0.1776 0.0653 0.1776 0.0033 0.0653 0.0011 0.0240 0.0653 0.1776
BiSSE, state 1 2 x speciation 0.0085  0.1995 0.3313 0.0046 0.0089  0.0001 0.0012 0.0255 0.0917 0.1298 0.1989
20=0.1,11=0.2
w0=p1=0.03
All q's =0.01
CID-2, state B 2x speciation 0.0505  0.0445 0.0568 0.1836 0.3107  0.0063 0.0656 0.0322 0.1461 0.0407 0.0631
M0A=211A=0.1, \OB=211B=0.2
WOA=p1A=pn0B=pn1B=0.03
Allq’s =0.01
HiSSE, state 1B 2 x speciation 0.0049  0.0957 0.1327 0.0073 0.0135  0.0002 0.0032 0.0417 0.1199 0.2265 0.3544
M0A=2r1A=%0B=0.1, \1B=0.2
wW0A=pl1A=pn0B=1B=0.03
Allq’s =0.01
“Worst-case” trait-independence ~ 0.0005  0.0003 0.0007 0.0897 0.1562  0.0544 0.3996 0.0563 0.2213 0.0067 0.0142

Initial A=0.1, drawn from
lognormalo=0.0
£=0.3, q01=q10=0.01

Note: Bold italics indicate significance based on 95% confidence intervals that bracket the mean Akaike weight. All data sets tested contained 400
species, and calculating the average Akaike weight (w;) for all models assessed the fit. As with Table 1, we also calculated a null expectation of
the Akaike weight as the average Akaike weight if we assumed an equal likelihood across all models.

timing of speciation events (Beaulieu and O’Meara
2015). Thus, as with many empirical data sets, this
diversification model is quite different from HiSSE’s
model, providing a difficult challenge. The Rabosky
(2010) model has also been very influential in affecting
biologists” attitudes toward estimating extinction rates,
and so we include it as a semi-realistic “worst-case”
scenario. Each simulated data set was evaluated under
multiple models that variously added, removed, or
constrained certain parameters, with model fit again
being assessed by calculating the average Akaike weight
(w;). For simplicity, all models in this set assumed equal
transition rates.

In regards to the parameter estimates in all our
simulations, comparisons between the model average
of the parameters against the known parameters
provided an assessment of the bias and precision
of the inferred parameters. However, rather than
averaging parameters across the entire model set, we
only averaged across models that included similar
parameters. For example, when estimating the bias in
the HiSSE scenarios we only model-averaged parameters
for models that included the hidden state. This required
reformulating the Akaike weights to reflect the truncated
model set. Finally, we also assessed the reliability
of the ancestral state reconstructions by comparing
the true node states from each simulated tree to
the marginal probabilities calculated from the model-
averaged parameter estimates.

ASSESSING MODEL FIT

Our main focus is estimating parameters well, but this
is aided by picking the true model with high weight

when it is in the set (though, of course, for real data the
true model is always more complex than any examined
one). From a model comparison perspective, our first
set of simulations indicated that data sets that lack
hidden states could generally be distinguished from
those that do, especially with larger data sets (Table 1).
When the generating model is a BiSSE model with
only two observable states, there were low levels of
support for all seven HiSSE models. In fact, as sample
size increased, the average Akaike weight of the HiSSE
models converged toward the null Akaike weight based
only on the penalty term (Table 1). When evaluating
data sets that included a hidden state, the ability to
correctly favor a HiSSE model over any of the BiSSE
models depended not just on the size of the data set,
but also the underlying generating model. For example,
when the generating model assumed a hidden state
with higher speciation rates, data sets that contained
200 or more taxa were required to provide strong
evidence for a HiSSE model that varied the turnover
rate (Table 1). However, when the main effect of the
generating model assumed lower extinction fractions for
the hidden state there remained strong support for a
BiSSE model that assumed both equal turnover rates and
extinction fractions. Interestingly, when we simulated
under a HiSSE scenario that combines the processes
of higher speciation rates and asymmetrical transition
rates, the issue of incorrectly favoring a BiSSE model
disappears (Table 1).

We also found that HiSSE was able to distinguish
between generating models that assumed diversification
rate differences are trait-dependent (e.g., when
speciation is 2-fold greater for state 1B), or when
the diversification rate difference is trait-independent
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and due to simply to the presence of a hidden trait
only (e.g., when speciation is 2-fold greater for hidden
state B) (Table 2; Supplementary Table S1 available
on Dryad). And, contrary to our concerns, when
the generating model assumed some form of trait-
dependent diversification neither the CID-2 nor the
CID-4 model had much support.

For the “worst-case” scenario, which simulated a
neutral binary character along trees generated from
a complex heterogeneous rate branching process, it
clearly falls into the zone where BiSSE has unwelcome
behavior (94% of data sets favored a BiSSE model over a
single-rate diversification model, and the average Akaike
weight for state-dependent models across data sets was
92.0%; see Supplementary Table S1 available on Dryad).
Thus, these simulation conditions create difficult data
sets of the sort used by Rabosky and Goldberg (2015).
The addition of merely the CID-2 model dramatically
improved performance, where the average weight for
the BiSSE models went from 92.0% to 1.3%. When the
full HiSSE model set was examined, we found that
the CID-4 trait-independent model had the highest
support on average across the entire set of models
(Table 2; Supplementary Table S1 available on Dryad).
However, if we combine support for both this CID model
and the CID-2 model, they cumulatively account for
70% of the total model weight. Both of these models
are independent of any particular character state, but
assume shifts among distinct levels, and therefore, more
closely resemble the conditions by which these data sets
were generated.

We note, however, that there was some support for
a trait-dependent HiSSE model with the same number
of diversification parameters (Table 2; Supplementary
Table S1 available on Dryad). And, in spite of the Akaike
weight across all data sets showing greater support for
the CID-4 model on average, 29% of the individual
data sets would favor some form of the general HiSSE
model (Supplementary Table S1 available on Dryad).
However, there was only a 1.02% difference in the mean
diversification rate between states 0 and 1 (though,
focusing on just the set of trees for which a HiSSE
model was best, the percentage difference is 16%—still
relatively small for diversification studies, but clearly
not as good). Taken together, these results indicate
that in these “worst-case” trait-independent scenarios,
likely encountered in many empirical data sets, the
inclusion of the CID models can attenuate the issue
of spuriously accepting trait-dependent diversification.
The addition of models that allow some dependence
with the observed traits and some with hidden traits,
the rates of falsely assessing some state dependence
somewhat increases, but with the benefit of being able
to better detect hidden effects when they are true (see
earlier simulation results).

ESTIMATING MODEL PARAMETERS

It is important to point out that in all simulation
scenarios we never recovered strong support for amodel

consistent with the model that actually generated the
data. That is, whether we vary the speciation rate or
the extinction rate, which affects both net turnover
and extinction fraction, we always found support for a
simplified model that either allowed t to vary or e to
vary, but not both. This is likely a consequence of the
uncertainty and upward biases in estimates of extinction
fraction (Figs. 2—4), making it difficult for the model to
infer multiple extinction fractions, at least with smaller
data sets.

Itis well known that there can be difficulties, generally,
in obtaining precise estimates of the extinction rates
(i.e., ;) under the BiSSE framework (Maddison et al.
2007). Backtransforming estimates of net turnover and
extinction fraction shows that HiSSE suffers the same
precision issues in regards to the rate of extinction
(Fig. 3, Supplementary Fig. S2 available on Dryad).
Recently, it was reported that biases in the tip state
ratios could also impact all parameter estimates (Davis
et al. 2013). Our simulations did not specifically test
issues related to tip state biases. However, we did
find that with HiSSE, the precision in extinction rate
estimates remains fairly low regardless of the ratio
of the states at the tips, especially when estimating
extinction for the hidden state (Fig. 3). Interestingly, the
lack of precision for extinction rates seems to have a
relatively minor impact on estimates of net turnover
or net diversification (Figs. 2-4; Supplementary Fig. S1
available on Dryad), though there is a general bias for net
diversification to be underestimated as a consequence of
inflated extinction rates. Nevertheless, it appears HiSSE
correctly and qualitatively distinguishes differences in
diversification among the various states in the model.
And, as the number of species increases, the trajectory
of the downward bias in net diversification suggests it
will eventually disappear, and rate differences can be
distinguished even if the differences are trivial (e.g.,
Fig. 2¢).

For parameter estimates from the simulations testing
both the CID models and the general HiSSE model
we found very similar results as those described
above, in that the model-averaged net turnover and
net diversification parameters largely resembled the
generating model (Fig. 4; Supplementary Fig. S4
available on Dryad). However, similar to the first set of
simulations, there is a large amount of uncertainty and
upward biases in estimates of extinction fraction. Thus,
HiSSE generally has very low power in distinguishing
multiple extinction fractions regardless of the number
of states included in the model.

One issue of concern from our first set of simulations
is that transition rates are almost always overestimated.
This behavior appears unique to the HiSSE model in
our simulations (Fig. 2), given that when evaluating data
sets under BiSSE scenarios, transition rates are estimated
reasonably well (Supplementary Fig. S3 available on
Dryad). One suggestion from FitzJohn R. (personal
communication) is that this can occur when some states
are present in low frequency, and since HiSSE has
more states than BiSSE, it is likely that many state
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FIGURE 2. The uncertainty surrounding estimates of net diversification rate (A —p, obtained from backtransforming net turnover rates and
extinction fraction; see Supplemental Materials), extinction fraction (i /%), and transition rates as a function of tree size. Each row represents a
different simulation scenario under the HiSSE model, all of which are described in detail in Table 1 from the main text. For both net diversification
and extinction fractions the solid green line and green region represent the mean and 95% confidence interval for state 0A, the solid blue line
and blue region represents the mean and 95% confidence interval for state 14, and the solid red line and red region represents the mean and
95% confidence interval for state 1B. In the panels depicting the log-transformed transition rates, the solid purple line and purple region, the
solid light purple line and light purple region, represent mean and 95% confidence interval for transition to and from the “hidden” state (i.e.,
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1B), respectively. In all panels, the color of dashed line corresponds to the true value under the generating model.
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FIGURE 3. The parameter estimates, under a generating model that assumes transitions to state 1B is associated with a doubling of the

speciation rate (HiSSE Scenario 1), transformed to reflect speciation (\) and extinction () rates as a function of the tip state frequencies. The
dashed lines in each panel correspond to the true value under the generating model.

combinations are in very low frequencies. There are
also relatively large confidence intervals surrounding
each of the transition rate estimates that naturally favor
models that assume equal transition rates, which should
be reflected in the model-averaged rates. Indeed, as in
the case of the HiSSE scenario that assumed pronounced
differences in the transition rates, even 800 taxa was still
not enough to unequivocally reject models that assumed
equal transition rates (Table 1). We also examined the
impact each parameter had on a fixed set of equilibrium
frequencies, by randomly sampling sets of values and
retaining those that estimated the same frequency within
a small measure of error (see Supplemental Materials
available on Dryad). The proportional range of values for
the transition rates were more than double those found
for the speciation rate, indicating that state frequencies
are fairly resilient to changes in the transition rates. Taken
together, estimating unique transition rates (and to some
extent the rate of extinction) appears to be a difficult
problem, which is not made any easier by HiSSE’s
increase in state space. That is to say, HiSSE requires
more from the data by including additional parameters
without providing any more observable information. It
is likely that in many cases far larger data sets with many
more state origins than the ones we have generated here

may be required to adequately estimate these particular
parameters.

Finally, in regards to inference of ancestral states
from the model-averaged parameter estimates, the
simulations indicate that HiSSE correctly identifies
and locates regions of the tree where supposed
diversification rate differences have taken place (Fig. 5).
The degree of reliability does, of course, depend on the
size of the data set. For the HiSSE scenario that assumed
a doubled speciation rate for state 1B, for example,
data sets comprised of 50 taxa, 84.1% of the nodes, on
average, have the state correctly inferred, and data sets
comprised of 400 taxa 92.4% are correct. However, we
note that there is also a general tendency for HiSSE to
infer high-marginal probabilities for the incorrect state
(e.g., Fig.5), which could provide misleadingly confident
state reconstructions.

MODEL REJECTION PROPERTIES

We have strongly advocated (e.g., Beaulieu et al.
2012), as have many others (e.g., Anderson et al.
2000; Nickerson 2000; Nakagawa and Cuthill 2007),
that parameter estimation is more important for
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The uncertainty surrounding estimates of net diversification rate (A —p; obtained from backtransforming net turnover rates

and extinction fraction; see Supplemental Materials) and extinction fraction (/%) when the generating model assumes (a, b) diversification is
independent of the observed characters (i.e., CID-2 model), or (c, d) a hidden state underlies both observed states (i.e., a general HiSSE model).
The specifics of the different simulation scenarios are described in detail in Table 2.

understanding biology than is rejecting models. Model
selection is part of this, of course, but it is more
appropriate to examine a set of models and average
or integrate their results, either through the use of
information theory (e.g., Burnham and Anderson 2002),
as we do here, or Bayesian approaches (e.g., Huelsenbeck
et al. 2004). However, there are clearly still many studies
whose main focus is rejecting trivial null models. The
use of AIC or Akaike weights are inappropriate for
these purposes (Burnham and Anderson 2002), despite
being used frequently. Here, we examine how HiSSE
and its various models perform in this way, especially
in relation to the situation highlighted by Rabosky
and Goldberg (2015), where a species tree evolves
under a complex, unknown diversification process
but traits evolve under a simple model independent

of diversification parameters (e.g., our “worst-case”
scenario).

Even though examining AAIC values is not
recommended for model rejection, the rule of thumb
from Burnham and Anderson (2002) remains popular
for this use in phylogenetics: 0-2 means a model
has substantial support, 4-7 means considerably less
support, and > 10 means essentially no support. Using
these guidelines, we examined two of our simulations,
the CID-2 and our “worst-case” scenario, both of which
assume trait-independent diversification model (see
Supplementary Table S1 available on Dryad; Fig. 6;
also see Supplementary Fig. S5 available on Dryad). If
we were to compare the fit of a constant birth-death
BiSSE with a BiSSE model that assumes trait-dependent
diversification, as Rabosky and Goldberg (2015) did, we
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The reliability of ancestral state reconstructions as a function of tree size based on the model-averaged parameter estimates from

HiSSE Scenario 1. The trend lines represent the relationship between the rolling median of the maximum marginal probability and the rolling
mean of proportion of nodes inferred to be in the correct state across all simulated trees. The rolling mean and median are based on a sliding
window of 500 points, and the dotted line denotes the 1:1 relationship between the two variables. While the trend lines are meant to reflect the
relationship across a range of values, the gray histograms on each of the axes show the underlying distribution of the actual data used to produce
the lines: note, for instance, that most nodes fall near 1 in terms of actual accuracy of the reconstruction.

found that when the true generating model was our
CID-2 model, 38% of the time the BiSSE model had
substantial support; in our “worst-case” scenario, 80%
of the time BiSSE had substantial support. However, if
we were to add just our CID-2 model into the set, in
both cases the number of simulated data sets that show

substantial support for the BiSSE case drop dramatically:
just 7% in the CID-2 simulations, and just 1% in the
“worst-case” scenario. If we examine the full set, which
also includes CID-4 and the HiSSE model, 10% of
simulated data sets favor a trait-dependent scenario
for CID-2, and 16% of the time under the “worst-case”
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FIGURE 6.  Model rejection properties when applying both BiSSE and HiSSE models to our “worst-case” scenario data sets, created from
simulating a neutral binary character along trees generated from a complex heterogeneous rate branching process (see “simulation” section
in the main text for more details). Even though examining AAIC values is not recommended for model rejection, practitioners often choose
models that are “significantly” better based on the rule of thumb that a AAIC of at least two units indicates substantial support. The best model
under AIC is thus ignored if there is a simpler one with a AAIC <2 (also see Supplementary Fig. S5 available on Dryad for a cutoff of A0). The
left-most panel shows the problem identified by Rabosky and Goldberg (2015)—namely, when the diversification process represented by the tree
is uncoupled from the evolution of a binary trait, a trait-dependent model is chosen over a trait-independent model, which has the diversification
rates held constant, 80% of the time. The middle panel shows what happens when comparing the fit of the same two BiSSE models, plus the
CID-2 model, which explicitly assumes that the evolution of a binary character is independent of the diversification process without forcing the
diversification process to be constant across the entire tree. Here the support for a trait-dependent BiSSE model drops dramatically, with only a
single data set showing substantial support. When we examined a much broader model set that also included the CID-4 and a full HiSSE model,

a trait-dependent model of diversification showed substantial support 16% of the time.

scenario (Supplementary Table S1 available on Dryad;
Fig. 6; also see Supplementary Fig. S5 available on
Dryad).

We also conducted similar tests by simulating neutral
characters on two empirical trees—the cetacean tree
used by Rabosky and Goldberg (2015), and our own
empirical tree (see below)—and found very similar
behavior (see Supplementary Table S2 available on
Dryad). More importantly, for parameter estimation,
using a set of models and doing parameter estimation
using a weighted average results in largely accurate
inferences. For the 87-taxon cetacean tree, the model-
averaged diversification rate in state 0 was within 10%
of the rate for state 1 in 87% of the simulations (and
we expect substantial uncertainty in these estimates);
for Dipsidae, in 95% of the simulations the estimated
diversification rate for state 0 was within 0.5% of the
rate for state 1. In other words, even if a trait-dependent
model were chosen, a careful biologist who looks at
parameter estimates would be unlikely to find a rate
difference of half a percent biologically significant.

In summary, we have gone from 94% of the time
choosing the “wrong” model, to anywhere from 7% to
16% when the model set includes any number of our
HiSSE models (Fig. 6; Supplementary Fig. S5 available
on Dryad). Of course, if the goal is to simply find the best
model, the rather marked improvement afforded by our
HiSSE framework may remain somewhat unsatisfying.
Future attention could, therefore, be paid to determining
the appropriate A AIC that would constitute “substantial
support” when using HiSSE, as opposed to simply
using a AAIC <2 cutoff, as we have done here.

Nevertheless, if the goal is to understand the potential
biological implications provided by the parameters
estimated from these models, even though the “best”
model may at times be incorrect, taking into account
model uncertainty when summarizing the parameter
estimates will ameliorate spurious interpretations of
trait-dependent diversification when it does not exist
(e.g., Fig. 4, Supplementary Fig. S6 available on Dryad).

THE EVOLUTION OF ACHENE FRUITS

The development of this model was inspired by
results from recent empirical work that applied BiSSE
to understand the macroevolutionary consequences of
evolving particular fruit types within a large flowering
plant clade (i.e., campanulids; Beaulieu and Donoghue
2013). This study investigated whether diversification
rates differences could explain why more than 80% of
campanulid species exhibit fruits that are indehiscent
(i.e., do not open mechanically), dry, and contain only
a single seed. From a terminological standpoint, these
fruits were broadly referred to as “achene” or “achene-
like” to unify the various terms used to identify the
same basic fruit character configuration (e.g., “cypselas”
of Asteraceae—sunflowers and their relatives—or the
single-seeded “mericarps” of Apiaceae—carrots and
their relatives). According to the BiSSE model, the
preponderance of achene fruits within campanulids can
be explained by strong differences in diversification
rates, with achene lineages having a rate that was
roughly three times higher than non-achene lineages.
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While these results are seemingly straightforward,
they are complicated by the fact that the correlation
between net diversification rates and the achene
character state differed among the major campanulid
lineages and was driven entirely by the inclusion
of Asterales clade (Beaulieu and Donoghue 2013).
Within Apiales and Dipsacales, the two remaining
major achene-bearing clades, the diversification rate
differences were not significant. However, in both these
clades there were qualitative differences in the predicted
direction, likely as a consequence of one or more shifts
in diversification nested within one of the major achene-
bearing clades. Together, these point to a more complex
scenario for the interaction between achene fruits and
diversification patterns that is not being adequately
explained by BiSSE.

We illustrate an empirical application of HiSSE by
examining the Dipsidae (Paracryphiales+Dipsacales;
Tank and Donoghue 2010) portion of the achene data
set of Beaulieu and Donoghue (2013). Specifically, we
used HiSSE to locate and “paint” potential areas within
Dipsidae that may be inflating the estimates of net
diversification rates for achene lineages as a whole. We
modified the original data set of Beaulieu and Donoghue
(2013) in three important ways. First, we re-estimated
the original molecular branch lengths using PAUP*
(Swofford 2000), as opposed to relying on the branch
lengths from the original RAXML (Stamatakis 2006)
analysis, because PAUP* provides better optimization
precision. Second, the molecular branch lengths were
rescaled in units of time using treePL (Smith and O’Meara
2012), an implementation of the penalized-likelihood
dating method of Sanderson (2002) specifically designed
for large trees. We applied the same temporal constraints
for Dipsidae as in the original Beaulieu and Donoghue
(2013) study, and used cross-validation to determine the
smoothing value that best predicted the rates of terminal
branches pruned from the tree. Third, we conservatively
removed various taxa of dubious taxonomic distinction,
taxa considered varietals or subspecies of a species
already contained within the tree, and tips that treePL
assigned very shortbranch lengths (i.e., <1.0 myr)—all of
which have the tendency to negatively impact accuracy
of estimating diversification rates (though in this case,
rerunning the analyses including such tips did not have
a qualitative effect on the results). The exclusion of these
taxa resulted in a data set comprising 417 species from
the original 457.

We fit 24 different models to the achene data
set for Dipsidae. Four of these models corresponded
to BiSSE models that either removed or constrained
particular parameters, 16 corresponded to various HiSSE
models that assumed a hidden state associated with
both the observed states (i.e., non-achene+, achene+),
and four corresponded to various forms of our trait-
independent models (i.e., CID-2, CID-4). In all cases,
we incorporated a unique sampling frequency scheme
to the model. Rather than assuming random sampling
for the entire tree (see above), we included the sampling
frequency for each major clade included in the tree

(see Supplementary Table S3 available on Dryad; note
that the results are qualitatively similar regardless of
sampling scheme used). In order to generate a measure
of confidence for parameters estimated under a given
model, we implemented an “adaptive search” procedure
that provides an estimate of the parameter space that is
some pre-defined likelihood distance (e.g., 2 InL units)
from the maximum likelihood estimate (MLE), which
follows from Edwards (1992). We also took into account
both state uncertainty and uncertainty in the model
when “painting” diversification rates across the tree.
Our procedure first calculated a weighted average of
the likeliest state and rate combination for every node
and tip for each model in the set, using the marginal
probability as the weights, which were then averaged
across all models using the Akaike weights. All analyses
were carried out in hisse.

The best model, based on Akaike weights, was a
relatively simple HiSSE model with regards to the
number of free parameters it contained (Table 3).
The model suggests character-dependent diversification
with fruit type, where only rates for non-achene+
and achene+ are allowed to be free, and where
transitions between state non-achene+ and achene+
were disallowed. This model had a pronounced
improvement over the set of BiSSE models, where none
had an Akaike weight that was greater than 0.001.
However, before describing the parameter estimates
of the best model, we note that, with a modified
tree and character set, the parameter estimates under
the BiSSE models were different from those reported
by Beaulieu and Donoghue (2013). Specifically, the
higher diversification rates estimated for achene lineages
(Tachene =0.148, support range: [0.121,0.161]) compared
with non-achene lineages (hon-achene =0.065, support
range: [0.0498,0.083]) were indeed significant based on
a sampling of points falling within 2 InL units away
from the MLE. The parameters estimated under the
HiSSE model, on the other hand, suggest a more nuanced
interpretation of this result. The higher diversification
rates of clades bearing achenes as a whole is likely due to
a hidden state nested within some of these lineages that
is associated with exceptionally high diversification rates
(Tachene+ =0.199, support region: [0.179,0.221]). In fact,
the model suggests that achene lineages not associated
with the high-diversification hidden state have a
diversification rate that is indistinguishable from the
non-achene diversification rate (*non-achene— = ¥achene- =
0.059, support range: [0.049,0.068]). Non-achene lineages
associated with the high-diversification hidden state also
show elevated diversification rates ("non-achene+ =0.158,
support region: [0.138,0.185]), relative to the rate of the
non-achene state with the other hidden state, suggesting
strong rate heterogeneity even in Dipsidae lineages that
bear other fruit types.

Character reconstructions identified two transitions to
the hidden fast state in achene lineages, and thus a higher
diversification rate: one shift occurred along the stem
leading to crown Dipsacaceae and the other occurred
along the stem leading to “core Valerianaceae” (the most
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TABLE 3.
and Akaike weights (w;) denoted in bold

The fit of alternative models of achene fruit evolution in the flowering plant clade Dipsidae, with the best model based on AAIC

Model np InLik AIC AAIC w;

BiSSE: all free 6 —1486.5 2984.9 90.3 < 0.001
BiSSE: e0=¢1 5 —1488.6 29872 92.6 < 0.001
BiSSE: q’s equal 5 —1487.3 2984.5 89.9 < 0.001
BiSSE: e0=¢1, q’s equal 4 —1490.2 2988.4 93.8 < 0.001
CID-2: q’s equal 5 —1449.1 2908.3 13.7 0.001
CID-2: ¢’s, q’s equal 4 —1449.7 2907.4 12.8 0.001
CID-4: q’s equal 9 —1445.1 2908.1 13.5 0.001
CID-4: ¢’s equal, q’s equal 6 —1445.3 2902.6 7.98 0.015
HiSSE: q’s equal 9 —1446.6 2911.2 16.6 < 0.001
HiSSE: ¢’s equal, q’s equal 6 —1447.2 2906.5 11.9 0.002
HiSSE: 10A=11A=10B, e0A=¢1A=¢0B, q's equal 5 —1463.3 2936.6 420 < 0.001
HiSSE: 10A=11A=10B, ¢’s equal, q's equal 4 —1471.0 2950.0 55.4 < 0.001
HiSSE: q0B1B=0, q1B0B=0, all other q’s equal 9 —1451.7 2921.5 26.9 < 0.001
HiSSE: ¢’s equal, q0B1B=0, q1B0B=0, all other q’s equal 6 —1451.7 2915.5 20.9 < 0.001
HiSSE: 10A=11A=10B, e0A=¢1A=¢0B, q0B1B=0,q1B0B=0, all other q’s equal 5 —1462.2 2934.3 39.7 < 0.001
HiSSE: 10A=11A=10B, ¢’s equal, q0B1B=0, q1B0B=0, all other q’s equal 4 —1469.5 29471 52.5 < 0.001
HiSSE: 10A=10B, é0A=¢0B, q's equal 7 —1459.6 2933.2 38.6 < 0.001
HiSSE: t0A=10B, ¢’s equal, q’s equal 5 —1466.4 2942.8 48.2 < 0.001
HiSSE: 10A=10B, é0A=¢0B, q0B1B=0, q1BOB=0, all other q’s equal 7 —1458.4 2930.8 36.2 < 0.001
HiSSE: 10A=10B, ¢’s equal, q0B1B=0, q1B0B=0, all other q’s equal 5 —1464.7 2939.4 44.8 < 0.001
HiSSE: 10A=11A, e0A=¢lA, q's equal 7 —1446.7 2907.3 12.7 < 0.001
HiSSE: 10A=11A, ¢’s equal, q's equal 5 —1469.1 2948.3 53.7 < 0.001
HiSSE: 10A=11A, e0A=¢1A, q0B1B=0, q1B0B=0, all other q's equa 7 —1442.2 2898.3 3.71 0.130
HiSSE: 10A=11A, ¢’s equal, q0B1B=0, q1B0B=0, all other q’s equal 5 —1442.3 2894.6 0.00 0.848

inclusive clade that excludes Patrinia, Nardostachys, and
Valeriana celtica) (Fig. 7). It is important to note that in
the case of non-achene lineages, the model identified
four shifts to the hidden fast state—one at the base of
Caprifolieae (Lonicera, Symphoricarpus, Leycesteria, and
Triosteum), and three within Viburnum (Fig. 7). The
several shifts detected in Viburnum are noteworthy in
that they correspond almost exactly with the inferred
shifts detected in a more focused study of the genus that
applied various models of diversification (Spriggs et al.
2015).

In regards to achene lineages, the general location
of the inferred shifts is intriguing, as they appear to
coincide with specific clades that exhibit specialized
structures related to achene dispersal. In Dipsacaceae,
for example, there is tremendous diversity in the shape
of the “epicalyx,” a tubular structure that subtends
the calyx and encloses the ovary (Donoghue et al.
2003; Carlson et al. 2009), which is often associated
with elaborated structures (e.g., “wings,” “pappus-
like” bristles) that accompany their achene fruits.
Interestingly, many of these same general forms are
observed throughout core Valerianaceae, although they
arise from modifications to the calyx (Donoghue et
al. 2003; Jacobs et al. 2010). While the significance
of these structures is thought to improve protection,
germination, and dispersal of the seed, we emphasize
that, at this stage, it is difficult to confidently rule out
other important factors, such important biogeographic
movements due to increased dispersal abilities (i.e., “key
opportunities” sensu Moore and Donoghue 2007), or
even purely genetic changes, such as gene and genome

duplications (Hildago et al. 2010; Carlson et al. 2011). But,
we can at least confidently conclude that the achene by
itself is likely not a strong correlate of diversity patterns
within Dipsidae.

DiscussioN

Progress in biology comes from confronting reality
with our hypotheses and either confirming that our view
of the world is correct, or, more excitingly, finding out
that we still have a lot left to discover. With studies of
diversification, we have mostly been limited to doing
the former—we have an idea about a trait that may affect
diversification rates based on intuition about its potential
effect (e.g., an achene fruit might allow greater dispersal,
and thus easier colonization of new habitats to form new
species) as well as some knowledge of its distribution
(e.g., some very large plant clades have achenes) and
then run an analysis. Typical outcomes are yes, there is
a difference in diversification in the way we expected,
or there is no difference but maybe we just lack the
necessary power. In any case, chances are we are at least
vaguely correct that the trait we think credibly has a
mechanism for increasing diversification rate actually
has an effect (at least once there is enough power), or,
less compellingly, clades we identify for such a test from
eyeballing the data return a significant result despite no
underlying reality.

Surprise is a necessary part of discovery that, to put
it bluntly, has been relatively lacking in trait-dependent
diversification studies until now. With HiSSE we can still
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FIGURE 7. Comparisons of character reconstructions of states and net diversification rates under both the BiSSE model and HiSSE models,
applied to a large empirical data set of non-achene (black branches) and achene fruits (white branches) for Dipsidae. The major clades are labeled
and estimates of the most likely state and rate are based on the model-averaged marginal reconstructions inferred under a set of models (see main
text). Rate colors are comparable between figures. a) With BiSSE, there are only two distinct rate categories associated with each observed state,
which suggests that all achene-bearing lineages have an elevated net diversification rate relative to non-achenes. The histograms to the right of
the tree show the location of the rates on a gradient of rates, as well as the frequency of both these rates and states for each contemporary tip taxa.
b) However, the HiSSE character reconstructions reveal strong heterogeneity in the diversification rates underlying each observed state, with
contemporary taxa showing a large range of diversification rates, once uncertainty in the model and the reconstruction is taken into accounted.
We highlight and discuss several interesting clades that contain some of the highest diversification rates across Dipsidae, particularly those
within achene lineages (i.e., Dipsacaceae and core Valerianaceae). Para = Paracryphiales, Adox = Adoxaceae, Dier = Diervilleae, Capr+Hepta =
Caprifolieae+Heptacodium, Linn = Linnaeeae, Zab = Zabelia, Morin = Morinaceae, Triplo+Dipsac = Triplostegia+Dipsacaceae, Valerian =
Valerianaceae.

test our intuitions about a particular character, but we diversification rate correlated with the achene, or is the
can also discover that rates seem to be driven by some achene simply a necessary precursor to some other trait
unknown and unmeasured character state, allowing thatis more likely to be driving diversification? This lets
the data to help us generate new hypotheses—is the us go from a scenario where we simply reject trivial
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nulls, such as whether diversification rates of clades
with and without some focal trait are precisely equal, to
being potentially surprised by the results—no, it is not
the achene per se, but it could be something else nested
within these particular clades in addition to the achene
fruit type.

Currently, diversification models are divided between
those thatlook at one or more focal traits only, integrating
over any other factors (e.g., BiSSE, Maddison et al. 2007;
BiSSE-ness, Magnuson-Ford and Otto 2012; ClaSSE,
Goldberg and Igic 2012; sister group comparisons, Mitter
et al. 1988), and those that fit rates to trees but ignore
trait information altogether (e.g., MEDUSA, Alfaro et
al. 2009; BAMM, Rabosky 2014). Our HiSSE framework
spans this range. If the true model is strictly trait-
dependent diversification, it can detect this (Figs. 1-5), as
a BiSSE analysis would. If the true model is rates varying
due to some other unexamined factors (a physical trait,
a property of the environment, etc.) HiSSE recovers
this too, as in the case of achene evolution in the
Dipsidae clade (Fig. 7). Uniquely, HiSSE can also give an
intermediate answer where a focal trait explains some
but not all of the diversification difference.

The HiSSE framework also addresses some of
the recent important criticisms levied against state
speciation and extinction models (Rabosky and
Goldberg 2015). Specifically, our method no longer
requires the assumption that focal character states are
associated with diversification rate differences. Instead,
it allows this assumption to be explored as part of
a more flexible overall model, as opposed to relying
on separate tests for uncovering character-dependent
and CID rates of diversification (e.g., Beaulieu and
Donoghue 2013; Weber and Agrawal 2014; Spriggs
et al. 2015). Including our models of CID in a set of
alternative trait-dependent models should also alleviate
concerns of spurious assignments of diversification
rate differences between observed character states in
cases where trees are evolving separately from the
focal trait (cf., Rabosky and Goldberg 2015). These CID
diversification models are designed specifically to be as
complex as competing BiSSE or HiSSE models, which
provides a fairer comparison over more trivial equal-rate
“nulls.” We caution, however, that if the true model is
not in the set, we will naturally be comparing various
false models. For example, if the true model was trait-
independent logistic growth, none of the current HiSSE
models includes such a model, leading to the possibility
that some parameter-rich model, perhaps one that is
consistent with a character-dependent interpretation, is
chosen as “best.” Using model selection assumes that
this process tells us something about reality, but this is
dubious if sufficiently realistic models are not included.

We do, however, highlight one important statistical
concern in which HiSSE requires significant caution
in its use. This involves its indifference to number of
changes (cf., Maddison and FitzJohn 2014). As with
BiSSE, we should find it more credible that a particular
character state enhances diversification rates if we see a
rate increase in each of the 10 times it evolves than if it

evolved just once but had the same magnitude of rate
increase. A good solution to this problem has not yet
been proposed, and we urge a healthy skepticism of any
result based on a trait that has evolved only a few times.

There are other practical concerns in empirical
applications of the HiSSE model. While it could be
used over a set of trees (i.e., bootstrap or Bayesian post-
burnin tree samples), the model assumes that the branch
lengths, topology, and states are known without error.
Certain kinds of phylogenetic errors, such as terminal
branch lengths that are too long (as may occur with
sequencing errors in the data used to make the tree)
can result in particular biases in estimates of speciation
and/or extinction (also see Beaulieu and O’Meara 2015).
Similarly, if one clade were reconstructed to be younger
than it actually is, due to a substitution rate slowdown
caused by some other trait (e.g., life history; Smith and
Donoghue 2008), it could be interpreted as having a
faster diversification rate, perhaps even inferred to have
its own hidden state. For trees that come from Bayesian
dating analyses, whether a birth-death or Yule prior was
used may affect results unless the data are strong enough
to overwhelm the prior (Condamine et al. 2015). Future
simulation studies will focus on better understanding
the impact that these and other branch length error
scenarios can have on the interpretation and estimation
of various model parameters. Also, we point out that the
HiSSE model assumes discrete characters, whether they
be hidden or observed, but it could be that a continuous
parameter is the cause of a diversification rate difference
(e.g., perhaps extinction risk varies inversely with mean
of the dispersal kernel). However, this may only enter
the model as an unseen discrete character, perhaps
corresponding to low and high values of the continuous
character.

Our HiSSE model is part of a long tradition
in comparative methods of identifying, and then
addressing, perceived shortcomings. For instance,
Felsenstein (1985) pointed out the pitfalls of treating
species values as independent data points and provided
two alternatives (ie., independent contrasts and
dividing a tree into pairs of tips) to address those issues.
Maddison (2006) realized the issue of not accounting for
diversification in transition-based methods (i.e., Pagel
1994) and not accounting for differential transitions in
diversification models, which led to the development
of state-dependent speciation and extinction models
(Maddison et al. 2007; FitzJohn et al. 2009). Recently,
Rabosky and Goldberg (2015) pointed out a serious
problem with interpretations in state speciation and
extinction analyses in general, and our work largely, but
not entirely, addresses these concerns. We caution users
that it is important to keep a perspective: all methods
have flaws, and all will fail given a strong enough
violation of their underlying assumptions. For example,
it appears difficult for HiSSE to adequately estimate
different transition rates when the model assumes any
number of hidden states, and so many estimates will
be biased. Even with the increasing efforts to test new
methods (in our case, over 17,000 computer-days were
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devoted to conducting simulations and analyses) there
will be flaws that may have gone undetected. We urge
skepticism toward all models, but also skepticism toward
statements of fatal flaws in some models while leaving
newer, competing models relatively untested.

There is no question that state-dependent speciation
and extinction models are an important advancement
for understanding characters” impact on diversification
patterns. They have greatly improved statistical power
over older, simpler sister-clade comparisons, and the
explicit inference of differences in speciation and
extinction has the potential for a much more fine-
grained analysis of diversification. But, in a way,
these models have also allowed us to retreat to the
old comforts of reducing complex organisms into
units of single, independently evolving characters, and
offering adaptive interpretations to each (cf., Gould and
Lewontin 1979). To be fair, of course, it is unlikely that
any trait of great interest to biologists has exactly zero
effect on speciation and/or extinction rates, but it is
certainly unlikely that this trait acts in isolation. Thus,
we hope HiSSE is viewed as a step away from this
line of thinking, as we no longer have to necessarily
focus analyses, or even interpret the results, by reference
to the focal trait by itself, but can instead estimate
how important it is as a component of diversification
overall. It is in this way that analyses focused on
“hidden” factors promoting diversification will afford
us a more refined understanding of why certain clades
become extraordinarily diverse, while still allowing us to
examine our hypotheses about effects of observed traits.
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